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Abstract
In this paper we study the existence and the multiplicity of solutions for an impulsive
boundary value problem for fourth-order differential equations. The notions of
classical and weak solutions are introduced. Then the existence of at least one and
infinitely many nonzero solutions is proved, using the minimization, the
mountain-pass, and Clarke’s theorems.
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1 Introduction
The theory of impulsive boundary value problems (IBVPs) became an important area of
studies in recent years. IBVPs appear in mathematical models of processes with sudden
changes in their states. Such processes arise in population dynamics, optimal control,
pharmacology, industrial robotics, etc. For an introduction to theory of IBVPs one is re-
ferred to []. Some classical tools used in the study of impulsive differential equations are
topological methods as fixed point theorems, monotone iterations, upper and lower solu-
tions (see [–]). Recently, some authors have studied the existence of solutions of IBVPs
using variational methods. The pioneering work in this direction is the paper of Nieto and
O’Regan [], where the second-order impulsive problem

⎧⎪⎨
⎪⎩
–u′′ + λu = f (t,u), t �= tj, a.e. t ∈ [,T],
u() = u(T),
�u′(tj) = Ij(u(tj)), j = , , . . . ,n

(with �u′(tj) := u′(t+j ) – u′(t–j )) is studied, using the minimization and the mountain-pass
theorem.Wemention also other papers for second-order impulsive equations as [, ]. In
several recent papers [–], fourth-order impulsive problems are considered via varia-
tional methods.
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In this paper, we consider the boundary value problem for fourth-order differential
equation with impulsive effects

(P)

⎧⎪⎨
⎪⎩
u() – au′′ + b(t)u = c(t)|u|p–u, t �= tj, a.e. t ∈ [,T],
u() = u(T) = u′′() = u′′(T) = ,
�u′′′(tj) = gj(u′(tj)), �u′′(tj) = –hj(u(tj)), j = , , . . . ,n.

Here,  = t < t < · · · < tn < tn+ = T , the limits u′′(t±j ) = limt→t±j
u′′(t) and u′′′(t±j ) =

limt→t±j
u′′′(t) exist and �u′′′(tj) = u′′′(t+j ) – u′′′(t–j ), �u′′(tj) = u′′(t+j ) – u′′(t–j ).

We look for solutions in the classical sense, as given in the next definition.

Definition  A function u ∈ C([,T]) and u|(tj ,tj+) ∈ H(tj, tj+), j = , . . . ,n is said to be a
classical solution of the problem (P), if u satisfies the equation a.e. on [,T]\{t, t, . . . , tn},
the limits u′′(t±j ) = limt→t±j

u′′(t) and u′′′(t±j ) = limt→t±j
u′′′(t) exist and satisfy the impul-

sive conditions�u′′′(tj) = g(u′(tj)),�u′′(tj) = –h(u(tj)), j = , . . . ,n, and boundary conditions
u() = u(T) = u′′() = u′′(T) = .

Moreover, we introduce, for every j ∈ {, . . . ,n}, the following real functions:

Gj(u) =
∫ u


gj(t)dt, Hj(u) =

∫ u


hj(t)dt. ()

To deduce the existence of solutions, we assume the following conditions:
(H) The constant a is positive, b and c are continuous functions on [,T] and there

exist positive constants b, b, c, and c such that  < b ≤ b(t)≤ b and
 < c ≤ c(t) ≤ c. The functions gj :R →R, hj :R →R, j = , , . . . ,n, are
continuous functions.

(H) There exist γj,σj ∈ (,p) such that functions gj, hj, j = , . . . ,n, satisfy the conditions

γjGj(t) ≥ tgj(t) > , σjHj(t) ≥ thj(t) > , ∀t ∈ R\{}. ()

A simple example of functions fulfilling the last condition is given by

gj(t) = dj|t|γj–t, hj(t) = ej|t|σj–t,

where dj and ej, j = , . . . ,n, are positive constants.
Note that () implies that there exist positive constants Dj, Ej such that

Gj(t)≤Dj
(
 + |t|γj), Hj(t)≤ Ej

(
 + |t|σj). ()

In the next section we will prove the following existence result for p > .

Theorem  Suppose that p >  and conditions (H) and (H) hold. Then the problem (P)
has at least one nonzero classical solution.

Having in mind the case  < p < , we introduce the following condition:
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(H) There exist positive constants Aj, Bj, j = , . . . ,n such that the functions Gj , Hj,
defined in (), satisfy the conditions

 ≤Gj(t)≤ Ajt,  ≤Hj(t)≤ Bjt, ∀t ∈R.

A simple example of this new situation is given by the functions gj(t) = Ajt and hj(t) =
Bjt.
The result to be proven is the following.

Theorem  Suppose that  < p < , the functions gj, hj, j = , . . . ,n, are odd and conditions
(H) and (H) hold. Then the problem (P) has infinitely many nonzero classical solutions.

If we consider the problem

(P)

⎧⎪⎨
⎪⎩
u() – au′′ – b(t)u + c(t)|u|p–u = , t �= tj, a.e. t ∈ [,T],
u() = u(T) = u′′() = u′′(T) = ,
�u′′′(tj) = g(u′(tj)), �u′′(tj) = –h(u(tj)), j = , , . . . ,n,

we introduce the following condition.

(H′) There exist γj,σj ∈ (,p) and positive constants dj, ej such that functions gj, hj,Gj and
Hj, j = , . . . ,n, satisfy the conditions

 ≤Gj(t) ≤ dj|t|γj ,  ≤Hj(t) ≤ ej|t|σj , ∀t ∈R,

 ≤ tgj(t),  ≤ thj(t), ∀t ∈R.
()

A simple example now is gj(t) = γjdj|t|γj–t, hj(t) = σjej|t|σj–t.
The obtained result is the following.

Theorem  Suppose that p >  and conditions (H) and (H′) hold. If  < T ≤ T =

π

√
a+

√
a+b
b

, the problem (P) has only the zero solution. If T > T = π

√
a+

√
a+b
b

, the
problem (P) has at least one nonzero classical solution.

The proofs of the main results are given in Section .

2 Preliminaries
Denote by Lp(,T) for p ≥ , the Lebesgue space of p-integrable functions over the inter-
val (,T), endowed with the usual norm ‖u‖pp =

∫ b
a |u(t)|p dt, and by ‖ · ‖ and ‖ · ‖∞ the

corresponding norms in L(,T) and C([,T]),

‖u‖ =
∫ T



∣∣u(t)∣∣ dt, u ∈ L(,T),

‖u‖∞ = max
t∈[,T]

∣∣u(t)∣∣, u ∈ C
(
[,T]

)
.

Denote by H
(,T) and H(,T) the Sobolev spaces

H
(,T) =

{
u ∈ L(,T) : u′ ∈ L(,T),u() = u(T) = 

}
,
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and

H(,T) =
{
u ∈ L(,T) : u′ ∈ L(,T),u′′ ∈ L(,T)

}
.

Let X =H
(,T)∩H(,T) be the Hilbert space endowed with the usual scalar product

(u, v) =
∫ T



(
u′′v′′ + u′v′ + uv

)
dt

and the corresponding norm.
By assumption (H) an equivalent scalar product and norm in X are given by

〈u, v〉 =
∫ T



(
u′′v′′ + au′v′ + b(t)uv

)
dt, ()

and

‖u‖X =
∫ T



(
u′′ + au′ + b(t)u

)
dt. ()

It is well known (see [, Lemma .], []) that the following Poincaré and imbedding
inequalities hold for all u ∈ X:

∫ T


u dt ≤ T

π

∫ T


u′ dt,

∫ T


u dt ≤ T

π

∫ T


u′′ dt, ()

‖u‖C =max
{‖u‖∞,

∥∥u′∥∥∞
} ≤M‖u‖X , ()

whereM is a positive constant depending on T , a and b(t).
We have the following compactness embedding, which can be proved in the standard

way.

Proposition  The inclusion X ⊂ C([,T]) is compact.

We define the functional φ : X →R, as follows:

φ(u) =


‖u‖X +

n∑
j=

(
Gj

(
u′(tj)

)
+Hj

(
u(tj)

))
–

p

∫ T


c(t)|u|p dt. ()

By assumption (H), we find that φ : X →R is continuously differentiable and, for v ∈ X,
the following identity holds:

〈
φ′(u), v

〉
=

∫ T



(
u′′v′′ + au′v′ + b(t)uv

)
dt

+
n∑
j=

(
gj
(
u′(tj)

)
v′(tj) + hj

(
u(tj)

)
v(tj)

)
–

∫ T


c(t)|u|p–uvdt. ()

In the sequel we introduce the concept of a weak solution of our problem.

http://www.boundaryvalueproblems.com/content/2014/1/105
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Definition  A function u ∈ X is said to be a weak solution of the problem (P), if for every
v ∈ X, the following identity holds:

∫ T



(
u′′v′′ + au′v′ + b(t)uv

)
dt +

n∑
j=

(
gj
(
u′(tj)

)
v′(tj) + hj

(
u(tj)

)
v(tj)

)

=
∫ T


c(t)|u|p–uvdt. ()

As a consequence, the critical points of φ are the weak solutions of the problem (P). Let
us see that they are, actually, strong solutions too.

Lemma  If u is a weak solution of (P) then u ∈ X is classical solution of (P).

Proof Let u ∈ X be a weak solution of (P), i.e. () holds for any v ∈ X. For a fixed j ∈
{, , . . . ,n} we take a test function wj, such that wj(t) =  for t ∈ [, tj] ∪ [tj+,T]. We have
by ()

∫ tj+

tj

(
u′′w′′

j + au′w′
j + b(t)uwj

)
dt =

∫ tj+

tj
c(t)|u|p–uwj dt.

This means that for every w ∈ Xj =H(tj, tj+)∩H
(tj, tj+) ⊂ C([tj, tj+])

∫ tj+

tj

(
u′′w′′ + au′w′ + b(t)uw

)
dt =

∫ tj+

tj
c(t)|u|p–uwdt

and uj = u|(tj ,tj+) satisfies the equation

u() – au′′ + b(t)u = c(t)|u|p–u, a.e. t ∈ (tj, tj+).

By a standard regularity argument (see [, ]) the weak derivative u()j ∈ L(tj, tj+) and
therefore the limits u′′(t±j ) = limt→t±j

u′′(t) and u′′′(t±j ) = limt→t±j
u′′′(t) exist.

We have for v ∈ X∫ tj+

tj

(
u′′v′′ + au′v′)dt = u′′v′|tj+tj – u′′′v|tj+tj +

∫ tj+

tj

(
u() – au′′)vdt.

Summing the last identities for j = , . . . ,n we obtain

∫ T



(
u′′v′′ + au′v′)dt – ∫ T



(
u() – au′′)vdt

= –u′′()v′() + u′′(T)v′(T) –
n∑
j=

�u′′(tj)v′(tj) +
n∑
j=

�u′′′(tj)v(tj). ()

Therefore, by () and (), we have

 = –u′′()v′() + u′′(T)v′(T) +
n∑
j=

(
gj
(
u′(tj)

)
–�u′′(tj)

)
v′(tj)

+
n∑
j=

(
hj

(
u(tj)

)
+�u′′′(tj)

)
v(tj). ()

http://www.boundaryvalueproblems.com/content/2014/1/105
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Now, take a test function v = vj, j = , . . . ,n + , such that

vj(tk) = , k = , , . . . ,n + ,

v′
j(tk) = , k = , , . . . , j – , j + , . . .n + ,

v′
j(tj) = .

Then we obtain gj(u′(tj)) = �u′′(tj) and u′′() = u′′(T) = . Similarly, we prove that
hj(u′(tj)) = –�u′′′(tj), which shows that u is a classical solution of the problem (P). The
lemma is proved. �

In the proofs of the theorems, we will use three critical point theorems which are the
main tools to obtain weak solutions of the considered problems.
To this end, we introduce classical notations and results. Let E be a reflexive real Banach

space. Recall that a functional I : E → R is lower semi-continuous (resp. weakly lower
semi-continuous (w.l.s.c.)) if uk → u (resp. uk ⇀ u) in E implies lim infk→∞ I(uk) ≥ I(u)
(see [], pp.-).
We have the following well-known minimization result.

Theorem Let I be aweakly lower semi-continuous operator that has a boundedminimiz-
ing sequence on a reflexive real Banach space E. Then I has a minimum c =minu∈E I(u) =
I(u). If I : E →R is a differentiable functional, u is a critical point of I .

Note that a functional I : E → R is w.l.s.c. on I if I(u) = I(u) + I(u), I is convex and
continuous and I is sequentially weakly continuous (i.e. uk ⇀ u in E implies limk→∞
I(uk) = I(u)) (see [], pp.-). The existence of a bounded minimizing sequence
appears, when the functional I is coercive, i.e. I(u) → +∞ as ‖u‖ → +∞.
Next, recall the notion of the Palais-Smale (PS) condition, the mountain-pass theorem

and Clarke’s theorem.
We say that I satisfies condition (PS) if any sequence (uk) ⊂ E for which I(uk) is bounded

and I ′(uk) →  as k → ∞ possesses a convergent subsequence.

Theorem  ([, p.]) Let E be a real Banach space and I ∈ C(E,R) satisfying condition
(PS). Suppose I() =  and

(i) there are constants ρ,α >  such that I(u) ≥ α if ‖u‖ = ρ ,
(ii) there is an e ∈ E, ‖e‖ > ρ such that I(e) ≤ .
Then I possesses a critical value c ≥ α. Moreover, c can be characterized as c =

inf{max{I(u) : u ∈ γ ([, ])} : γ ∈ �} where � = {γ ∈ C([, ],E) : γ () = ,γ () = e}.

Theorem  ([, p.]) Let E be a real Banach space and I ∈ C(E,R) with I even,
bounded from below, and satisfying condition (PS). Suppose that I() = , there is a set
K ⊂ E such that K is homeomorphic to Sm– by an odd map, and sup{I(u) : u ∈ K} < .
Then I possesses, at least,m distinct pairs of critical points.

3 Proofs of main results
This section is devoted to the proof of the three theorems enunciated in the introduction
of this work.

http://www.boundaryvalueproblems.com/content/2014/1/105
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First consider the case p >  for which we prove that the functional φ satisfies the Palais-
Smale condition.

Lemma  Suppose that p >  and conditions (H) and (H) hold. Then the functional
φ : X →R satisfies condition (PS).

Proof Let (uk) ⊂ X and C >  be such that

∣∣φ(uk)∣∣ ≤ C, φ′(uk) → , k → ∞.

Then we have

C ≥ 

‖uk‖X +

n∑
j=

(
Gj

(
u′
k(tj)

)
+Hj

(
uk(tj)

))
–

p

∫ T


c(t)

∣∣uk(t)∣∣p dt ()

and

∣∣〈φ′(uk), v
〉∣∣ ≤ ‖v‖X , ∀v ∈ X, ()

for all sufficiently large k, k >N . Taking v = uk in (), we have for k >N

∣∣∣∣∣‖uk‖X +
n∑
j=

(
gj
(
u′
k(tj)

)
u′
k(tj) + hj

(
uk(tj)

)
uk(tj)

)
–

∫ T


c(t)

∣∣uk(t)∣∣p dt
∣∣∣∣∣ ≤ ‖uk‖X .

In particular,

‖uk‖X
p

≥ –
‖uk‖X
p

–

p

n∑
j=

(
gj
(
u′
k(tj)

)
u′
k(tj) + hj

(
uk(tj)

)
uk(tj)

)
+

p

∫ T


c(t)

∣∣uk(t)∣∣p dt.
Adding the last inequality with (), by assumption (H), we obtain

C +
‖uk‖X
p

≥ p – 
p

‖uk‖X ,

which implies that (uk) is a bounded sequence in X.
Then, by the compact inclusionX ⊂ C([,T]), it follows that, up to a subsequence,uk ⇀

u weakly in X and uk → u strongly in C([,T]). As a consequence, from the inequality

∣∣〈φ′(uk) – φ′(u),uk – u
〉∣∣ ≤ ∥∥φ′(uk)

∥∥‖uk – u‖ + ∣∣〈φ′(u),uk – u
〉∣∣

it follows that

〈
φ′(uk) – φ′(u),uk – u

〉 →  ()

and

n∑
j=

(
hj

(
uk(tj)

)
– hj

(
u(tj)

))(
uk(tj) – u(tj)

) → ,

http://www.boundaryvalueproblems.com/content/2014/1/105
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n∑
j=

(
gj
(
u′
k(tj)

)
– gj

(
u′(tj)

))(
u′
k(tj) – u′(tj)

) → ,

∫ T


c(t)

(|uk|p–uk – |u|p–u)
(uk – u)dt → .

Then by () it follows that

‖uk – u‖X → ,

i.e., uk → u strongly in X, which completes the proof. �

Now, we are in a position to prove the main results of this paper.

Proof of Theorem  We find by (H) and () that the following inequalities are valid for
every u ∈ X:

φ(u) ≥ 

‖u‖X –

cT
p

‖u‖p∞

≥ 

‖u‖X –

cTMp

p
‖u‖pX .

It is evident that this last expression is strictly positive when ‖u‖X = ρ , with ρ small
enough. Next, let u(t) = sin(π t

T ) ∈ X and uλ(t) = λu(t), with λ > . Then, by (H) and (),
we have

φ(uλ)≤ λ


‖u‖X +C

(
n +

n∑
j=

(
λγj + λσj

))
–

λp

p

∫ T


c(t)|u|p dt,

where C =max{Cj,Kj : ≤ j ≤ n}.
Since p > , we conclude that φ(uλ) <  for sufficiently large λ. According to the

mountain-pass Theorem , together with Lemmas  and , we deduce that there exists a
nonzero classical solution of the problem (P). �

Now consider the case  < p < . In the next result we prove that the Palais-Smale con-
dition is also valid.

Lemma  Suppose that  < p <  and conditions (H) and (H) hold. Then the functional
φ : X →R is bounded from below and satisfies condition (PS).

Proof By  < p < , conditions (H), (H), and inequality (), it follows that the functional
φ is bounded from below:

φ(u) ≥ 

‖u‖X –

cT
p

‖u‖p∞ ≥ 

‖u‖X –

cTMp

p
‖u‖pX

≥ p – 
p

(
cTMp)/(–p). ()

Further, if (uk) is a (PS) sequence, by () it follows that (uk) is a bounded sequence in X.
Then, as in Lemma , we conclude that (uk) has a convergent subsequence. �

http://www.boundaryvalueproblems.com/content/2014/1/105
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Now we are in a position to prove the next existence result for the problem (P).

Proof of Theorem  By assumption, we know that gj and hj are odd functions. SoGj areHj

are even functions and the functional φ is even. By Lemma  we know that φ is bounded
from below and satisfies condition (PS). Letm ∈N,m≥  be a natural number and define,
for any ρ >  fixed, the set

Km
ρ =

{ m∑
j=

λj sin

(
jπ t
T

)
:

m∑
j=

λ
j = ρ

}
⊂ X.

Km
ρ is homeomorphic to S

m– by the odd mapping defined as H : Km
ρ → S

m–

H

( m∑
j=

λj sin

(
jπ t
T

))
=

(
–

λ

ρ
, –

λ

ρ
, . . . , –

λm

ρ

)
.

Moreover, for w =
∑m

j= λj sin( jπ tT ) ∈ Km
ρ , the following inequalities hold:

ρ

√
Tb


≤ ‖w‖X ≤ ρm

√
T


((
mπ

T

)

+ a
(
mπ

T

)

+ b
)
. ()

Clearly Km
ρ is a subset of them-dimensional subspace

Xm = sp
{
sin

(
π t
T

)
, . . . , sin

(
mπ t
T

)}
⊂ X,

and there exist positive constants C(m) and C(m), such that

C(m)‖w‖Xm ≤ ‖w‖Lp ≤ C(m)‖w‖Xm , ()

where ‖ · ‖Xm is the induced norm of ‖ · ‖X on Xm.
Arguing as in [, pp.-], one can prove that there exists ε = ε(m) > , such that

meas
{
t ∈ [,T] : c(t)

∣∣u(t)∣∣p ≥ ε‖u‖pX ,u ∈ Xm\{}} ≥ ε. ()

Denote

u =
{
t ∈ [,T] : c(t)

∣∣u(t)∣∣p ≥ ε‖u‖pX
}
.

By (H) we see that for every w ∈ Km
ρ , w =

∑m
k= λk sin( kπ tT ), the following inequalities

are fulfilled:

∣∣Gj
(
w′(tj)

)∣∣ ≤ Aj
∣∣w′(tj)

∣∣ ≤ Aj

( m∑
k=

kπ |λk|
T

∣∣∣∣cos
(
kπ tj
T

)∣∣∣∣
)

≤ Aj

(
mπ

T

)
( m∑

k=

|λk|
)

≤ Ajm
(

π

T

)
( m∑

k=

λ
k

)
()

http://www.boundaryvalueproblems.com/content/2014/1/105
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and

Hj
(
w(tj)

) ≤ Bj
∣∣w(tj)∣∣ ≤ Bj

( m∑
k=

|λk|
∣∣∣∣sin

(
kπ tj
T

)∣∣∣∣
)

≤ Bj

( m∑
k=

|λk|
)

≤ Bjm

( m∑
k=

λ
k

)
.

Denote C =max{Ajm( π
T )

,Bjm : ≤ j ≤ n}. Then by ()-() we have

φ(w) =


‖w‖X +

n∑
j=

(
Gj

(
w′(tj)

)
+Hj

(
w(tj)

))
–

p

∫ T


c(t)|w|p dt

≤ 

‖w‖Xm + nC

m∑
j=

λ
j –

ε

p
‖w‖pLp measw

=


‖w‖Xm + nCρ –

ε

p
‖w‖pLp measw

≤
(


+
nC
Tb

)
‖w‖Xm –

ε

p
‖w‖pLp

≤ K‖w‖Xm –
εCp

 (m)
p

‖w‖pXm ,

where K = 
 +

nC
Tb

.

By the last inequality, it follows that φ(w) <  if ‖w‖Xm < ( εCp
 (m)
pK )/(–p). Then, by (),

choosing

ρ <
(

εCp
 (m)
pK

)/(–p)(
m

√
T


((
mπ

T

)

+ a
(
mπ

T

)

+ b
))–

we obtain φ(w) <  for any w ∈ Km
ρ .

By Clarke’s Theorem , there exist at least m pairs of different critical points of the
functional φ. Sincem is arbitrary, there exist infinitely many solutions of the problem (P),
which concludes the proof. �

Concerning the problem (P), one can introduce similarly the notions of classical and
weak solutions. In this case it is not difficult to verify that the weak solutions are critical
points of the functional φ : X →R defined as

φ(u) =



∫ T



(
u′′ + au′)dt – 



∫ T


b(t)u dt

+
n∑
j=

(
Gj

(
u′(tj)

)
+Hj

(
u(tj)

))
+

p

∫ T


c(t)|u|p dt. ()

Proof of Theorem  By the Poincaré inequalities () we find that ‖|u‖| = ∫ T
 (u′′ + au′)dt

is an equivalent norm to ‖ · ‖X in X and the functional I(u) = 
‖|u‖| is convex.
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Since the functional

I(u) = –



∫ T


b(t)u dt +

n∑
j=

(
Gj

(
u′(tj)

)
+Hj

(
u(tj)

))
+

p

∫ T


c(t)|u|p dt

is sequentially weakly continuous, from the fact that the inclusion X ⊂ C([,T]) is com-
pact, we deduce that the functional φ : X →R is weakly lower semi-continuous.
Next, let us see that φ : X → R is bounded from below:

φ(u) ≥ 

‖|u‖| +

∫ T




p
c(t)|u|p – 


b(t)u dt

≥ 

‖|u‖| +

∫ T



(

p
c|u|p – 


bu

)
dt ≥ CT , ()

where

C =min

{

p
ctp –



bt : t ≥ 

}
=
 – p
p

b
(
b
c

)/(p–)

.

Then, by Theorem , there exists a minimizer of φ, which is a critical point of φ.
Let u be a weak solution of (P), i.e., a critical point of φ. Then

∫ T



(
u′′ + au′ – b(t)u

)
dt

+
n∑
j=

(
gj
(
u′(tj)

)
u′(tj) + hj

(
u(tj)

)
u(tj)

)
+

∫ T


c(t)|u|p dt = . ()

If  < T ≤ T = π

√
a+

√
a+b
b

then ( π
T )

 + a( π
T )

 – b ≥ . Suppose that u is a nonzero
solution and  < T ≤ T. By (H′), (), and () it follows that

 > –
∫ T


c(t)|u|p dt =

∫ T



(
u′′ + au′ – b(t)u

)
dt

+
n∑
j=

(
gj
(
u′(tj)

)
u′(tj) + hj

(
u(tj)

)
u(tj)

)

≥
∫ T



((
π

T

)

+ a
(

π

T

)

– b
)
u dt ≥ ,

which is a contradiction. Then, for  < T ≤ T, the problem (P) has only the zero solution.

Suppose now that T ≥ T = π

√
a+

√
a+b
b

.
Take uε(t) = ε sin(π t

T ) ∈ X, ε > . Then

φ(uε) ≤ ε



((
π

T

)

+ a
(

π

T

)

– b
)
+D

( n∑
j=

(
εγj + εσj

))
+
cT
p

εp, ()

where D =max{dj, ej :  ≤ j ≤ n}. For T > T = π

√
a+

√
a+b
b

it follows that ( π
T )

 + a( π
T )

 –
b < . Then, since γj,σj ∈ (,p), by () it follows that φ(uε) <  for sufficiently small

http://www.boundaryvalueproblems.com/content/2014/1/105
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ε > . In consequence we show that min{φ(u) : u ∈ X} < . So we ensure the existence of
a nonzero minimizer of φ, which completes the proof of Theorem . �
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