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Abstract
In this paper, by using the coincidence degree theory and the upper and lower
solutions method, we deal with the existence of multiple solutions to three-point
boundary value problems for second-order differential equation with impulses at
resonance. An example is given to show the validity of our results.
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1 Introduction
The purpose of the present paper is to investigate the following second-order impulsive
differential equations:

⎧⎪⎪⎨
⎪⎪⎩
(ρ(t)u′(t))′ = f (t,u(t),u′(t)), t ∈ J , t �= tk ,

�u(tk) = Ik(tk ,u(tk)), k = , , . . . ,m,

�u′(tk) = Jk(tk ,u(tk)),

(.)

together with the boundary conditions:

u′() = , u() = u(η), (.)

where J = [, ], ρ : J → (, +∞) is a continuous differentiable function, f : J × R → R is
continuous,  < η < , Ik , Jk ∈ C(J ,R) for  ≤ k ≤ m, m is a fixed positive integer,  = t <
t < t < · · · < tm < tm+ = , η �= tk , �u(tk) = u(t+k ) – u(t–k ) denotes the jump of u(t) at t = tk ,
�u′(tk) = u′(t+k ) – u′(t–k ). u′(t+k ), u(t

+
k ) (u′(t–k ), u(t

–
k )) represent the right limit (left limit) of

u′(t) and u(t) at t = tk , respectively.
Impulsive differential equations describe processes which experience a sudden change

of their state at certain moments. The theory of impulse differential equations has been
a significant development in recent years and played a very important role in modern
applied mathematical models of real processes rising in phenomena studied in physics,
population dynamics, chemical technology, biotechnology, and economics; see [–] and
the references therein.
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Recently, several authors (see [, –] and the references therein) have studied the
existence of nontrivial or positive solutions for second-order three-point boundary value
problem of the type

⎧⎨
⎩
u′′ = f (t,u,u′),

u′() = , u() = au(η).
(.)

Note that the nonlinear term f depends on u and its derivative u′, then the relative prob-
lem becomes more complicated. A general method to deal with this difficulty is to add
some conditions to restrict the growth of the u′ term. One condition is the Caratheodory
nonlinearity, the other usual condition is Nagumo condition or Nagumo-Winter condi-
tion (see [, , , –]). When a �= , the linear operator Lu = u′′ is invertible, this is the
so-called non-resonance case. Gupta et al.made use of the Leray-Schauder continuation
theorem to get the results on the existence of the solution for the problems (.) when
a �=  in []. By using the Leray-Schauder continuation theorem and in the presence of
two pairs of upper and lower solutions, Khan and Webb [] established the existence of
at least three solutions for the problem (.) when a �= . The linear operator Lu = u′′ is
non-invertible when a = , this is the so-called resonance case, and the Leray-Schauder
continuation theorem cannot be applied. In [], by using the coincidence degree theory
of Mawhin [] and some linear or non-linear growth assumptions on f , Feng and Webb
obtained the existence of the solution of the problem (.) when a = . By applying the
nonlinear alternative of Leray-Schauder, Ma [] have showed the existence of at least one
solution for the problem (.) when a = .
Recently, using the coincidence degree theory and the concept of autonomous curvature

bound set, Liu andYu [] have studied the existence of at least one solution for the problem
(.)-(.) when �u(tk) = Ik(u(tk),u′(tk)), �u′(tk) = Jk(u(tk),u′(tk)).
In the present paper, we assume that there exist n (n ∈ N and n ≥ ) pairs of upper and

lower solutions for problem (.)-(.) and the nonlinear f satisfies a Nagumo-like growth
condition with respect to u′. By considering a suitably modified nonlinearity and applying
the coincidence degree method ofMawhin [], the existence of multiple solutions for the
problem (.)-(.) is given.

2 Preliminaries
Let

X = PC(J)∩ {
u′() = ,u() = u(η)

}
, Z = PC(J)× Rm,

where

PC(J) =
{
u ∈ C

(
J *

)
,u

(
t–

)
and u

(
t+

)
exist, and u

(
t–k

)
= u(tk)

}
.

PC(J) =
{
u : J → R : u(t) is continuously differentiable for t �= , , tk ;u′(t–)
and u′(t+) exist, and u′(t–k )

= u′(tk)
}
, J * = J\{t, t, . . . , tm}.

Obviously, X is a Banach space with the following norm:

‖u‖X =max
{
sup
t∈J

∣∣u(t)∣∣, sup
t∈J

∣∣u′(t)
∣∣}.

http://www.boundaryvalueproblems.com/content/2014/1/103


Zhao et al. Boundary Value Problems 2014, 2014:103 Page 3 of 17
http://www.boundaryvalueproblems.com/content/2014/1/103

In the following, we recall the concept of strict upper and lower solutions for problem
(.)-(.).

Definition . A function α(t) ∈ PC(J)∩C(J *) is said to be a strict lower solution of the
problem (.)-(.) if

(
ρ(t)α′(t)

)′ > f
(
t,α(t),α′(t)

)
, t ∈ J *, (.)

�α(tk) = Ik
(
tk ,α(tk)

)
, �α′(tk) ≥ Jk

(
tk ,α(tk)

)
, k = , , . . . ,m, (.)

α′()≥ , α() – α(η)≤ . (.)

Similarly, a function β(t) ∈ PC(J) ∩ C(J *) is said to be a strict upper solution of the
problem (.)-(.) if

(
ρ(t)β ′(t)

)′ < f
(
t,β(t),β ′(t)

)
, t ∈ J *, (.)

�β(tk) = Ik
(
tk ,β(tk)

)
, �β ′(tk)≤ Jk

(
tk ,β(tk)

)
, k = , , . . . ,m, (.)

β ′() ≤ , β() – β(η)≥ . (.)

Remark . Let f : J × R → R be continuous, Ik , Jk ∈ C(J ,R), and u ∈ PC(J)∩C(J *) is a
solution of the problem (.)-(.), if α(β) is a strict lower solution (strict upper solution)
for the problem (.)-(.) with α ≤ u (u≤ β), then α < u (u < β) on (, ).

Definition . Let α be a strict lower solution and β be a strict upper solution for the
problem (.)-(.) satisfying α(t) < β(t) on J . We say that f : J × R → R has property (H)
relative to α and β , if there exists a function ψ ∈ C([, +∞), (, +∞)) such that

∣∣f (t,u,p)∣∣ <ψ
(|p|), (.)

for all u(t) ∈ (–β(t), –α(t))∪ (α(t),β(t)), t ∈ J , and

∫ +∞



s
θs +ψ(s)

ds = +∞, (.)

where  ≤ θ < +∞ with |ρ ′(t)| ≤ θ , t ∈ J .

3 The key lemmas
Let domL = C(J *)∩X, and

L : domL → Z, u→ ((
ρ(t)u′(t)

)′,�u(t), . . . ,�u(tm),�u′(t), . . . ,�u′(tm)
)
,

N : u → z, u→ (
f
(
t,u,u′), I(t,u(t)), . . . , Im(

tm,u(tm)
)
,

J
(
t,u(t)

)
, . . . , Jm

(
tm,u(tm)

))
.

Then the problem (.)-(.) can be written as

Lu =Nu, u ∈ domL.

http://www.boundaryvalueproblems.com/content/2014/1/103
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Lemma . Suppose that L be defined in the above.Then L is a Fredholm operator of index
zero. Furthermore

Ker(L) = {u ∈ X : u = c, c ∈ R}, (.)

and

Im(L) =
{
(y,a, . . . ,am,b, . . . ,bm) :

(
ρ(t)u′(t)

)′ = y(t),�u(tk) = ak ,�u′(tk) = bk ,

k = , . . . ,m, for some y ∈ domL
}

=
{
(y,a, . . . ,am,b, . . . ,bm) :

∫ 

η


ρ(s)

∫ s


y(τ )dτ ds +

∫ 

η


ρ(s)

∑
tk<s

ρ(tk)bk ds

+
∑

η<tk<

ak = 
}
. (.)

Proof Firstly, it is clear that (.) holds. Next, we shall prove that (.) holds.
The following problem:

⎧⎨
⎩
(ρ(t)u′(t))′ = y(t),

�u(tk) = ak , �u′(tk) = bk , k = , . . . ,m
(.)

has a solution u(t) satisfying u′() =  and u() = u(η) if and only if

∫ 

η


ρ(s)

∫ s


y(τ )dτ ds +

∫ 

η


ρ(s)

∑
tk<s

ρ(tk)bk ds +
∑

η<tk<

ak = . (.)

In fact, if (.) has a solution u(t) satisfying u′() = , u() = u(η), then from (.) we have

u(t) = u() +
∫ t




ρ(s)

∫ s


y(τ )dτ ds +

∫ t




ρ(s)

∑
tk<s

ρ(tk)bk ds +
∑
tk<t

ak .

According to u′() = , u() = u(η), we get (.).
On the other hand, if (.) holds, setting

u(t) = c +
∫ t




ρ(s)

∫ s


y(τ )dτ ds +

∫ t




ρ(s)

∑
tk<s

ρ(tk)bk ds +
∑
tk<t

ak ,

where c is an arbitrary constant, then u(t) is a solution of (.) with u′() = , u() = u(η).
Hence (.) holds. �

Take the projector Q : Z → Z as follows:

Q(y,a, . . . ,am,b, . . . ,bm)

=
(


φ() – φ(η)

[∫ 

η


ρ(s)

∫ s


y(τ )dτ ds +

∫ 

η


ρ(s)

∑
tk<s

ρ(tk)bk ds +
∑

η<tk<

ak
]
,

, . . . , 
)
, (.)

http://www.boundaryvalueproblems.com/content/2014/1/103
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where φ(t) =
∫ t


s
ρ(s) ds, t ∈ (, ). For every (y,a, . . . ,am,b, . . . ,bm) ∈ Z, set

z = (y,a, . . . ,am,b, . . . ,bm) = (y,a, . . . ,am,b, . . . ,bm) –Q(y,a, . . . ,am,b, . . . ,bm).

Thus, we obtain

∫ 

η


ρ(s)

∫ s


y(τ )dτ ds +

∫ 

η


ρ(s)

∑
tk<s

ρ(tk)bk ds +
∑

η<tk<

ak

=
[∫ 

η


ρ(s)

∫ s


y(τ )dτ ds +

∫ 

η


ρ(s)

∑
tk<s

ρ(tk)bk ds +
∑

η<tk<

ak
]

×
[
 –


φ() – φ(η)

∫ 

η

ds
ρ(s)

]
= .

Then z ∈ ImL. Hence Z = ImL + R. Since ImL ∩ R = {}, we have Z = ImL ⊕ R, which
implies dimKer(L) = domR = codim ImL = . Hence L is a Fredholm operator of index
zero.
Take P : Z → Z, Pu = u(). So the generalized inverse KP : ImL → domL ∩ KerP of L

can be written as

KPz(t) = KP(y,a, . . . ,am,b, . . . ,bm)

=
∫ t




ρ(s)

∫ s


y(τ )dτ ds +

∫ t




ρ(s)

∑
tk<s

ρ(tk)bk ds +
∑
tk<t

ak . (.)

Set δ :=mint∈J ρ(t) > , d  . Then for the function ψ defined by (.), let h(u) be the
solution of the following initial value problem:

δyy′ + θy +ψ(y) = , y() = d, (.)

and h(u) be the solution of the following initial value problem:

δyy′ – θy –ψ(y) = , y() = d. (.)

Lemma . Suppose that there exists a constant M > , then h(u) is well defined in [,M]
and positive on this interval, h(u) is also well defined and positive in [–M, ].Moreover, if
d  , then h(u)   for any u ∈ [,M]; h(u)   for any u ∈ [–M, ].

Proof We only consider the case y = h(u) (in the case y = h(u), the proof is similar).
Assume that there exists a u ∈ [,M] such that y(u) = h(u) = . Let u = inf{u : h(u) =
,u ∈ [,M]}. It follows from (.) that

–
yy′

θy +ψ(y)
= δ–, y > .

Integrating the above equation over [,u] we get (let τ = y(s))

–
∫ u



y(s)y′(s)ds
θy(s) +ψ(y(s))

=
∫ d



τ dτ

θτ +ψ(τ )
= δ–u ≤ δ–M.

http://www.boundaryvalueproblems.com/content/2014/1/103
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However, the left side of the above equation equals ∞ by (.). We reach a contradiction.
Hence h(u) >  for every u ≥ . From d  , by the continuity of solution of differential
equations on the initial values, we obtain h(u)   for u ∈ [,M]. The proof is complete.

�

Define the following sets:

G =
{
(t,u,p) : t ∈ J , |u| <M, |p| < h(u) for u ∈ [,M],

and |p| < h(u) for u ∈ [–M, ]
}
,

� =
{
u ∈ PC(J) :

(
t,u(t),u′(t)

) ∈ G, t ∈ J ;
(
t+k ,u

(
t+k

)
,u′(t+k )) ∈ G,k = , . . . ,m

}
.

Define the function h(u) as

h(u) =

⎧⎨
⎩
h(u), u ∈ [,M],

h(u), u ∈ [–M, ].
(.)

Lemma . Let Deg denote the coincidence degree. Let the following conditions hold:
(i) f (t, –M, ) <  < f (t,M, ), ∀t ∈ J (M is given in Lemma .);
(ii) |f (t,u,p)| < ψ(|p|), ∀t ∈ J , |u| ≤M, p ∈ R;
(iii) Ik(tk ,±M) = , and Jk(tk , –M) <  < Jk(tk ,M), k = , . . . ,m.

Then

Deg
[
(L,N),�

]
= –.

Proof Consider the following family of equations:

Lu = λNu, λ ∈ (, ]. (.)

We will show

Lu �= λNu, ∀u ∈ ∂�,λ ∈ (, ]. (.)

If not, then there exist some λ ∈ (, ] and u ∈ ∂� such that (.) holds. Note that
u ∈ ∂� if and only if (t,u(t),u′(t)) ∈ Ḡ and either (t̄,u(t̄),u′(t̄)) ∈ ∂G for some t̄ ∈ J , or
(t+k ,u(t

+
k ),u

′(t+k )) ∈ ∂� for some k ∈ {, , . . . ,m}. There are two possibilities.
Case (I). If (t̄,u(t̄),u′(t̄)) ∈ ∂G, t̄ ∈ [, ], t̄ �= t+k . In this case, |u(t̄)| =M, or |u′(t̄)| = h(u(t̄)).
Subcase (). Suppose |u(t̄)| = M. Let g(t) = 

 (u(t))
 – 

M. Then g(t) ≤ , t ∈ J and
g(t̄) = . When t ≤ t̄ ∈ (, ), g(t) ≤ , we get

 ≤ g ′(t̄ – ) = u(t̄)u′(t̄).

If g ′(t̄ – ) = , then u′(t̄) = . From condition (i), we have

 ≥ g ′′(t̄ – ) =
(
u′(t̄)

) + u(t̄)
ρ(t̄)

· (ρ(t̄)u′(t̄)
)′ =± M

ρ(t̄)
· λf (t̄,±M, ) > ,

which is a contradiction.

http://www.boundaryvalueproblems.com/content/2014/1/103
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If g ′(t̄ –) > , then t̄ = tk for some k ∈ {, . . . ,m} and g ′(tk – ) > . Thus from (iii), we
have

g ′(tk + ) =
[
u(tk ) + λIk

(
tk ,u(tk )

)] · [u′(tk ) + λJk
(
tk ,u(tk )

)]
= u(tk )u

′(tk ) + u(tk ) · λJk
(
tk ,u(tk )

)
+ u′(tk ) · λIk

(
tk ,u(tk )

)
+ λIk

(
tk ,u(tk )

) · Jk
(
tk ,u(tk )

)
= g ′(tk – ) +

[±M · λJk (tk ,±M)
]
> .

On the other hand, g(t)≤ , t ∈ J and g(tk + ) = , thus

 ≥ g ′(tk + ) =
[
u(tk ) + λIk

(
tk ,u(tk )

)] · [u′(tk ) + λJk
(
tk ,u(tk )

)]
> ,

which is a contradiction.
If t̄ = , it is easy to see that g() = . Since u′() = , we have g ′() = , thus we can

obtain g ′′()≤ . However, from condition (i) we know

 ≥ ρ()g ′′() = u() · λf (,u(), )
> ,

which is a contradiction.
If t̄ = , then |u()| =M. This means that u() ∈ ∂G. Since u(η) = u(), we have u(η) ∈ ∂G.

However, according to the above arguments, we know u(η) /∈ ∂G, which is a contradiction.
Subcase (). Suppose |u′(t̄)| = h(u(t̄)) for t̄ ∈ (tk , tk+], k ∈ {, , . . . ,m}. Obviously, t̄ �= .

Since |(ρ(t)u(t))′| = |f (t,u(t),u′(t))| < ψ(|u′(t)|). Thus we get

ρ(t)
∣∣u′′(t)

∣∣ – ∣∣ρ ′(t)
∣∣∣∣u′(t)

∣∣ < ψ
(∣∣u′(t)

∣∣),
∣∣u′′(t)

∣∣ < 
δ

[∣∣ρ ′(t)
∣∣∣∣u′(t)

∣∣ +ψ
(∣∣u′(t)

∣∣)] ≤ 
δ

[
θ
∣∣u′(t)

∣∣ +ψ
(∣∣u′(t)

∣∣)]. (.)

Let

p(t) =


(
u′(t̄)

) – 

(
h
(
u(t)

)).

Without loss of generality, we suppose that u′(t̄) = h(u(t̄)) >  for t̄ ∈ (tk , tk+]. Then we
have three possibilities.
(i) If u(t̄) = , then there exists a sufficiently small neighborhood of t̄ such that u(t) > .

Thus p(t) = 
 (u

′(t)) – 
 (h(u(t)))

, and p(t) has a local maximum value on t̄, which implies
p′(t̄ + )≤ . But in this case, from (.), (.), and (ii), we have

p′(t̄ + ) = u′(t̄) · [u′′(t̄) – h
(
u(t̄)

)
h′

(
u(t̄)

)]

> u′(t̄) ·
[
–

δ

(
θu′(t̄) +ψ

(∣∣u′(t̄)
∣∣)) + θh(u(t)) +ψ(h(u(t)))

δ

]
= , (.)

which is a contradiction.
(ii) If u(t̄) < , then there exists a sufficiently small neighborhood of t̄ such that u(t) < .

Thus p(t) = 
 (u

′(t)) – 
 (h(u(t)))

, and p(t) has a localmaximumvalue on t̄, which implies

http://www.boundaryvalueproblems.com/content/2014/1/103
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p′(t̄) ≥ . But in this case, from (.), (.), and (ii), we have

p′(t̄) = u′(t̄) · [u′′(t̄) – h
(
u(t̄)

)
h′

(
u(t̄)

)]

< u′(t̄) ·
[

δ

(
θu′(t̄) +ψ

(∣∣u′(t̄)
∣∣)) – θh(u(t)) +ψ(h(u(t)))

δ

]
= ,

which is a contradiction.
(iii) If u(t̄) > , then there exists a sufficiently small neighborhood of t̄ such that u(t) > .

Thus p(t) = 
 (u

′(t)) – 
 (h(u(t)))

. By the same argument as in (.), we reach a contra-
diction.
Case (II). (t+k ,u(t

+
k ),u

′(t+k )) ∈ ∂� for some k ∈ {, , . . . ,m}. In this case, |u(t+k )| =M, or
|u′(t+k )| = h(u(t+k )).
Subcase (). Suppose |u(t+k )| =M for some k ∈ {, , . . . ,m}. Let g(t) be defined in the

above. Obviously, we have g(t)≤  for t ∈ J and g(tk + ) = . It follows from (iii) that

 ≥ g ′(tk + ) =
[
u(tk ) + λIk

(
tk ,u(tk )

)] · [u′(tk ) + λJk
(
tk ,u(tk )

)]
= u(tk )u

′(tk ) + u(tk ) · λJk
(
tk ,u(tk )

)
.

If g ′(tk + ) = , then u′(t+k ) = . Form (.) and (i), we have

 ≥ g ′′(tk + ) =
(
u′(t+k

)) + u(t+k )
ρ(t+k )

· (ρ(tk )u′(t+k
))′ =± M

ρ(t+k )
· λf (tk ,±M, ) > ,

which is a contradiction.
If g ′(tk +) < , together with (iii), we get g ′(tk –) = u(tk )u′(tk ) < . But g(tk ) =  and

g(t) ≤  for t ∈ J , which yields g ′(tk – ) > , and we reach a contradiction.
Similar to subcase (), we can show that |u′(t+k )| = h(u(t+k )) is also impossible. Combin-

ing the results of case (I) and case (II) we obtain (.).
On the other hand, for λ ∈ (, ], it follows from [] that (.) is equivalent to the

following family of operator equations:

u = Pu +QNu + λKP(E –Q)Nu, (.)

where E is the identity mapping.
Note that KerL = R, and

� ∩KerL =
{
c ∈ R : (t, c,p) ∈ G, t ∈ J ;

(
t+k , c,p

) ∈G, for some k = , . . . ,m
}
.

From (.) and (.), we have

QNu =
(


φ() – φ(η)

[∫ 

η


ρ(s)

∫ s


f
(
τ ,u(τ ),u′(τ )

)
dτ ds

+
∫ 

η


ρ(s)

∑
tk<s

ρ(tk)Jk
(
tk ,u(tk)

)
ds +

∑
η<tk<

Ik
(
tk ,u(tk)

)]
, , . . . , 

)
,

http://www.boundaryvalueproblems.com/content/2014/1/103
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and

KP(E –Q)Nu =


φ() – φ(η)

[∫ t




ρ(s)

∫ s


f
(
τ ,u(τ ),u′(τ )

)
dτ ds

+
∫ t




ρ(s)

∑
tk<s

ρ(tk)Jk
(
tk ,u(tk)

)
ds +

∑
tk<t

Ik
(
tk ,u(tk)

)]

–
φ(t)

φ() – φ(η)

[∫ 

η


ρ(s)

∫ s


f
(
τ ,u(τ ),u′(τ )

)
dτ ds

+
∫ 

η


ρ(s)

∑
tk<s

ρ(tk)Jk
(
tk ,u(tk)

)
ds +

∑
η<tk<

Ik
(
tk ,u(tk)

)]
.

By theAscoli-Arzela theorem, it is easy to show thatQN(�̄) is bounded andKP(E–Q)N :
�̄ → X is compact. Thus N is L-compact on �̄.
Define a mapping H : �̄ × [, ]→ X,

H(u,λ) = Pu +QNu + λKP(E –Q)Nu, ∀(u,λ) ∈ �̄ × [, ].

Then it is easy to prove that H(u,λ) is completely continuous and we claim that

u =H(u,λ), ∀u ∈ ∂�, ≤ λ ≤ . (.)

In fact, for  < λ ≤ , it follows from (.) and (.) that (.) holds. For λ = , if there
exists a ū ∈ ∂� such that ū =H(ū, ), that is ū = Pū+QNū, in this case,QNū = , ū ∈KerL,
hence ū =M or ū = –M. However, it follows from (iii) that

QN(c) =


φ() – φ(η)

[∫ 

η


ρ(s)

∫ s


f (τ , c, )dτ ds

+
∫ 

η


ρ(s)

∑
tk<s

ρ(tk)Jk(tk , c)ds +
∑

η<tk<

Ik(tk , c)
]

=


φ() – φ(η)

∫ 

η


ρ(s)

∫ s


f (τ , c, )dτ ds +

∫ 

η


ρ(s)

∑
tk<s

ρ(tk)Jk(tk , c)ds, c ∈ R.

Thus we get QN(M) >  and QN(–M) < , which contradicts u = Pu +QNu for u ∈KerL.
Therefore (.) holds. As follows from [] and by using the invariance of Leray-Schauder
degree under homotopy, we obtain

Deg
(
E –H(·, ),�, 

)
= Deg

(
E –H(·, ),�, 

)
= DegB

(
(E – P –QN)|KerL∩�̄,KerL∩ �, 

)
= DegB

(
(–QN)|KerL∩�̄,KerL∩ �, 

)
.

Since KerL is one dimensional and QN(M) > , QN(–M) < , we get

DegB
(
(–QN)|KerL∩�̄,KerL∩ �, 

)
= –.

From the property of coincidence degree we proved Lemma .. �

http://www.boundaryvalueproblems.com/content/2014/1/103
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Lemma . Assume that
(c) there exist lower and upper solutions α(t), β(t) of the problem (.)-(.),

respectively, with α(t) < β(t);
(c) f : J × R → R is continuous and has property (H) relative to α, β ;
(c) Ik , Jk are continuous for each k = , , . . . ,m, and satisfy

Ik
(
tk ,α(tk)

)
= Ik

(
tk ,β(tk)

)
= , and Jk

(
tk ,α(tk)

)
<  < Jk

(
tk ,β(tk)

)
.

Then Deg[(L,N),�αβ] = –.

Proof Choose M >  large enough for u,p ∈ R, u ∈ (–β(t), –α(t)) ∪ (α(t),β(t)), t ∈ J , such
that

f
(
t,β(t), 

)
+M – β(t) > , M > β(t),∀t ∈ J ,

f
(
t,α(t), 

)
–M – α(t) < , –M < α(t),∀t ∈ J ,

Jk
(
tk ,α(tk)

)
–M – α(tk) <  < Jk

(
tk ,β(tk)

)
+M – β(tk), k = , . . . ,m,

and let hi(u) (i = , ) be defined in (.) and (.), then it follows from Lemma . that we
can choose d >  large enough such that

min
[,M]

h(u) >max
{
max
t∈J

∣∣β ′(t)
∣∣,max

t∈J
∣∣α′(t)

∣∣},
min
[–M,]

h(u) >max
{
max
t∈J

∣∣β ′(t)
∣∣,max

t∈J
∣∣α′(t)

∣∣}.

Define a set �αβ as

�αβ =
{
u ∈ PC(J)|(t,u,p) : α(t) < u < β(t), |p| < h(u),∀t ∈ J

}
,

where h(u) is given in (.).
Define the auxiliary functions F and Īk , J̄k as follows:

F(t,u,p) = f
(
t,n(t,u),q(t,p)

)
+ u(t) – n(t,u), t ∈ J *,

Īk
(
tk ,u(tk)

)
= Ik

(
tk ,n

(
tk ,u(tk)

))
, k ∈ {, . . . ,m},

J̄k
(
tk ,u(tk)

)
= Jk

(
tk ,n

(
tk ,u(tk)

))
+ u(tk) – n

(
tk ,u(tk)

)
, k ∈ {, . . . ,m},

where

n
(
t,u(t)

)
=

⎧⎪⎪⎨
⎪⎪⎩

β(t), β(t) < u≤M,
u(t), α(t)≤ u≤ β(t),
α(t), –M ≤ u < α(t),

q(t,p) =

⎧⎪⎪⎨
⎪⎪⎩
h(u), p > h(u), |u| ≤M,
p, |p| ≤ h(u), |u| ≤M,
–h(u), p < –h(u), |u| ≤M.

http://www.boundaryvalueproblems.com/content/2014/1/103
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We then generalize F to J × R and Īk , J̄k : J × R → R. It is easy to see that F , Īk , J̄k are
continuous and satisfy

F(t, –M, ) <  < F(t,M, ),

Īk(tk ,±M) = , and J̄k(tk , –M) <  < J̄k(tk , +M), k ∈ {, . . . ,m}.

Moreover, when |u| ≤M, F , Īk , J̄k are bounded. It follows from Lemma . that

Deg
[
(L, N̄),�

]
= –,

where

N̄u =
(
F
(
t,u,u′), Ī(t,u(t)), . . . , Īm(

tm,u(tm)
)
, J̄

(
t,u(t)

)
, . . . , J̄m

(
tm,u(tm)

))
.

Next we show

Deg
[
(L, N̄),�αβ

]
= –. (.)

It suffices to show that

Lu = N̄u, ∀u ∈ �̄\�αβ . (.)

In fact, let u ∈ �̄ such that Lu = N̄u and assume that

max
t∈J

{
u(t) – β(t)

}
= u(τ ) – β(τ )≥ .

Case (). If there exists τ ∈ (, ), τ �= tk such that the function y(t) = u(t) – β(t) attains
its maximum value y(τ ) ≥ , which implies y′(τ ) =  and y′′(τ )≤ . But on the other hand,

ρ(τ )y′′(τ ) =
(
ρ(τ )u′(τ )

)′ –
(
ρ(τ )β ′(τ )

)′

= F
(
τ ,β(τ ),u′(τ )

)
+ u(τ ) – β(τ ) –

(
ρ(τ )β ′(τ )

)′

= f
(
τ ,β(τ ),β ′(τ )

)
+ u(τ ) – β(τ ) –

(
ρ(τ )β ′(τ )

)′ > , (.)

which implies y′′(τ ) > . We reach a contradiction.
If τ = , then y() ≥ , y′() ≤ . On the other hand, since u′() =  and β(t) is a strict

upper solution of problem (.)-(.), we see that y′() = u′() – β ′() ≥ . Thus y′() = .
Note that y(t) assumes the maximum value at t = , there exists τ ∈ (, ), τ �= tk such
that y(τ) ≥  and y′′(τ) ≤ . By the same argument as in (.) where τ = τ, we reach a
contradiction.
If τ = , then y() = u() – β()≥ . According to (.), we get

y() = u() – β() ≤ u() – β(η) = u(η) – β(η) = y(η),

if y(η) > y(), which is a contradiction. Thus y(η) = y(), which implies that y(t) also attains
its maximum value at t = η. By the same argument as in (.) where τ = η, we reach a
contradiction.

http://www.boundaryvalueproblems.com/content/2014/1/103
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Hence the function y(t) cannot have any nonnegative maximum value on the interval
(, ), t �= tk for k ∈ {, , . . . ,m}.
Case (). If there exists a τ ∈ J such that y(τ ) = u(τ ) – β(τ ) = ε ≥ , from case (), we get

τ = tk for some k = , , . . . ,m. Hence n(tk ,u(tk)) = β(tk), β ′(tk) ≤ u′(tk), and consequently
we have y(t+k ) = y(tk) = ε, which implies y′(t+k )≥ , because

u′(t+k ) – u′(tk) = J̄k
(
tk ,u(tk)

)
= Jk

(
tk ,β(tk)

)
+ u(tk) – β(tk)

≥ Jk
(
tk ,β(tk)

) ≥ β ′(t+k ) – β ′(tk).

Consequently, we get u′(t+k ) = β ′(t+k ) or y′(t+k ) =  and D+y′(t+k )≤ .
By the continuity of f and β(t) is a strict upper solution of problem (.)-(.), there exists

a sequence ζj ∈ R with ζj > , ζj → , as j → ∞ such that

D+ρ(tk)β ′(t+k ) = lim
j→∞ sup

ρ(tk + ζj)β ′(tk + ζj) – ρ(tk)β ′(tk)
ζj

= lim
j→∞

(
ρ(tk + ζj)β ′(tk + ζj)

)′

< lim
j→∞

[
f
(
tk + ζj,β(tk + ζj),β ′(tk + ζj)

)]
= f

(
tk ,β

(
t+k

)
,β ′(t+k )), (.)

where ζj ∈ (tk , tk + ζj) are from the mean value theorem. As before, we also get

D+ρ(tk)u′(t+k ) = F
(
tk ,u

(
t+k

)
,u′(t+k )),

where D+ρ(tk)u′(t+k ) = limj→∞ inf
ρ(tk+ζj)u′(tk+ζj)–ρ(tk )u′(tk )

ζj
. As a result, we can obtain

D+ρ(tk)β ′(t+k ) ≥D+ρ(tk)u′(t+k ) = f
(
tk ,β

(
t+k

)
,β ′(t+k )) + y

(
t+k

) ≥ f
(
tk ,β

(
t+k

)
,β ′(t+k ))

which is a contradiction to (.).
Case (). If y(t) = u(t) – β(t) < ε for all t ∈ J , then there must be a k ( ≤ k ≤ m) such

that y(t+k ) = u(t+k ) –β(t+k ) = ε, and y(tk ) < ε, which implies β(t+k ) –β(tk ) < u(t+k ) –u(tk ).
Namely, �β(tk ) < �u(tk ). However, this is impossible because

�u(tk ) = Īk
(
tk ,n

(
tk ,u(tk )

))
= Ik

(
tk ,β(tk )

)
=�β(tk ).

Thus we have proved that u(t) < β(t) on J . Similarly we can show that α(t) < u(t) on J . It
then follows that α(t) < u(t) < β(t) on J .
We now shall prove that

∣∣u′(t)
∣∣ < h

(
u(t)

)
for t ∈ [tk , tk+],k = , , . . . ,m. (.)

Assume that (.) cannot hold. Thus there are two possibilities:
(a) There exists τ ∈ (tk , tk+] for some k ∈ {, , . . . ,m} such that |u′(τ )| ≥ h(u(τ )).
(b) There exists some k ∈ {, , . . . ,m} such that |u′(t+k )| ≥ h(u(t+k )).
For case (a), we assume maxt∈(tk ,tk+]{u′(t) – h(u(t))} = maxt∈(tk ,tk+] r(t) = u′(τ ) –

h(u(τ )) ≥ .

http://www.boundaryvalueproblems.com/content/2014/1/103
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Since |(ρ(t)u(t))′| = |F(t,u(t),u′(t))| = |f (t,u(t),h(u(t)))| < ψ(h(u(t))). Thus we have

ρ(t)
∣∣u′′(t)

∣∣ – ∣∣ρ ′(t)
∣∣∣∣u′(t)

∣∣ < ψ
(
h
(
u(t)

))
,

∣∣u′′(t)
∣∣ < 

δ

[∣∣ρ ′(t)
∣∣∣∣u′(t)

∣∣ +ψ
(
h
(
u(t)

))] ≤ 
δ

[
θ
∣∣u′(t)

∣∣ +ψ
(
h
(
u(t)

))]
. (.)

If u(τ ) = , then there exists a sufficiently small neighborhood of τ such that u(t) > . Thus
r(t) = u′(t) – h(u(t)) and r′(τ + )≤ . However, it follows from (.) and (.) that

 ≥ r′(τ + ) = u′′(τ ) – h′

(
u(τ )

)
u′(τ )

> –

δ

[
θu′(τ ) +ψ

(
h

(
u(τ )

))]
+

ψ(h(u(τ ))) + θh(u(τ ))
δh(u(τ ))

· u′(τ )

=
ψ(h(u(τ )))
δh(u(τ ))

[
u′(τ ) – h

(
u(τ )

)] ≥ , (.)

which is a contradiction.
If u(τ ) < , then there exists a sufficiently small neighborhood of τ such that u(t) < .

Thus r(t) = u′(t) – h(u(t)) and r′(τ ) = . However, it follows from (.) and (.) that

 = r′(τ ) = u′′(τ ) – h′

(
u(τ )

)
u′(τ )

<

δ

[
θu′(τ ) +ψ

(
h

(
u(τ )

))]
–

ψ(h(u(τ ))) + θh(u(τ ))
δh(u(τ ))

· u′(τ )

= –
ψ(h(u(τ )))
δh(u(τ ))

[
u′(τ ) – h

(
u(τ )

)] ≤ ,

a contradiction.
If u(τ ) > , then there exists a sufficiently small neighborhood of τ such that u(t) > .

Thus r(t) = u′(t) – h(u(t)) and r′(τ ) = . By the similarly argument as in (.), we reach a
contradiction.
Hence u′(t) < h(u(t)), t ∈ (tk , tk+], k = , , . . . ,m. Similarly, we can prove –h(u(t)) < u′(t),

t ∈ (tk , tk+], k = , , . . . ,m.
Likewise, we can show that case (b) is also impossible, and thus (.) holds. Combining

the above results, we see that if u ∈ �, Lu = N̄u, then u ∈ �αβ . Hence (.) is proved. From
the property of coincidence, we know that (.) holds. Since in�αβ , F = f , we haveN = N̄ .
The proof is complete. �

4 Main results
We are now in a position to prove our main result on the existence of at least n –  solu-
tions of boundary value problem (.)-(.).

Theorem . Assume that

(H) there exist n (n ∈ N and n ≥ ) pairs of strict lower and upper solutions {αi(t)}ni=,
{βi(t)}ni= of the problem (.)-(.) such that

α(t) < β(t) < α(t) < β(t) < · · · < αn(t) < βn(t), ∀t ∈ J ;

http://www.boundaryvalueproblems.com/content/2014/1/103
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(H) f : J ×R → R, f (t,u,p) is continuous on J * ×R and has property (H) relative to α(t),
βn(t);

(H) Ik , Jk are continuous for each k = , , . . . ,m, and satisfy

Ik
(
tk ,αi(tk)

)
= Ik

(
tk ,βi(tk)

)
= , and

Jk
(
tk ,αi(tk)

)
<  < Jk

(
tk ,βi(tk)

)
, i = , , . . . ,n.

Then BVP (.)-(.) has at least n –  solutions u(t),u(t), . . . ,un–(t) such that α(t) <
u(t) < β(t),α(t) < u(t) < β(t), . . . ,αn(t) < un(t) < βn(t), and

min
t∈J un+(t) < α(t), max

t∈J
un+(t) > β(t), . . . , min

t∈J un–(t) < αn(t),

max
t∈J

un–(t) > βn–(t).

Proof ChooseM >  large enough such that, for i = , , . . . ,n,

f
(
t,βi(t), 

)
+M – βi(t) > , M > βi(t),∀t ∈ J ,

f
(
t,αi(t), 

)
–M – αi(t) < , –M < αi(t),∀t ∈ J ,

Jk
(
tk ,αi(tk)

)
–M – αi(tk) <  < Jk

(
tk ,βi(tk)

)
+M – βi(tk), k = , . . . ,m,

and let h(u) be defined in (.), then it follows from Lemma . that we can take d > 
large enough such that, for all u ∈ [–M,M],

min
[,M]

h(u) >max
{
max
t∈J

∣∣β ′
i (t)

∣∣,max
t∈J

∣∣α′
i(t)

∣∣, i = , , . . . ,n
}
,

min
[–M,]

h(u) >max
{
max
t∈J

∣∣β ′
i (t)

∣∣,max
t∈J

∣∣α′
i(t)

∣∣, i = , , . . . ,n
}
.

Define the set Gi (i = , , . . . ,n) as

Gi =
{
u ∈ PC(J)|(t,u,p) : αi(t) < u < βi(t), |p| < h(u),∀t ∈ J

}
.

Also

Gn+ =
{
u ∈ PC(J)|(t,u,p) : α(t) < u < βn+(t), |p| < h(u),∀t ∈ J

}
.

For i = , , . . . ,n + , we define the sets

�i =
{
u ∈ PC(J) :

(
t,u(t),u′(t)

) ∈Gi, t ∈ J ;
(
t+k ,u

(
t+k

)
,u′(t+k )) ∈Gi,k = , . . . ,m

}
.

Then by Lemma ., we have

Deg
[
(L,N),�i

]
= –, i = , , . . . ,n + .

From the additive property of coincidence degree, we obtain

Deg
[
(L,N),�n+\� ∪ � ∪ · · · ∪ �n

]
= n –  ≥ .
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Since n≥  is arbitrary, we first deal with the case n = , the above discussion implies that
the equation Lu = Nu, that is, the problem (.)-(.) has at least one solution in the set
�, � and �\� ∪ � respectively. That is, there exist at least three different solutions
u(t), u(t) and u(t) such that

α(t) < u(t) < β(t), α(t) < u(t) < β(t), on J ,

and mint∈J u(t) < α(t), maxt∈J u(t) > β(t).
For n = , replacingα,α,β,β byα,α,β,β respectively, thenwe can obtain another

two different solutions u(t), u(t) of the problem (.)-(.) such that

α(t) < u(t) < β(t), and min
t∈J u(t) < α(t), max

t∈J
u(t) > β(t).

Along this way, we can complete the proof by the induction method. �

We now present an example to illustrate that the assumptions of our theorem can be
verified.

Example  Consider the following boundary value problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρ(t)u′)′ = a – a sinπu(t) cosπu(t) + bt

+ 
 (u

′)( + sin u′), t ∈ [, ], t �= tk ,

�u(tk) = (tk – u(tk)) cosπu(tk), k = , . . . ,m,

�u′(tk) = tk
 tgπu(tk), k = , . . . ,m,

u′() = , u() = u(η),

(.)

where ρ(t) = c + sinπ t, c > ,  < b < a ≤ 
 ,  < η < ,  < t < t < · · · < tm < , η �= tk .

First, we have ρ(t)≥ c –  >  and |ρ ′(t)| = | cos t| ≤ , thus θ = , δ = c – .
Next, it is clear that {αi}ni= = {– 

 ,

 , . . . ,n –


 } and {βi}ni= = { 

 ,

 , . . . ,n –


 } are n (n ∈N

and n ≥ ) pairs of strict lower and upper solutions of the problem (.), respectively. It
can be seen that Ik(tk ,αi(tk)) = Ik(tk ,βi(tk)) = , Jk(tk ,αi(tk)) < , Jk(tk ,βi(tk)) > , i = , . . . ,n.
Thus conditions (H) and (H) of Theorem (.) hold.
Since f (t,u,p) = a – a sinπu cosπu + bt + 

p
( + sin p), it follows that

f
(
t, i –



,

)
= a – a sin

(
π

(
i –




))
cos

(
π

(
i –




))
+ bt

= a – a + bt ≤ b – a < , i = , . . . ,n.

f
(
t, i –



,

)
= a – a sin

(
π

(
i –




))
cos

(
π

(
i –




))
+ bt

= a + a + bt > , i = , . . . ,n.

For all u ∈ (–(n – 
 ), –


 )∪ (  , (n –


 )), we have

∣∣f (t,u,p)∣∣ ≤ a + bt + p ≤ a + b + p <


+ p.
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Take ψ(p) = 
 + p, then

∫ +∞



s
θs +ψ(s)

ds =
∫ +∞



s
s + 

 + s
ds = +∞.

Hence f has property (H). It follows from Theorem . that the problem (.) has at least
n –  different solutions u(t), . . . ,un(t), . . . ,un–(t) such that

–


< u(t) <



,



< u(t) <



, . . . ,

(
n –




)
< un(t) <

(
n –




)
, and

min
t∈J un+(t) <



, max

t∈J
un+(t) >



, . . . , min

t∈J un–(t) < n –


,

max
t∈J

un–(t) > n –


.
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