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Abstract
We study conditions of discreteness of spectrum of the operator defined by
Lu = – 1

ρ(x)u
′′(x) –

∫ ∞
0 u(s)dsr(x, s), x ∈ [0,∞). The operator has two singularities at the

ends of the interval (0,∞). The second question is positivity of solutions of the
equation Lu = f under boundary conditions u(0) = 0, u′(∞) = 0. The used abstract
scheme is close to the well-known MS Birman’s method in the spectral theory of
self-adjoint operators. Conditions for discreteness of spectrum and positivity of the
Green’s operator are obtained. The result relates to the MS Birman’s result on the
necessary and sufficient condition for discreteness of spectrum of a polar-differential
operation. The results may be interesting for researchers in qualitative theory of
functional-differential equations and spectral theory of self-adjoint operators.
MSC: Primary 34K08; 34K10; secondary 34K12
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1 Introduction
1.1 Problems and a well-known result
Our first objective is to study the conditions for discreteness of spectruma of the
functional-differential operator defined by

Lu = –


ρ(x)
u′′ –

∫ ∞


u(s)dsr(x, s), x ∈ R+ = [,∞), (.)

with two singularities: at x =  and at infinity. Note that one particular case of the expres-
sion (.) is the following operator with one deviation:

–

ρ
u′′(x) – q(x)u

(
h(x)

)
.

The second question is existence of positive solutions of the equation Lu = f (see Defini-
tion .).
Note the result of Birman [, (Chapter , Section )] for the spectral problem

Lu
def= –


ρ
u′′ = λu, x ∈ R+, (.)
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where the operation L is called polar-differential operation. This singular spectral prob-
lem is usually considered in the space L(R+,ρ) of functions that are square-integrable on
R+ with the positive weight ρ . Birman showed that a necessary and sufficient condition of
discreteness of spectrum of the operator L is

lim
s→∞ s

∫ ∞

s
ρ(x)dx = . (.)

The singularity at the point x =  is not reflected in this condition. If
∫ 
 ρ(x)dx =∞, con-

dition (.) is not sufficient for discreteness. We impose the second condition,

lim
s→

s
∫ ∞

s
ρ(x)dx = . (.)

The two conditions (.) and (.) are sufficient for discreteness of the spectrum of (.)
(Theorem .).b It seems that (.) is also necessary one.
Part of this work is a continuation of the research in the articles [–].

1.2 Assumptions, notation
Everywhere below, except for the independent appendix, we use the assumptions and no-
tation introduced in this subsection.
The function ρ is assumed to be measurable and positive almost everywhere on R+ =

[,∞) and satisfying the important condition

sup
s∈(,∞)

s
∫ ∞

s
ρ(x)dx <∞. (.)

Remark . Comparing (.), (.), and (.) we see that the key role is played by the
properties of the function

�(s) = s
∫ ∞

s
ρ(x)dx. (.)

Conditions (.) and (.) can be written as lims→∞ �(s) = lims→ �(s) = , and condition
(.) is boundedness of the �(s). The latter is sufficient (Lemma .) for the inclusion
W ⊂ L(R+,ρ) and for boundedness of the operator T (see, below in this subsection). It
is close to a necessary condition: if, for example, lims→∞ �(s) = ∞, then T is unbounded
(see Remark .).

Everywhere below the function r(x, s) is assumed to satisfy the following conditions: it
is nondecreasing in s ∈ R+ for almost all x ∈ R+, it is measurable in x for any s ∈ R+, and

q(x) = r(x,∞) – r(x, ) (.)

is locally integrable on (,∞). We can assume that r(x, ) =  for almost all x ∈ R+ (as
follows from a property of the Stieltjes integral).
Now, let us introduce the function

ξ (x, y) = ρ(x)
∫ x


r(s, y)ds. (.)
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Finally, let
• L(R+,ρ) be the Hilbert space of all square-integrable with positive almost everywhere
weight ρ on R+ = [,∞) functions f , i.e.

∫
R+ f (x)

ρ(x)dx < ∞, and with scalar product

(f , g) =
∫
R+

f (x)g(x)ρ(x)dx,

• W be the set of all locally absolutely continuous on R+ functions u satisfying
∫
R+

u′(x) dx < ∞, (.)

and the boundary condition u() = ;W is a Hilbert space (Lemma .) with scalar
product

[u, v] =
∫
R+

u′(x)v′(x)dx, (.)

and
• T : W → L(R+,ρ) be the operator defined by Tu(x) = u(x), x ∈ R+. Note that
W ⊂ L(R+,ρ) under condition (.) (Lemma .).

1.3 About domain of the operatorsL0 andL
If λ is a regular value of L, then any solution of – 

ρ
u′′ – λu = f satisfies – 

ρ
u′′ ∈ L(R+,ρ).

So, we have to assume that the domain D(L) of the operator L consists of all solutions
of the equation

–

ρ
u′′ = z ∈ L(R+,ρ). (.)

These solutions have locally on (,∞) absolutely continuous derivative u′ and have the
form

u(x) =
∫ ∞


G(x, s)z(s)ds + u() + u′(∞)x, (.)

where G(x, s) = ρ(s)min{x, s}. In fact, since (
∫ ∞
x ρz ds) ≤ ∫ ∞

x ρz ds
∫ ∞
x ρ ds the integral

is convergent, and u′(x) =
∫ ∞
x ρ(t)z(t)dt + u′(∞). From this we have

u(x) =
∫ x



∫ ∞

s
ρz dt ds + u() + u′(∞)x =

∫ ∞


G(x, s)z(s)ds + u() + u′(∞)x.

We impose the boundary conditions u() = , u′(∞) = . Both of these conditions are
necessary for the implementation of the variational method in the space of W . Then the
domain is determined automatically (see Corollary A. to Lemma A. and Lemma .).

Definition . We say that the boundary value problem

–

ρ
u′′ –

∫ ∞


u(s)dsr(x, s) = f , f ∈ L(R+,ρ), (.)

u() = , u′(∞) =  (.)
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is positively solvable, if it is uniquely solvable for any f ∈ L(R+,ρ), and the implication
f ≥  → u≥  holds.

Note that positive solvability is equivalent to the positivity of theGreen’s functionG(x, s),
which allows one to represent the solution of Lu = f in the form

u(x) =
∫ ∞


G(x, s)f (s)ds, (.)

or u =Gf , where G is the Green’s operator of L.

2 Discreteness of spectrum
2.1 OperatorL0

Instead of direct investigation of the equation Lu = f , where f ∈ L(R+,ρ), consider the
equation

∫ ∞


u′(x)v′(x)dx =

∫ ∞


f (x)v(x)ρ(x)dx, ∀v ∈W . (.)

Equation (.) is the result of the variational method, in which the primary object is the
form [u, v]. Equation (.) has the short form

[u, v] = (f ,Tv),

defined on the spaces W and H = L(R+,ρ). Note that W is a Hilbert space (Lemma .),
T : W → L(R+,ρ) is bounded (Lemma .), and T(W ) is dense in L(R+,ρ). So, we can
use the abstract scheme in Appendix . According to Corollary A. (.) is equivalent to
an equation Lu = f . By virtue of Lemma . (.) is equivalent to

–

ρ
u′′ = f , u() = u′(∞) = . (.)

Theorem . Suppose conditions (.) and (.) hold. Then the spectral problem

–

ρ
u′′ = λu, u() = , u′(∞) =  (.)

has a discrete spectrum.

Proof The discreteness follows from Theorem A. and Lemma .. �

Remark . (Estimate of the greatest lower bound of the spectrum) Let λ be the greatest
lower bound of spectrum of the operator L. Thus the problem

–

ρ
u′′ = λu + f , u() = , u(∞) = 

for λ < λ is uniquely resolvable for any f ∈ L(R+,ρ), but it is not if λ = λ. Then in view
of (A.) from inequality (.) it follows that


λ

= sup
u
=

(Tu,Tu)
[u,u]

≤  sup
(
s
∫ ∞

s
ρ(x)dx

)
.
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This is an accurate estimate. If ρ(x) = /x, then λ ≥ /, but λ = / is a point of the
spectrum, as follows from Example ..

Example . If ρ(x) = /(x), then s
∫ ∞
s ρ(s)ds≡ , and the operator T is bounded, but the

two conditions (.) and (.) are not fulfilled. The spectrum of the operator Lu = –xu′′

in L(R+,ρ), ρ = /(x) is the interval [/,∞).
In fact, the value λ < / is regular (Remark .). Let λ > /.
By means of the change of variable x = et the equation

–xu′′ – λu = f

can be transformed to –u′′(t) + u′(t) – λu = ϕ, where ϕ = f (et). Since

∫
R+

f (x)ρ(x)dx =
∫
R
ϕ(t)e–t dt,

this equation has to be considered in the space L(R, e–t).
The homogeneous equation –u′′ + u′ – λu =  has the solution u = e(/)t(c cos δt +

c sin δt) for a δ > . It is not in L(R, e–t). Let u = e(/)t sin δtv(t) = b(t)v(t). Then

–u′′ + u′ – λu = –
(
b′′v + b′v′ + bv′′) + (

b′v + bv′) – λbv =
(
–b′ + b

)
v′ – bv′′

= –δe(/)t cos δtv′ – e(/)t sin δtv′′ = ϕ.

If, for example, v = /
√
t, t ≥ , and v = , t <  (for  ≤ t ≤  the v(t) may be defined

arbitrarily), then ϕ ∈ L(R, e–t). But the corresponding solution u /∈ L(R, e–t). Thus, λ is
not a regular value of the operator.
Since the spectrum is a real closed set, [/,∞) is the spectrum.

2.2 General operatorL
The operator (.) can be represented as L =L –Q, where Q is defined by

Qu(x) =
∫ ∞


u(s)dsr(x, s). (.)

The operator Q acts from W to L(R+,ρ) and is bounded under certain conditions (see,
for example, (.)). Along with the general case, let us consider one special case (deviating
operator):

Qu(x) = q(x)u
(
h(x)

)
, (.)

where q(x) is assumed to be nonnegative locally integrable function, and h(x) is a mea-
surable function. Note that the notation q(x) in (.) corresponds to the definition (.), if
represent expression (.) in the form (.).

Theorem . If conditions (.) and (.) are fulfilled and Q : W → L(R+,ρ) is bounded,
then spectrum of L is discrete. If the function ξ defined by (.) is symmetric, i.e. ξ (x, y) =
ξ (y,x) for all x, y ∈ R+, then the spectrum is real and the system of eigenfunctions has the
orthogonal basis properties in L(R+,ρ).

http://www.boundaryvalueproblems.com/content/2014/1/102
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Proof Conditions (.) and (.) are sufficient conditions of compactness of the operatorT
(Lemma .). The symmetry condition of ξ (x, y) allows one to show the identity (Qu,Tv) =
(Qv,Tu) (see Section ). Now we can refer to Theorem A.. �

Using the estimate (.) from Theorem A. we have the first main result.

Theorem . Suppose (.) and (.) hold and

sup
s
s
∫ ∞


ρ(x)q(x)

(
q(x) – r(x, s)

)
dx < ∞. (.)

Then the spectral problem

–

ρ
u′′(x) –

∫ ∞


u(s)dsr(x, s) = λu, x ∈ (,∞),

u() = u′(∞) = 

has a discrete spectrum. If ξ (x, y) = ξ (y,x),c the spectrum is real, and the system of eigen-
functions has orthogonal basis properties in the spaces W and L(R+,ρ).

Remark . The spectrum is not real in general, because of the non-symmetry of the
function ξ (x, y).

The obtained estimate works well in the case of one deviation, if Q is defined by (.).
From (.) we have the following.

Corollary . Suppose (.) and (.) hold and

sup
s

(
s
∫
h(x)≥s

ρ(x)q(x) dx
)
< ∞. (.)

Then the spectral problem

–

ρ
u′′(x) – q(x)u

(
h(x)

)
= λu, x ∈ (,∞),

u() = u′(∞) = 

has a discrete spectrum.

Example . If Qu(x) = q(x)u(x) the operator L has the representation

Lu = –


ρ(x)
u′′ – q(x)u.

If (.) and (.) are satisfied and

sup
s
s
∫ ∞

s
ρq dx <∞, (.)

then the operator L has discrete spectrum. In this case (.) has the form (.). It follows
also from (.). Note that the inequality (.) is satisfied, if q(x) is bounded.

http://www.boundaryvalueproblems.com/content/2014/1/102
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3 Positive solvability
Suppose Q : W → L(R+,ρ) is bounded. By the substitution u = T∗z the equation Lu = f
is reduced to the equation

z –Kz = f , (.)

where K =QT∗ is an integral operator with nonnegative kernel,

K (x, t) =
∫ ∞


G(s, t)dsr(x, s).

Thus, if spectral radius of K is less than unit (ρ(K ) < ), then (.) is uniquely resolvable
and

f ≥  → z ≥ .

Sinced z = (I –K )–f and u =Gz, the operator G =G(I –K )– is positive, and G(x, s)≥ .
Thus:

Theorem . Suppose Q is bounded and ρ(K ) < . Then the boundary value problem
(.), (.) is uniquely resolvable for any f ∈ L(R+,ρ) and the Green’s operator G is posi-
tive.

Remark. Since ρ(K )≤ ‖K‖ = ‖T∗Q‖ ≤ ‖T∗‖‖Q‖ = ‖T‖‖Q‖ the condition ‖T‖‖Q‖ < 
is sufficient for positivity of the Green’s operator G.

The second main result is presented in the following statement.

Theorem . If

sup
s

(
s
∫ ∞

s
ρ dx

)
sup
s

(
s
∫ ∞

s
ρ(x)q(x)

(
q(x) – r(x, s)

)
dx

)
<




,

then the boundary value problem (.), (.) is positively solvable (see Definition .).

Proof See Remark . to Theorem . and the estimates (.) and (.). �

Consider the following particular case.

Corollary . The equation

–

ρ
u′′(x) – q(x)u

(
h(x)

)
= f

(q ≥ ) has a positive solution in W for any f ∈ L(R+,ρ), f ≥ , f 
= , if

sup
s

(
s
∫ ∞

s
ρ dx

)
sup
s

(
s
∫
h(x)≥s

ρ(x)q(x) dx
)
<




.

http://www.boundaryvalueproblems.com/content/2014/1/102
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The following particular case shows that in this estimate the inequality sign < cannot be
replaced by ≤.

Example . From Theorem . and (.) it follows that the equation

–


ρ(x)
u′′ – q(x)u = f

(q(x)≥ ) is uniquely resolvable for f ∈ L(R+,ρ) inW and has positive solution for f ≥ ,
if

sup
s

(
s
∫ ∞

s
ρq dx

)
· sup

s

(
s
∫ ∞

s
ρ(x)dx

)
<




.

In particular, if q(x)≤ const = q, and ρ(x) = /x, ‖T∗Q‖ ≤ q. Thus, if q < , the equa-
tion –xu′′ – q(x)u = f has unique positive solution for any f ∈ L(R+,ρ), f ≥ , f 
= .
But if q(x) = const = /, the equation –xu′′ – (/)u = f may not have a solution for

some f (this was considered in Example .).

In concluding this section consider one useful assertion. Let

〈u, v〉 =
∫
R+

u′v′ dx –
∫
R+×R+

u(s)v(x)dξ (.)

and

Q(u, v) =
∫
R+×R+

u(s)v(x)dξ . (.)

Note that Q(u, v) = (Qu,Tv) (see the equality (.)).
Let λ be the greatest lower bound of spectrum of the operator L. Then by (A.)

λ = inf
u
=

〈u,u〉
(Tu,Tu)

.

From Theorem A. follows the following.

Theorem . Suppose conditions (.) and (.) hold. Then λ is the smallest eigenvalue
of the problem Lu = λu, u() = u′(+∞) = , and the following statements are equivalent:
. 〈u,u〉 is positive definite,
. λ > ,
. ρ(QT∗) < .

Remark . We do not suppose that λ > –∞ (but if ρ(QT∗) <  it is so).

4 Auxiliaries propositions
Recall that in all assertions below condition (.) is assumed to be fulfilled.

Lemma . W is a Hilbert space.

http://www.boundaryvalueproblems.com/content/2014/1/102
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Proof The relation u(x) =
∫ x
 z(s)ds establishes a bijection between W and the Hilbert

space L(R+). �

Lemma . The value Au =
∫
R+

|u(s)u′(s)|
s ds satisfies the inequality

Au ≤ [u,u]. (.)

Proof This follows from the inequalities

A
u ≤

∫
R+

u

s
ds

∫
R+

(
u′) ds = 

∫
R+

ds
s

∫ s


u(t)u′(t)dt [u,u]

= 
∫
R+

u(t)u′(t)
t

dt [u,u] ≤ Au · [u,u]. �

Remark . The estimate (.) is accurate, since if u = s/–ε , s ≥ , and u = s/+ε , s ≥ ,
then


 + ε

≤ Au

[u,u]
.

Remark . If u(s) ≥ , u′(s) ≥ , u′′(s)≤ , then

Au ≥ .[u,u].

In fact, denote Bu =
∫
R+

u
s ds. Then Bu = Au. Since u(s) =

∫ s
 u

′(t)dt ≥ su′(s), Bu ≥∫
R+ u

′(s) ds = [u,u].

Lemma . Suppose (.) holds. Then T(W ) ⊂ L(R+,ρ), the operator T : W → L(R+,ρ)
is bounded, and the norm of T satisfies the estimate

‖T‖ ≤  sup
s∈R+

(
s
∫ ∞

s
ρ(x)dx

)
. (.)

Proof Since (Tu,Tu) =
∫
R+ u

ρ dx = 
∫
R+ ρ(x)dx

∫ x
 u(s)u′(s)ds, we can estimate

(Tu,Tu) ≤ 
∫
R+

ρ(x)dx
∫ x



∣∣u(s)u′(s)
∣∣ds = 

∫
R+

|u(s)u′(s)|
s

s
∫ ∞

s
ρ(x)dxds.

From this and (.)

(Tu,Tu) ≤  sup
s∈R+

(
s
∫ ∞

s
ρ(x)dx

)
[u,u]. (.)

�

Remark. If lims→∞ �(s) =∞ (see (.)), thenT(W ) 
⊂ L(R+,ρ). In fact, if u(s)u′(s) ≥ ,
then (Tu,Tu) = 

∫
R+

u(s)u′(s)
s �(s)ds. It is possible to find a nonincreasing functionψ(s) such

that
∫
R+

ψ(s)
s

ds < ∞, but
∫
R+

ψ(s)
s

�(s)ds =∞.

http://www.boundaryvalueproblems.com/content/2014/1/102
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Now find u such that u(s)u′(s) = ψ(s): u(s) = 
∫ s
 ψ(t)dt. Since u ≥ , u′(s) ≥ , and u′ is

nonincreasing, by Remark ., [u,u] ≤ Au =
∫
R+

ψ(s)
s ds <∞. But (Tu,Tu) = ∞.

Lemma . The image T(W ) is dense in L(R+,ρ).

Proof The proof is left to the reader. �

The following theorem [, p.] can be used to show compactness.

Theorem . (Gelfand) A set E from a separable Banach space X is relatively compact if
and only if for any sequence of linear continuous functionals that converge to zero at each
point

fn(x) → , ∀x ∈ X, (.)

the convergence (.) would be uniform on the E.

Lemma . Suppose (.) holds. If fn ∈ L(R+,ρ) is bounded, then

lim
N→∞

∫ ∞

N
fn(x)u(x)ρ(x)dx = 

uniformly on the set {(u,n) : ‖u‖ ≤ ,n ∈ {, , . . .}}.

Proof Since

(∫ ∞

N
fn(x)u(x)ρ(x)dx

)

≤
∫ ∞

N
fn(x)ρ(x)dx

∫ ∞

N
u(x)ρ(x)dx

it is sufficient to show that
∫ ∞

N
u(x)ρ(x)dx→ 

uniformly on ‖u‖ ≤ . We have

∫ ∞

N
uρ dx =

∫ ∞

N
ρ dx

(
u(N) + 

∫ x

N
u(s)u′(s)ds

)
.

The first term tends to zero because of the inequality

u(N) =
(∫ N


u′(s)ds

)

≤
∫ N


u′(s) ds ·

∫ N


ds≤N

and (.). The second term is equal to


∫ ∞

N
ρ dx

∫ x

N
u(s)u′(s)ds = 

∫ ∞

N

u(s)u′(s)
s

(
s
∫ ∞

s
ρ dx

)
ds.

This tends to zero because of (.) and (.). �

http://www.boundaryvalueproblems.com/content/2014/1/102
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Lemma . Suppose (.) holds. If fn ∈ L(R+,ρ) is bounded, then

lim
a→

∫ a


fn(x)u(x)ρ(x)dx = 

uniformly on the set {(u,n) : ‖u‖ ≤ ,n ∈ {, , . . .}}.

Proof Since

(∫ a


fn(x)u(x)ρ(x)dx

)

≤
∫ a


fn(x)ρ(x)dx

∫ a


u(x)ρ(x)dx

≤ C
∫ a


u(x)ρ(x)dx

it is sufficient to show that
∫ a


u(x)ρ(x)dx→ 

when a →  uniformly on ‖u‖ ≤ . We have

∫ a


uρ dx =

∫ a



(

∫ x


u(s)u′(s)ds

)
ρ dx = 

∫ a



u(s)u′(s)
s

(
s
∫ a

s
ρ(x)dx

)
ds.

Now we refer to (.) and (.). �

Lemma . If (.) and (.) hold, then T is compact.

Proof Let 
 = {Tu : ‖u‖ ≤ }. We use the criterium of compactness of Gelfand (see The-
orem .). Let fn ∈ L(R+,ρ) be a sequence of functionals such that fn(z) →  for any
z ∈ L(R+,ρ). We have to show that fn(Tu) →  uniformly for ‖u‖ ≤ .
Let ε > . Using Lemma . choose N such that

∣∣∣∣
∫ ∞

N
fn(x)u(x)ρ(x)dx

∣∣∣∣ < ε/

for all n and for all ‖u‖ ≤ . The same we can do with
∫ a
 fn(x)u(x)ρ(x)dx for sufficiently

small a > . For this aim we can use Lemma ..
Now we only have to show that

∫ N
a fn(x)u(x)ρ(x)dx →  uniformly on the set ‖u‖ ≤ .

Since

(∫ N

a
fn(x)u(x)ρ(x)dx

)

=
(∫ N

a
fn(x)

(∫ x

a
u′(s)ds

)
ρ(x)dx

)

=
(∫ N

a
u′(s)ds

∫ N

s
fn(x)ρ(x)dx

)

≤
∫ N

a
u′(s) ds

∫ N

a
ϕn(s) ds

≤
∫ N

a
ϕn(s) ds,
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where ϕn(s) =
∫ N
s fn(x)ρ(x)dx, it suffices to show that

∫ N
a ϕn(s) ds → . We show that

ϕn(s)→  uniformly for s ∈ [a,N]. Let

zs(x) =

⎧⎨
⎩
 if x ∈ [s,N],

 if x /∈ [s,N].

Then ϕn(s) = fn(zs). The set {zs : s ∈ [a,N]} is compact. Thus by Theorem . of Gelfand
fn(zs) converges to zero uniformly for these s. So, ϕn(s) →  uniformly for s ∈ [a,N], and
fn(Tu) →  uniformly for ‖u‖ ≤ . �

Remark . It seems that condition (.) is necessary for compactness of T .

Lemma . Equation (.) is equivalent to problem (.).

Proof Denote h′ = –f ρ . From (.) it follows that
∫ ∞


u′v′ dx = –

∫ ∞


h′vdx = –vh|∞ +

∫ ∞


hv′ dx (.)

(if we choose v such that the corresponding limits exist). If v =  for x /∈ [a,b] ⊂ (,∞),
then

∫ b
a u′v′ dx =

∫ b
a hv′ dx. From this u′ = h + const on [a,b]. Since the segment [a,b] is

arbitrary, the relation u′ = h + const is fulfilled on the whole semiaxis (,∞). So, u′′ = h′ =
–ρf . By the first equality in (.)

∫ ∞


u′v′ dx = –

∫ ∞


u′′vdx = –u′v|∞ +

∫ ∞


u′v′ dx.

Now, u′v|x=∞ = u′v|x= = . Choosing v such that v(∞)≥ C > , we obtain u′(∞) = . �

5 Operator Q. Symmetry and estimates of the norm
Here we consider the operator Q defined by (.).

5.1 Symmetry of the form (Qu,Tv)
Under the assumptions imposed on the functions r(x, s) and ξ (x, y) in Section ., from
Lemma B. (in Appendix ) we obtain the following statement.

Lemma .∫
R+×R+

f (x, y)dξ =
∫
R+

dxρ(x)
∫
R+

f (x, y)dyr(x, y). (.)

In this case X = Y = R+, μ(e) =
∫
e ρ(x)dx, K (x,dy) = r(x,dy) = dyr(x, y).

Using Lemma . the form

(Qu,Tv) =
∫
R+

dxv(x)ρ(x)
∫
R+

u(s)dsr(x, s)

can be represented in the symmetrical form

(Qu,Tv) =
∫
R+×R+

u(s)v(x)dξ . (.)

Hence, this form is symmetric if the function ξ (x, y) is symmetric: ξ (x, s) = ξ (s,x).

http://www.boundaryvalueproblems.com/content/2014/1/102
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5.2 Unique deviation
Consider first the special case when the operator Q is defined by (.), i.e. Qu(x) =
q(x)u(h(x)). Using (.) we have

(Qu,Qu) =
∫ ∞


ρ(x)q(x)u

(
h(x)

) dx =
∫ ∞


dxρq

∫ h(x)


u(s)u′(s)dsdx

= 
∫ ∞



u(s)u′(s)
s

(
s
∫
h(x)≥s

ρ(x)q(x) dx
)
ds

≤ [u,u] sup
s
s
∫
h(x)≥s

ρ(x)q(x) dx.

From this follows the estimate of ‖Q‖:

‖Q‖ ≤  sup
s

(
s
∫
h(x)≥s

ρ(x)q(x) dx
)
. (.)

In particular, when Qu(x) = q(x)u(x),

‖Q‖ ≤  sup
s
s
∫ ∞

s
ρq dx. (.)

5.3 General operator Q
Here we consider the general case of the operator Q defined by (.), i.e. Qu(x) =∫ ∞
 u(t)dtr(x, t). Suppose that the function ξ (x, y) = ρ(x)

∫ x
 r(s, y)ds (see (.)) is absolutely

continuous in y, and ξ (x, y) =
∫ y
 p(x, t)dt. Then p(x, t) does not decrease in x.

In this case

(
Qu(x)

) =
∫
R+

u(t)dtr(x, t)
∫
R+

u(τ )dτ r(x, τ ) =
∫∫

R+×R+
u(t)u(τ )dtr(x, t)dτ r(x, τ )

≤ 


∫∫
R+×R+

(
u(t) + u(τ )

)
dtr(x, t)dτ r(x, τ ) =

∫
R+

u(t) dtr(x, t)q(x),

where q(x) is defined by (.). Using Lemma ., we obtain

‖Qu‖ =
∫
R+

dxρ(x)
(
Qu(x)

) ≤
∫
R+

dxρ(x)q(x)
∫
R+

u(t) dtr(x, t)

=
∫
R+×R+

q(x)u(t) dξ =
∫
R+

dt u(t)
∫
R+

q(x)dxp(x, t)

≤ [u,u] sup
s
s
∫ ∞

s
dt

∫
R+

q(x)dxp(x, t).

The latter step can be done in the same manner as in the relation (.).
From this

‖Q‖ ≤  sup
s
s
∫ ∞

s
dt

∫
R+

q(x)dxp(x, t). (.)

Since
∫ ∞

s
dt

∫
R+

q(x)dxp(x, t) =
∫
R+

dxρ(x)q(x)
∫ ∞

s
dtr(x, t),

http://www.boundaryvalueproblems.com/content/2014/1/102


Labovskiy and Getimane Boundary Value Problems 2014, 2014:102 Page 14 of 18
http://www.boundaryvalueproblems.com/content/2014/1/102

it may be presented in the form

‖Q‖ ≤  sup
s
s
∫
R+

ρ(x)q(x)
(
q(x) – r(x, s)

)
dx. (.)

This estimate only works well if for all x deviation is concentrated around the point h(x).
For example, if r(x, s) = q(x)r(s – h(x)), r(+∞) = , r(–∞) =  then

‖Q‖ ≤  sup
s
s
∫
R+

ρ(x)q(x)
(
 – r

(
s – h(x)

))
dx.

This estimate coincides with (.), if r(t) =
{
 if t ≤ ,
 if t > .

In this case
∫
R+

u(s)dsr(x, s) = q(x)u
(
h(x)

)
.

Appendix 1: Abstract scheme
We do not use general spectral theory (see, for example, [, ]). But the scheme below is
close to the scheme in [, Chapter ] except for using a different notation. We find also
convenient explicit use of the embedding T from W to H (see below). This scheme was
used also in [–].

A.1 Positive form
Let W and H be Hilbert spaces with inner product [u, v] and (f , g), respectively. Let
T : W →H be a linear bounded operator. The equation

[u, v] = (f ,Tv), ∀v ∈W , (A.)

has the unique solution u = T∗f for any f ∈ H , where T∗ is adjoint operator. Let DL =
T∗(H).
Assume that
. the image T(W ) of the operator T is dense in H ,
. dimkerT = .

Lemma A. If the image T(W ) of the operator T is dense in H , then T∗ is an injection.

Proof Suppose T∗f =  for a f ∈ H . Then for any g ∈ T(W )

(f , g) = (f ,Tu) =
[
T∗f ,u

]
= .

Since T(W ) is dense in H , the f = . �

Corollary A. (Euler equation) The operator T∗ has an inverse L defined on the set DL.
Equation (A.) is equivalent to

Lu = f . (A.)

http://www.boundaryvalueproblems.com/content/2014/1/102
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The spectral problem for the operator L we will write in the form

Lu = λTu. (A.)

Let λ be the greatest lower bound of the spectrum of L. It is well known (see, for ex-
ample, [, Chapter ]) that

λ = inf
u
=

(Lu,Tu)
(Tu,Tu)

.

Since (Lu,Tu) = [T∗Lu,u] = [u,u],

λ = inf
u
=

[u,u]
(Tu,Tu)

= ‖T‖–. (A.)

Theorem A. The spectrum of L is discrete if and only if T is compact.

Proof Since (A.) is equivalent to u = λT∗Tu, discreteness of spectrum of L is equivalent
to compactness of T∗T . But the operators T∗T and T∗ are compact at the same time [,
Chapter ]. �

Theorem A. Suppose T is compact. Then (A.) has a nonzero solution un only in the
case of λ = λn, n = , , , . . . , i.e.

Lun = λnTun, n = , , . . . .

The system un forms an orthogonal basis in W . The sequence λn forms a nondecreasing
sequence of positive numbers,

 < λ ≤ λ ≤ λ ≤ · · ·

and limλn =∞.

Remark A. The minimal eigenvalue λ satisfies the equality (A.).

A.2 General case
Let

〈u, v〉 = [u, v] –Q(u, v), (A.)

be a symmetric bilinear form, u, v ∈ W . Assume that Q is bounded in both argu-
ments. Moreover, suppose that this form has the representation Q(u, v) = (Qu,Tv), where
Q : W → H is bounded.e Then the equation [u, v]–(Qu,Tv) = (f ,Tv), ∀v ∈W , is equivalent
to

u – T∗Qu = T∗f (A.)

and in the set DL = T∗(H) to

Lu =Lu –Qu = f , (A.)

where L = (T∗)–.

http://www.boundaryvalueproblems.com/content/2014/1/102
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Theorem A. Suppose T is compact. Then the equation

Lu =Lu –Qu = λTu (A.)

has a nonzero solution un only in the case of λ = λn, n = , , , . . . , i.e.

Lun = λnTun, n = , , , . . . .

The system un can be chosen to form an orthogonal basis in the space W .

If the form 〈u, v〉 = [u, v] – (Qu,Tv) is lower semi-bounded, i.e.

inf
u
=

〈u,u〉
(Tu,Tu)

> –∞, (A.)

then spectrum of L is semi-bounded, and

λ = inf
u
=

(Lu,Tu)
(Tu,Tu)

= inf
u
=

〈u,u〉
(Tu,Tu)

(A.)

is the greatest lower bound of the spectrum [, Chapter ]. Thus we have the following.

Theorem A. If (A.) holds and T is compact then the eigenvalues λn have a minimum
and can be put in increasing order

λ ≤ λ ≤ λ ≤ · · · .

A.3 Positive definiteness and spectral radius of QT∗

Let ρ = ρ(QT∗) be the spectral radius of the operator QT∗. Note that the two operators
QT∗ and T∗Q have the same spectral radius. So

ρ = sup
u
=

[T∗Qu,u]
[u,u]

= sup
u
=

(Qu,Tu)
[u,u]

. (A.)

Lemma A. The quadratic form 〈u,u〉 is positive definite if and only if ρ < .

Proof From (A.) it follows that ρ[u,u] – (Qu,Tu) ≥  and 〈u,u〉 = [u,u] – (Qu,Tu) ≥
( – ρ)[u,u]. If ρ <  then 〈u,u〉 is positive definite. Conversely from the inequality [u,u] –
(Qu,Tu) ≥ ε[u,u] (ε > ) it follows that ρ ≤  – ε. �

So if ρ < , then by (A.)

λ ≥ inf
u
=

[u,u] – ρ[u,u]
(Tu,Tu)

> .

Conversely, suppose λ > . Then

[u,u] – (Qu,Tu) ≥ λ(Tu,Tu) > ,
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and ρ ≤ . If (Qu,Tu) is nonnegative, then spectrum of T∗Q is in the segment [,ρ], and
ρ is a point of spectrum. In this case from λ >  it follows that ρ < . So, we have the
following.

Theorem A. Suppose (Qu,Tu) is nonnegative. The following assertions are equivalent:
. 〈u,u〉 is positive definite,
. λ > ,
. ρ(QT∗) < .

Appendix 2: A generalization of the Fubini theorem
Weused a change of integration order in an integral, which does not follow from the classic
Fubini theorem. The following assertion is taken from themonograph []. Note that it was
used without proof in [–].

LemmaB. Let (X,A) and (Y ,B) bemeasurable spaces,μ be ameasuref on (X,A),K : X×
B → [,∞] be kernel (i.e. for μ-almost all x ∈ X, K (x, ·) is a measure on (Y ,B), ∀B ∈ B,
K (·,B) is μ-measurable on X). Then
. the function ν defined onA×B by the equality

ν(E) =
∫
X
K (x,Ex)μ(dx), where Ex =

{
y : (x, y) ∈ E

}
,

is measure;
. if f : X × Y → [–∞,∞] is ν-measurable on X × Y , then

∫
X×Y

f (x, y)dν =
∫
X

(∫
Y
f (x, y)K (x,dy)

)
μ(dx).

Remark B. The function ν is the Lebesgue extension from the set of rectangles

ν(A× B) =
∫
A
K (x,B)μ(dx), A ∈A,B ∈ B.
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Endnotes
a The spectrum of L is discrete if it consists only of eigenvalues of finite multiplicity.
b The condition

∫ 1
0 xρ(x)dx < ∞ is sufficient for (.), but it is not necessary (if, for example, ρ(x) = 1/(x2| ln x|) for x

near zero).
c ξ (x, y) is defined by (.).
d Here I is the identity operator.
e We call Q(u, v) the form associated with the operator Q.
f The measure is a nonnegative, σ -additive function defined on a σ -algebra; the productA×B is the minimal

σ -algebra containing the set of all rectangles A× B, A ∈ A, B ∈ B.
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