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Abstract
In this paper, we consider a class of non-periodic damped vibration problems with
superquadratic nonlinearities. We study the existence of nontrivial ground state
homoclinic orbits for this class of damped vibration problems under some conditions
weaker than those previously assumed. To the best of our knowledge, there has been
no work focused on this case.
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1 Introduction andmain results
We shall study the existence of ground state homoclinic orbits for the following non-
periodic damped vibration system:

ü(t) +Mu̇(t) – L(t)u(t) +Hu
(
t,u(t)

)
= , t ∈R, (.)

where M is an antisymmetric N × N constant matrix, L(t) ∈ C(R,RN×N ) is a symmetric
matrix, H(t,u) ∈ C(R × R

N ,R) and Hu(t,u) denotes its gradient with respect to the u
variable.We say that a solution u(t) of (.) is homoclinic (to ) ifu(t) ∈ C(R,RN ) such that
u(t) →  and u̇(t) →  as |t| → ∞. If u(t) �≡ , then u(t) is called a nontrivial homoclinic
solution.
If M =  (zero matrix), then (.) reduces to the following second-order Hamiltonian

system:

ü(t) – L(t)u(t) +Hu
(
t,u(t)

)
= , t ∈R. (.)

This is a classical equation which can describe many mechanic systems such as a pen-
dulum. In the past decades, the existence and multiplicity of periodic solutions and ho-
moclinic orbits for (.) have been studied by many authors via variational methods; see
[–] and the references therein.
The periodic assumptions are very important in the study of homoclinic orbits for (.)

since periodicity is used to control the lack of compactness due to the fact that (.) is set
on all R. However, non-periodic problems are quite different from the ones described in
periodic cases. Rabinowitz and Tanaka [] introduced a type of coercive condition on the
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matrix L(t),

l(t) := inf|u|=
(
L(t)u,u

) → +∞ as |t| → ∞, (.)

and obtained the existence of a homoclinic orbit for non-periodic (.) under the
Ambrosetti-Rabinowitz (AR) superquadratic condition:

 < μH(t,u) ≤ (
Hu(t,u),u

)
, ∀t ∈R,∀u ∈R

N \ {},

whereμ >  is a constant, (·, ·) denotes the standard inner product inRN and the associated
norm is denoted by | · |.
We should mention that in the case where M �= , i.e., the damped vibration system

(.), only a few authors have studied homoclinic orbits of (.); see [–]. Zhu []
considered the periodic case of (.) (i.e., L(t) and H(t,u) are T-periodic in t with T > )
and obtained the existence of nontrivial homoclinic solutions of (.). The authors [–
] considered the non-periodic case of (.): Zhang and Yuan [] obtained the existence
of at least one homoclinic orbit for (.) when H satisfies the subquadratic condition at
infinity by using a standardminimizing argument; by a symmetricmountain pass theorem
and a generalized mountain pass theorem,Wu and Zhang [] obtained the existence and
multiplicity of homoclinic orbits for (.) when H satisfies the local (AR) superquadratic
growth condition:

 < μH(t,u) ≤ (
Hu(t,u),u

)
, ∀t ∈R,∀|u| ≥ r, (.)

where μ >  and r >  are two constants. Notice that the authors [, ] all used condi-
tion (.). Recently, the author in [, ] obtained infinitely many homoclinic orbits for
(.) when H satisfies the subquadratic [] and asymptotically quadratic [] condition
at infinity by the following weaker conditions than (.):

(L) There is a constant β >  such that

meas
{
t ∈R : |t|–βL(t) < bIN

}
< +∞, ∀b > ;

(L) There is a constant γ ≥  such that

l(t) := inf|u|=
(
L(t)u,u

) ≥ –γ, ∀t ∈R,

which were firstly used in []. It is not hard to check that the matrix-valued function
L(t) := (t sin t + )IN satisfies (L) and (L), but does not satisfy (.).
We define an operator � :H(R,RN ) →H(R,RN ) by

(�u, v) :=
∫
R

(
Mu(t), v̇(t)

)
dt, ∀u, v ∈ H(

R,RN)
.

SinceM is an antisymmetric N ×N constant matrix, � is self-adjoint onH(R,RN ). Let χ

denote the self-adjoint extension of the operator – d
dt + L(t) + �. We are interested in the

indefinite case:
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(J) a := sup(σ (χ )∩ (–∞, )) <  < b := inf(σ (χ )∩ (,∞)).

To state our main result, we still need the following assumptions:

(H) |∇H(t,u)| ≤ c( + |u|p–) for some c >  and p > , ∀t ∈R and u ∈R
N .

(H) H(t,u) ≥ 
a|u|, ∀t ∈R and u ∈R

N .
(H) For some δ >  and γ ∈ (,b),

∣∣∇H(t,u)
∣∣ ≤ γ |u|, ∣∣H(t,u)

∣∣ ≤ 

∣∣∇H(t,u)

∣∣ · |u|, ∀|u| < δ,∀t ∈ R.

(H) H(t,u)
|u| → +∞ as |u| → +∞ and there existsW(t) ∈ L(R,R+) such that

H(t,u) ≥ –W(t), ∀t ∈R and u ∈R
N . (.)

(H) For all t ∈ R and u, z ∈R
N , there holds

H(t,u + z) –H(t,u) – r
(∇H(t,u), z

)
+
(r – )


(∇H(t,u),u

)

≥ –W(t), ∀r ∈ [, ].

Our main results read as follows.

Theorem . If (L)-(L), (J) and (H)-(H) hold, then (.) has at least one nontrivial
homoclinic orbit.

Theorem . Let M be the collection of solutions of (.), then there is a solution that
minimizes the energy functional

I(u) =



∫
R

[∣∣u̇(t)∣∣ + (
Mu(t), u̇(t)

)
+

(
L(t)u(t),u(t)

)]
dt –

∫
R

H(t,u)dt, u ∈ E

overM, where the space E is defined in Section . In addition, if

∣∣∇H(t,u)
∣∣ = o

(|u|) as |u| → 

uniformly in t, then there is a nontrivial homoclinic orbit that minimizes the energy func-
tional overM \ {}, i.e., a ground state homoclinic orbit.

Remark . Although the authors [] have studied (.) with superquadratic nonlinear-
ities, our superquadratic condition (H) is weaker than (.) in []. Moreover, we study
the ground state homoclinic orbit of (.). To the best of our knowledge, there has been no
result published concerning the ground state homoclinic orbit of (.).

Example .
() H(t,u) = |u|p,
() H(t,u) = g(t)(|u|p + (p – )|u|p–ε sin( |u|ε

ε
)),

where p > , g(t) >  is continuous and  < ε < p – . It is easy to check that the above two
functions satisfy assumptions (H)-(H) if we take  ≤ W(t) ∈ L(R,R+), where W(t) is
the function in (H)-(H).

http://www.boundaryvalueproblems.com/content/2014/1/106
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The rest of the present paper is organized as follows. In Section , we establish the varia-
tional framework associated with (.), and we also give some preliminary lemmas, which
are useful in the proofs of our main results. In Section , we give the detailed proofs of our
main results.

2 Preliminary lemmas
In the following, we use ‖ · ‖Lp to denote the norm of Lp(R,RN ) for any p ∈ [,∞]. Let
W :=H(R,RN ) be a Hilbert space with the inner product and norm given respectively by

〈u, v〉W =
∫
R

[(
u̇(t), v̇(t)

)
+

(
u(t), v(t)

)]
dt, ‖u‖W = 〈u,u〉/E , ∀u, v ∈W .

It is well known that W is continuously embedded in Lp(R,RN ) for p ∈ [,∞). We define
an operator � :W →W by

(�u, v) :=
∫
R

(
Mu(t), v̇(t)

)
dt, ∀u, v ∈ W .

Since M is an antisymmetric N × N constant matrix, � is self-adjoint on W . Moreover,
we denote by χ the self-adjoint extension of the operator – d

dt + L(t) +� with the domain
D(χ ) ⊂ L(R,RN ).
Let E := D(|χ |/), the domain of |χ |/. We define respectively on E the inner product

and the norm

〈u, v〉E :=
(|χ |/u, |χ |/v) + (u, v) and ‖u‖E = 〈u,u〉/E ,

where (·, ·) denotes the inner product in L(R,RN ).
By a similar proof of Lemma . in [], we can prove that if conditions (L) and (L)

hold, then

E is compactly embedded into Lp
(
R,RN)

, ∀p ∈ [, +∞]. (.)

Therefore, it is easy to prove that the spectrum σ (χ ) has a sequence of eigenvalues
(counted with their multiplicities)

λ ≤ λ ≤ · · · ≤ λk ≤ · · · → ∞,

and the corresponding system of eigenfunctions {ek : k ∈N} (χek = λkek) forms an orthog-
onal basis in L(R,RN ).
By (J), we may let

k := 
{j : λj < }, E– := span{e, . . . , ek}, E+ := clE
(
span{ek+, . . .}

)
.

Then one has the orthogonal decomposition

E = E– ⊕ E+

with respect to the inner product 〈·, ·〉E . Now, we introduce respectively on E the following
new inner product and norm:

〈u, v〉 := (|χ |/u, |χ |/v), ‖u‖ = 〈u,u〉/, (.)

http://www.boundaryvalueproblems.com/content/2014/1/106
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where u, v ∈ E = E– ⊕ E+ with u = u– + u+ and v = v– + v+. Clearly, the norms ‖ · ‖ and
‖ · ‖E are equivalent (see []), and the decomposition E = E– ⊕ E+ is also orthogonal with
respect to both inner products 〈·, ·〉 and (·, ·). Hence, by (J), E with equivalent norms,
besides, we have

–
∥∥u–∥∥ =

(
χu–,u–

)
 ≤ a

∥∥u–∥∥
L , ∀u– ∈ E– (.)

and

∥∥u+∥∥ =
(
χu+,u+

)
 ≥ b

∥∥u+∥∥
L , ∀u+ ∈ E+, (.)

where a and b are defined in (J).
For problem (.), we consider the following functional:

I(u) =



∫
R

[∣∣u̇(t)∣∣ + (
Mu(t), u̇(t)

)
+

(
L(t)u(t),u(t)

)]
dt –

∫
R

H(t,u)dt, u ∈ E.

Then I can be rewritten as

I(u) =


∥∥u+∥∥ –



∥∥u–∥∥ –

∫
R

H(t,u)dt, u = u– + u+ ∈ E.

Let�(u) :=
∫
R
H(t,u)dt. In view of the assumptions ofH , we know I,� ∈ C(E,R) and the

derivatives are given by

� ′(u)v =
∫
R

(
Hu(t,u), v

)
dt, I ′(u)v =

〈
u+, v+

〉
–

〈
u–, v–

〉
– I ′(u)v

for any u, v ∈ E = E– ⊕ E+ with u = u– + u+ and v = v– + v+. By the discussion of [],
the (weak) solutions of system (.) are the critical points of the C functional I : E → R.
Moreover, it is easy to verify that if u �≡  is a solution of (.), then u(t) →  and u̇(t) → 
as |t| → ∞ (see Lemma . in []).
The following abstract critical point theorem plays an important role in proving our

main result. Let E be a Hilbert space with the norm ‖ · ‖ and have an orthogonal decom-
position E =N ⊕N⊥, N ⊂ E is a closed and separable subspace. There exists a norm |v|ω
satisfying |v|ω ≤ ‖v‖ for all v ∈N and inducing a topology equivalent to the weak topology
ofN on a bounded subset ofN . For u = v+w ∈ E =N ⊕N⊥ with v ∈N , w ∈ N⊥, we define
|u|ω = |v|ω + ‖w‖. Particularly, if un = vn + wn is ‖ · ‖-bounded and un

|·|ω→ u, then vn ⇀ v
weakly in N , wn → w strongly in N⊥, un ⇀ v +w weakly in E (cf. []).
Let E := E– ⊕ E+, z ∈ E+ with ‖z‖ = . Let N := E– ⊕Rz and E+

 :=N⊥ = (E– ⊕Rz)⊥.
For R > , let

Q :=
{
u := u– + sz : s ∈R

+,u– ∈ E–,‖u‖ < R
}

with p = sz ∈ Q, s > . We define

D :=
{
u := sz +w+ : s ∈R,w+ ∈ E+

 ,
∥∥sz +w+∥∥ = s

}
.

http://www.boundaryvalueproblems.com/content/2014/1/106
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For I ∈ C(E,R), define

� :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
h :

h : [, ]× Q̄ �→ E is | · |ω-continuous;
h(,u) = u and I(h(s,u))≤ I(u) for all u ∈ Q̄;
For any (s,u) ∈ [, ]× Q̄, there is a | · |ω-neighborhood
U(s,u) s.t. {u – h(t,u) : (t,u) ∈U(s,u) ∩ ([, ]× Q̄)} ⊂ Efin

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,

where Efin denotes various finite-dimensional subspaces of E, � �=  since id ∈ �.
The variant weak linking theorem is as follows.

Lemma . ([]) The family of C-functionals {Iλ} has the form

Iλ(u) := λK (u) – J(u), ∀λ ∈ [,λ],

where λ > . Assume that
(a) K (u) ≥ , ∀u ∈ E, I = I ;
(b) |J(u)| +K (u) → ∞ as ‖u‖ → ∞;
(c) Iλ is | · |ω-upper semicontinuous, I ′λ is weakly sequentially continuous on E.Moreover,

Iλ maps bounded sets to bounded sets;
(d) sup∂Q Iλ < infD Iλ, ∀λ ∈ [,λ].

Then, for almost all λ ∈ [,λ], there exists a sequence {un} such that

sup
n

‖un‖ < ∞, I ′λ(un) → , Iλ(un) → cλ,

where cλ := infh∈� supu∈Q̄ Iλ(h(t,u)) ∈ [infD Iλ, supQ̄ Iλ].

In order to apply Lemma ., we shall prove a few lemmas.We pick λ such that  < λ <
min[,b/γ ]. For  ≤ λ ≤ λ, we consider

Iλ(u) :=
λ


∥∥u+∥∥ –

(


∥∥u–∥∥ +

∫
R

H
(
t,u(t)

)
dt

)
:= λK (u) – J(u).

It is easy to see that Iλ satisfies condition (a) in Lemma .. To see (c), if un
|·|ω→ u and

Iλ(un) ≥ c, then u+n → u+ and u–n ⇀ u– in E, un → u a.e. on R, going to a subsequence if
necessary. It follows from the weak lower semicontinuity of the norm, Fatou’s lemma and
the fact H(t,u) +W(t)≥  for all t ∈ R and u ∈R

N by (.) in (H) that

c ≤ lim sup
n→∞

Iλ(un)

= lim sup
n→∞

[
λ


∥∥u+n∥∥ –

(


∥∥u–n∥∥ +

∫
R

(
H(t,un) +W(t)

)
dt

)
+

∫
R

W(t)dt
]

≤ λ


∥∥u+∥∥ – lim inf

n→∞

[


∥∥u–n∥∥ +

∫
R

(
H(t,un) +W(t)

)
dt

]
+

∫
R

W(t)dt

≤ λ


∥∥u+∥∥ –

(


∥∥u–∥∥ +

∫
R

H(t,u)dt
)
= Iλ(u).

Thus we get Iλ(u) ≥ c. It implies that Iλ is | · |ω-upper semicontinuous. I ′λ is weakly sequen-
tially continuous on E due to [].

http://www.boundaryvalueproblems.com/content/2014/1/106
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Lemma . Under assumptions of Theorem ., then

J(u) +K (u) → ∞ as ‖u‖ → ∞.

Proof By the definition of I(u) and (H), we have

J(u) +K (u) =


∥∥u+∥∥ +



∥∥u–∥∥ +

∫
R

H
(
t,u(t)

)
dt

≥ 

‖u‖ –

∫
R

W(t)dt → +∞ as ‖u‖ → ∞,

which is due toW(t) ∈ L(R,R+). �

Therefore, Lemma . implies that condition (b) holds. To continue the discussion, we
still need to verify condition (d), that is, the following two lemmas.

Lemma . Under assumptions of Theorem ., there are two positive constants ε,ρ > 
such that

Iλ(u) ≥ ε, u ∈ E+,‖u‖ = ρ,λ ∈ [,λ].

Proof By (H), (H), (.) and the Sobolev embedding theorem, for all u ∈ E+,

Iλ(u) ≥ 

‖u‖ –

∫
R

H
(
t,u(t)

)
dt

=


‖u‖ –

∫
{t∈R:|u|<δ}

H
(
t,u(t)

)
dt –

∫
{t∈R:|u|≥δ}

H
(
t,u(t)

)
dt

≥ 

‖u‖ – 


γ

∫
{t∈R:|u|<δ}

|u| dt – c
∫

{t∈R:|u|≥δ}

(|u|p + |u|)dt

≥ 

‖u‖ – γ

b


‖u‖ –C‖u‖p

=


‖u‖

(
 –

γ

b
– C‖u‖p–

)
,  ≤ γ < b,

where C is a positive constant. It implies the conclusion if we take ‖u‖ sufficiently small.
�

Lemma . Under assumptions of Theorem ., then there is an R >  such that

Iλ(u) ≤ , u ∈ ∂QR,λ ∈ [,λ],

where QR := {u := v + sz : s≥ , v ∈ E–, z ∈ E+ with ‖z‖ = ,‖u‖ ≤ R}.

Proof Suppose by contradiction that there exist Rn → ∞, λn ∈ [,λ] and un = vn + snz ∈
∂QR such that Iλn (un) > . If sn = , then by (H) and (.), we have

Iλn (vn) = –


‖vn‖ –

∫
R

H(t, vn)dt ≤ –


‖vn‖ – 


a‖vn‖L ≤ .

http://www.boundaryvalueproblems.com/content/2014/1/106
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Therefore, sn �=  and ‖un‖ = ‖vn‖ + sn = R
n. Let ũn =

un
‖un‖ = s̃nz + ṽn, then

‖ũn‖ = ‖ṽn‖ + s̃n = .

It follows from Iλn (un) >  and the definition of I that

 <
Iλn (un)
‖un‖ =



(
λns̃n – ‖ṽn‖

)
–

∫
R

H(t,un)
|un| |ũn| dt

=


[
(λn + )s̃n – 

]
–

∫
R

H(t,un)
|un| |ũn| dt. (.)

There are renamed subsequences such that s̃n → s̃, λn → λ, and there is a renamed sub-
sequence such that ũn = un

‖un‖ = s̃nz + ṽn ⇀ ũ in E and ũn → ũ a.e. on R.
We claim that

lim inf
n→∞

∫
R

H(t,un)
|un| |ũn| dt ≥ . (.)

Case . If ũ �≡ . Let � be the subset of R where ũ �= , then for all t ∈ � we have
|un| = |ũn| · ‖un‖ → ∞. It follows from (H) andW(t) ∈ L(R,R+) that

∫
R

H(t,un)
|un| |ũn| dt ≥

∫
�

H(t,un)
|un| |ũn| dt –

∫
R\�

W(t)
‖un‖ dt → +∞ as n→ ∞.

Case . If ũ ≡ , then by (H) andW(t) ∈ L(R,R+), we have

∫
R

H(t,un)
|un| |ũn| dt =

∫
R

H(t,un)
‖un‖ dt ≥ –

∫
R

W(t)
‖un‖ dt →  as n→ ∞.

Therefore, Cases  and  imply that (.) holds. Therefore, by (.), (.) and the facts
s̃n → s̃, λn → λ, we have

(λ + )s̃ –  ≥ ,

that is, s̃ ≥ 
+λ

≥ 
+λ

> . Thus, ũ �= . It follows from (H) that

∫
R

H(t,un)
|un| |ũn| dt → +∞ as n→ ∞,

which contradicts (.). The proof is finished. �

Therefore, Lemmas . and . imply that condition (d) of Lemma . holds. Applying
Lemma ., we soon obtain the following fact.

Lemma . Under assumptions of Theorem ., for almost all λ ∈ [,λ], there exists a
sequence {un} such that

sup
n

‖un‖ < ∞, I ′λ(un) → , Iλ(un) → cλ,

where the definition of cλ is given in Lemma ..

http://www.boundaryvalueproblems.com/content/2014/1/106
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Lemma . Under assumptions of Theorem ., for almost all λ ∈ [,λ], there exists a
uλ ∈ E such that

I ′λ(uλ) = , Iλ(uλ) = cλ.

Proof Let {un} be the sequence obtained in Lemma .. Since {un} is bounded, we can
assume un ⇀ uλ in E and un → uλ a.e. on R. By (H), (H), (.) and Theorem A. in [],
we have

∫
R



(∇H(t,un),un

)
dt →

∫
R



(∇H(t,uλ),uλ

)
dt (.)

and
∫
R

H(t,un)dt →
∫
R

H(t,uλ)dt. (.)

By Lemma . and the fact that I ′λ is weakly sequentially continuous, we have

I ′λ(uλ)ϕ = lim
n→∞ I ′λ(un)ϕ = , ∀ϕ ∈ E.

That is, I ′λ(uλ) = . By Lemma ., we have

Iλ(un) –


I ′λ(un)un =

∫
R

(


(∇H(t,un),un

)
–H(t,un)

)
dt → cλ.

It follows from (.), (.) and the fact I ′λ(uλ) =  that

Iλ(uλ) = Iλ(uλ) –


I ′λ(uλ)uλ =

∫
R

(


(∇H(t,uλ),uλ

)
–H(t,uλ)

)
dt = cλ.

The proof is finished. �

Applying Lemma ., we soon obtain the following fact.

Lemma . Under assumptions of Theorem ., for every λ ∈ [,λ], there are sequences
{un} ⊂ E and λn ∈ [,λ] with λn → λ such that

I ′λn (un) = , Iλn (un) = cλn .

Lemma . Under assumptions of Theorem ., then

∫
R

[
H(t,u) –H(t, rw) + r

(∇H(t,u),w
)
–
 + r


(∇H(t,u),u

)]
dt ≤ C,

where u ∈ E, w ∈ E+,  ≤ r ≤  and the constant C :=
∫
R

|W(t)|dt does not depend on u,
w, r.

Proof This follows from (H) if we take u = u and z = rw – u. �

http://www.boundaryvalueproblems.com/content/2014/1/106
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Lemma . The sequences given in Lemma . are bounded.

Proof Write un = u+n + u–n , where u±
n ∈ E±. Suppose that

‖un‖ → ∞ as n→ ∞.

Let vn := un
‖un‖ , then v+n = u+n

‖un‖ , v
–
n = u–n

‖un‖ , ‖vn‖ = ‖v+n‖ + ‖v–n‖ =  and ‖v+n‖ ≤ . Thus
v+n ⇀ v+ in E and v+n → v+ a.e. on R, after passing to a subsequence.
Case . If v+ �≡ . Let � be the subset of R where v+ �= . Then v �=  and |un| = |vn| ·

‖un‖ → ∞ on �. It follows from (H) andW(t) ∈ L(R,R+) that

∫
R

H(t,un)
|un| |vn| dt ≥

∫
�

H(t,un)
|un| |vn| dt –

∫
R\�

W(t)
‖un‖ dt → +∞ as n→ ∞,

which together with Lemmas . and . and v±
n → v± in Lq(R,RN ) for all  ≤ q ≤ ∞ (by

(.)) implies that

 ≤ cλn
‖un‖ =

Iλn (un)
‖un‖ =

λn


∥∥v+n∥∥ –



∥∥v–n∥∥ –

∫
R

H(t,un)
|un| |vn| dt → –∞ as n→ ∞.

It is a contradiction.
Case . If v+ ≡ .We claim that there is a constant C independent of un and λn such that

Iλn
(
ru+n

)
– Iλn (un) ≤ C, ∀r ∈ [, ]. (.)

Since



I ′λn (un)ϕ =



λn

〈
u+n ,ϕ

+〉 – 

〈
u–n ,ϕ

–〉 – 


∫
R

(∇H(t,un),ϕ
)
dt = , ∀ϕ ∈ E,

it follows from the definition of I that

Iλn
(
ru+n

)
– Iλn (un) =



λn

(
r – 

)∥∥u+n∥∥ +


∥∥u–n∥∥ +

∫
R

(
H(t,un) –H

(
t, ru+n

))
dt

+


λn

〈
u+n ,ϕ

+〉 – 

〈
u–n ,ϕ

–〉 – 


∫
R

(∇H(t,un),ϕ
)
dt. (.)

Take ϕ := (r +)u–n –(r –)u+n = (r +)un–ru+n in (.), then it follows fromLemma .
that

Iλn
(
ru+n

)
– Iλn (un) = –

r


∥∥u–n∥∥ +

∫
R

[
H(t,un) –H

(
t, ru+n

)
+ r

(∇H(t,un),u+n
)

–
 + r


(∇H(t,un),un

)]
dt

≤ C.

Thus (.) holds.
Let C >  be a fixed constant and take

rn :=
C

‖un‖ →  as n→ ∞.
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Therefore, (.) implies that

Iλn
(
rnu+n

)
– Iλn (un) ≤ C.

It follows from v+n =
u+n

‖un‖ and Lemma . that

Iλn
(
Cv+n

) ≤ C′. (.)

Note that Lemmas . and . and (H) imply that

 ≤ cλn
‖un‖ =

Iλn (un)
‖un‖ =

λn


∥∥v+n∥∥ –



∥∥v–n∥∥ –

∫
R
H(t,un)
‖un‖ dt

≤ λ


∥∥v+n∥∥ –



∥∥v–n∥∥ +

∫
R
W(t)dt
‖un‖ .

It follows from the fact
∫
R
W(t)dt
‖un‖ →  as n→ ∞ due toW(t) ∈ L(R,R+) that

λ


∥∥v+n∥∥ –



∥∥v–n∥∥ + ε ≥ , ∀ε >  (.)

for all sufficiently large n. We take ε = 
 , by (.) and ‖vn‖ = ‖v+n‖ + ‖v–n‖ = , we have

∥∥v+n∥∥ ≥ 
( + λ)

(.)

for all sufficiently large n. By (H) and (H), we have

∫
R

H
(
t,Cv+n

)
dt

≤ 

γC



∫
{t∈R:|Cv+n |<δ}

∣∣v+n∣∣ dt + 

c
∫

{t∈R:|Cv+n |≥δ}

(
C

∣∣v+n∣∣ +Cp

∣∣v+n∣∣p)dt

≤ 

γC



∫
{t∈R:|Cv+n |<δ}

∣∣v+n∣∣ dt +CC
p


∫
{t∈R:|Cv+n |≥δ}

∣∣v+n∣∣p dt. (.)

For all sufficiently large n, by (.) and (.), it follows from λn → λ and v+n → v+ ≡  in
Lq(R,RN ) for all  ≤ q ≤ ∞ (by (.)) that

Iλn
(
Cv+n

)
=



λnC


∥∥v+n∥∥ –

∫
R

H
(
t,Cv+n

)
dt

≥ 

λnC




( + λ)
–


γC



∫
{t∈R:|Cv+n |<δ}

∣∣v+n∣∣ dt

–CC
p


∫
{t∈R:|Cv+n |≥δ}

∣∣v+n∣∣p dt

→ λC


( + λ)
as n → ∞.

This implies that Iλn (Cv+n) → ∞ as C → ∞, contrary to (.).
Therefore, {un} are bounded. The proof is finished. �
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3 Proofs of themain results
Proof of Theorem . From Lemma ., there are sequences  < λn →  and {un} ⊂ E such
that I ′λn (un) =  and Iλn (un) = cλn . By Lemma ., we know that {un} is bounded in E. Thus
we can assume un ⇀ u in E, un → u a.e. on R. Therefore,

I ′λn (un)ϕ = λn
〈
u+n ,ϕ

〉
–

〈
u–n ,ϕ

〉
–

∫
R

(∇H(t,un),ϕ
)
dt = , ∀ϕ ∈ E.

Hence, in the limit,

I ′(u)ϕ =
〈
u+,ϕ

〉
–

〈
u–,ϕ

〉
–

∫
R

(∇H(t,u),ϕ
)
dt = , ∀ϕ ∈ E.

Thus I ′(u) = . Note that

Iλn (un) –


I ′λn (un)un =

∫
R

(


(∇H(t,un),un

)
–H(t,un)

)
dt = cλn ≥ c. (.)

Similar to (.) and (.), we know

∫
R

(


(∇H(t,un),un

)
–H(t,un)

)
dt →

∫
R

(


(∇H(t,u),u

)
–H(t,u)

)
dt as n→ ∞.

It follows from I ′(u) = , (.) and Lemma . that

I(u) = I(u) –


I ′(u)u =

∫
R

[


(∇H(t,u),u

)
–H(t,u)

]
dt

= lim
n→∞

∫
R

(


(∇H(t,un),un

)
–H(t,un)

)
dt ≥ c ≥ ε > .

Therefore, u �= . �

Proof of Theorem . By Theorem ., M �= ∅, where M is the collection of solutions of
(.). Let

α := inf
u∈M

I(u).

If u is a solution of (.), then by Lemma . (take r = ),

I(u) = I(u) –


I ′(u)u =

∫
R

[


(∇H(t,u),u

)
–H(t,u)

]
dt ≥ –C = –

∫
R

∣∣W(t)
∣∣dt.

Thus α > –∞. Let {un} be a sequence inM such that

I(un) → α. (.)

By Lemma ., the sequence {un} is bounded in E. Therefore, un ⇀ u in E, un → u a.e. on
R and un → u in Lp(R,RN ) for all p ∈ [, +∞] (by (.)), after passing to a subsequence.
Therefore,

I ′(un)ϕ =
〈
u+n ,ϕ

〉
–

〈
u–n ,ϕ

〉
–

∫
R

(∇H(t,un),ϕ
)
dt = , ∀ϕ ∈ E.

http://www.boundaryvalueproblems.com/content/2014/1/106
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Hence, in the limit,

I ′(u)ϕ =
〈
u+,ϕ

〉
–

〈
u–,ϕ

〉
–

∫
R

(∇H(t,u),ϕ
)
dt = , ∀ϕ ∈ E.

Thus I ′(u) = . Similar to (.) and (.), we have

I(un) –


I ′(un)un =

∫
R

(


(∇H(t,un),un

)
–H(t,un)

)
dt

→
∫
R

(


(∇H(t,u),u

)
–H(t,u)

)
dt as n→ ∞.

It follows from I ′(u) =  and (.) that

I(u) = I(u) –


I ′(u)u =

∫
R

[


(∇H(t,u),u

)
–H(t,u)

]
dt

= lim
n→∞

∫
R

(


(∇H(t,un),un

)
–H(t,un)

)
dt

= lim
n→∞ I(un) = α.

Now suppose that

∣∣∇H(t,u)
∣∣ = o

(|u|) as |u| → .

It follows from (H) that for any ε > , there is a constant Cε >  such that

∣∣∇H(t,u)
∣∣ ≤ ε|u| +Cε|u|p–. (.)

Let

β := inf
u∈M′ I(u),

whereM′ :=M \ {}. Let {un} be a sequence inM \ {} such that

I(un) → β . (.)

Note that

 = I ′(un)u+n =
∥∥u+n∥∥ –

∫
R

(∇H(t,un),u+n
)
dt,

which togetherwith (.),Hölder’s inequality and the Sobolev embedding theorem implies

∥∥u+n∥∥ =
∫
R

(∇H(t,un),u+n
)
dt

≤ ε

∫ T


|un| ·

∣∣u+n∣∣dt +Cε

∫ T


|un|p–

∣∣u+n∣∣dt
≤ ε‖un‖ · ∥∥u+n∥∥ +C′

ε‖un‖p–Lp
∥∥u+n∥∥
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≤ ε‖un‖ · ∥∥u+n∥∥ +C′′
ε ‖un‖p–Lp ‖un‖ · ∥∥u+n∥∥

≤ ε‖un‖ +C′′
ε ‖un‖p–Lp ‖un‖. (.)

Similarly, we have

∥∥u–n∥∥ ≤ ε‖un‖ +C′′
ε ‖un‖p–Lp ‖un‖. (.)

From (.) and (.), we get

‖un‖ ≤ ε‖un‖ + C′′
ε ‖un‖p–Lp ‖un‖,

which means ‖un‖Lp ≥ C for some constant C > . Since un → u in Lp(R,RN ), we know
u �= . As before, I(un) → I(u) = β as n→ ∞. �
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