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1 Introduction
We consider the following dissipative -component Degasperis-Procesi system:

⎧⎪⎨
⎪⎩
ut – uxxt + uux + λ(u – uxx) + cρρx = uxuxx + uuxxx, t > ,x ∈R,
ρt + uρx + uxρ + λρ = , t > ,x ∈R,
u(,x) = u(x), ρ(,x) = ρ(x), x ∈R,

(.)

where λ, λ are nonnegative constants, c ∈R, (u,ρ) ∈Hs(R)×Hs–(R) (s > 
 ).

In system (.), if λ = ρ = , we get the classical Degasperis-Procesi equation []

ut – uxxt + uux = uxuxx + uuxxx, (.)

where u(t,x) represents the fluid velocity at time t in x direction and k ∈ R. The nonlin-
ear convection term uux causes the steepening of wave form. The nonlinear dispersion
effect term uxuxx +uuxxx makes the wave form spread. The Degasperis-Procesi equation
has been studied in many works [–]. Escher et al. [] demonstrated that there exists
a unique solution u(t,x) ∈ C([,T],Hs(R)) ∩ C([,T],Hs–(R)) to (.) with initial value
u(x) ∈ Hs(R) (s > 

 ). Liu and Yin [] obtained the global existence of solutions to (.).
They derived several wave breaking mechanisms in Sobolev space Hs(R) with s > 

 . Yin
[] established the local well-posedness for the Degasperis-Procesi equation with initial
value u ∈ Hs(R) (s > 

 ) on the line. In [], the author obtained the global existence of
solutions to the Degasperis-Procesi equation on the circle. The precise blow-up scenario
was also derived. The global existence of strong solutions and global weak solutions to the
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Degasperis-Procesi equation were shown in [, ]. Guo et al. [] studied the dissipative
Degasperis-Procesi equation,

ut – uxxt + uux + λ(u – uxx) = uxuxx + uuxxx, (.)

where λ(u–uxx) (λ > ) is the dissipative term. They obtained the global weak solutions to
(.). Guo [] established the local well-posedness for (.), and also obtained the global
existence, persistence properties and propagation speed of solutions. Wu and Yin [] ob-
tained the local well-posedness for (.), and also studied the blow-up scenarios of solu-
tions in periodic case.
On the other hand, many researchers have studied the integrablemulti-component gen-

eralizations of the Degasperis-Procesi equation [–]. Yan and Yin [] investigated the
-component Degasperis-Procesi system

⎧⎪⎨
⎪⎩
ut – uxxt + uux + cρρx = uxuxx + uuxxx, t > ,x ∈R,
ρt + uρx + uxρ = , t > ,x ∈R,
u(,x) = u(x), ρ(,x) = ρ(x), x ∈R,

(.)

where c ∈ R. They established the local well-posedness for system (.) in Besov space
Bs
p,r(R)×Bs–

p,r (R) with s >max( + 
p ,


 ), and also derived the precise blow-up scenarios of

strong solutions in Sobolev spaceHs(R)×Hs–(R) with s > 
 . Zhou et al. [] investigated

the traveling wave solutions to the -component Degasperis-Procesi system. Manwai []
studied the self-similar solutions to the -component Degasperis-Procesi system. Fu and
Qu [] obtained the persistence properties of solutions to the -component Degasperis-
Procesi system in Sobolev spaceHs(R)×Hs–(R) with s ≥ . For system (.), Jin and Guo
[] studied the blow-up mechanisms and persistence properties of strong solutions.
Recently, a large amount of literature has been devoted to the study of the -component

Camassa-Holm system [–]. Hu [] studied the dissipative periodic -component
Camassa-Holm system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ut – uxxt + uux + λ(u – uxx) + ρρx = uxuxx + uuxxx, t > ,x ∈ S,
ρt + uρx + uxρ + λρ = , t > ,x ∈ S,
u(t,x + ) = u(t,x), ρ(t,x + ) = ρ(t,x), t > ,x ∈ S,
u(,x) = u(x), ρ(,x) = ρ(x), x ∈ S,

(.)

where λ > . The author not only established the local well-posedness for system (.)
in Besov space Bs

p,r(S) × Bs–
p,r (S) with s > max( + 

p ,

 ), but she also presented global

existence results and the exact blow-up scenarios of strong solutions in Sobolev space
Hs(S)×Hs–(S) with s > 

 . For λ =  in system (.), Jin and Guo [] considered the per-
sistence properties of solutions to themodified -component Camassa-Holm system. Zhu
[] considered the persistence property of solutions to the coupled Camassa-Holm sys-
tem, and also established the global existence and blow-up mechanisms of solutions. Guo
[, ] studied the persistence properties and unique continuation of solutions to the
-component Camassa-Holm system in the case λ = . It was shown in [] that the dissi-
pative Camassa-Holm, Degasperis-Procesi, Hunter-Saxton and Novikov equations could
be reduced to the non-dissipative versions by means of an exponentially time-dependent
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scaling. One may refer to [–] and the references therein for more details in this di-
rection.
Motivated by the work in [, , ], we study the dissipative -component Degasperis-

Procesi system (.). We note that the persistence properties of solutions to system (.)
have not been discussed yet. The aim of this paper is to investigate the persistence prop-
erties of solutions in Sobolev space L∞(R). The main idea of this work comes from [].
Now we rewrite system (.) as

⎧⎪⎨
⎪⎩
ut + uux = P(D)( u

 + 
 cρ

) – λu, t > ,x ∈ R,
ρt + uρx = –uxρ – λρ, t > ,x ∈ R,
u(,x) = u(x), ρ(,x) = ρ(x), x ∈R,

(.)

where the operator P(D) = –∂x( – ∂
x )–.

The main results are presented as follows.

Theorem . Assume T >  and (u,ρ) ∈ Hs(R) × Hs–(R) with s > 
 . Then the Cauchy

problem (.) has a unique solution (u,ρ) ∈ C([,T];Hs(R)) ∩ C([,T];Hs–(R)) ×
C([,T];Hs–(R))∩C([,T];Hs–(R)).

Theorem . Let T >  and (u,ρ) ∈ Hs(R) × Hs–(R) with s > 
 . (u,ρ) ∈ C([,T];

Hs(R))∩C([,T];Hs–(R))×C([,T];Hs–(R))∩C([,T];Hs–(R)) is the corresponding
solution to system (.). If there exists θ ∈ (, ) such that

∣∣u(x)∣∣, ∣∣∂xu(x)∣∣, ∣∣ρ(x)
∣∣ ∼O

(
e–θx) as x → ∞,

then

∣∣u(t,x)∣∣, ∣∣∂xu(t,x)∣∣, ∣∣ρ(t,x)∣∣ ∼O
(
e–θx) as x→ ∞

uniformly on the interval [,T].

Theorem . Let T >  and (u,ρ) ∈ Hs(R) × Hs–(R) with s > 
 . (u,ρ) ∈ C([,T];

Hs(R))∩C([,T];Hs–(R))×C([,T];Hs–(R))∩C([,T];Hs–(R)) is the corresponding
solution to system (.). Assume the constant θ ∈ (  , ).
() For c > ,

∣∣u(x)∣∣ ∼ o
(
e–x

)
,

∣∣∂xu(x)∣∣ ∼O
(
e–θx), ∣∣ρ(x)

∣∣ ∼ O
(
e–θx) as x → ∞,

and there exists t ∈ (,T) such that |u(t,x)| ∼ o(e–x) as x→ ∞, then

u(t,x) = , ρ(t,x) = .

() For c = ,

∣∣u(x)∣∣ ∼ o
(
e–x

)
,

∣∣∂xu(x)∣∣ ∼O
(
e–θx) as x→ ∞,

and there exists t ∈ (,T) such that |u(t,x)| ∼ o(e–x) as x→ ∞, then

u(t,x) = , ρ(t,x) = ρ(x)e–λt .
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Theorem . Let λ =  in system (.). Assume T >  and (u,ρ) ∈ Hs(R) × Hs–(R)
with s > 

 . (u,ρ) ∈ C([,T];Hs(R)) ∩ C([,T];Hs–(R)) × C([,T];Hs–(R)) ∩ C([,T];
Hs–(R)) is the corresponding solution to system (.). If there exists θ ∈ (  , ) such that

∣∣u(x)∣∣ ∼O
(
e–x

)
,

∣∣∂xu(x)∣∣ ∼O
(
e–θx), ∣∣ρ(x)

∣∣ ∼O
(
e–θx) as x → ∞,

then

∣∣u(t,x)∣∣ ∼O
(
e–x

)
,

∣∣ρ(t,x)∣∣ ∼O
(
e–θx) as x → ∞

uniformly on the interval [,T].

Theorem . Assume T >  and (u,ρ) ∈ Hs(R) × Hs–(R) with s > 
 . (u,ρ) ∈ C([,T];

Hs(R))∩C([,T];Hs–(R))×C([,T];Hs–(R))∩C([,T];Hs–(R)) is the corresponding
solution to system (.). If there exists θ ∈ (, ) such that

∣∣u(x)∣∣, ∣∣ρ(x)
∣∣, ∣∣ux(x)∣∣, ∣∣ρx(x)

∣∣ ∼O
(
e–θx) as x → ∞,

then

∣∣u(t,x)∣∣, ∣∣ρ(t,x)∣∣, ∣∣ux(t,x)∣∣, ∣∣ρx(t,x)
∣∣ ∼O

(
e–θx) as x → ∞.

Theorem . Assume T >  and (u,ρ) ∈ Hs(R) × Hs–(R) with s > 
 . (u,ρ) ∈ C([,T];

Hs(R))∩C([,T];Hs–(R))×C([,T];Hs–(R))∩C([,T];Hs–(R)) is the corresponding
solution to system (.). If there exists θ ∈ (  , ) such that

∣∣u(x)∣∣, ∣∣ρ(x)
∣∣ ∼ o

(
e–x

)
as x→ ∞,

∣∣ux(x)∣∣, ∣∣ρx(x)
∣∣ ∼O

(
e–θx) as x → ∞,

and there exists t ∈ [,T] such that

∣∣u(t,x)∣∣, ∣∣ρ(t,x)∣∣ ∼ o
(
e–x

)
as x→ ∞,

then

u(t,x) = , ρ(t,x) = .

The remainder of this paper is organized as follows. In Section , the proofs of Theo-
rems . and . are presented. Section  is devoted to the proofs of Theorems . and ..
The proofs of Theorems . and . are given in Section .

Notation We denote the norm of Lebesgue space Lp(R), ≤ p ≤ ∞ by ‖ ·‖Lp , the norm in
Sobolev spaceHs(R), s ∈R by ‖ · ‖Hs and the norm in Besov space Bs

p,r(R), s ∈R by ‖ · ‖Bsp,r .
For θ ∈R, we denote

∣∣f (x)∣∣ ∼O
(
eθx) as x → ∞, if lim

x→∞
|f (x)|
eθx = L (L 
= );

∣∣f (x)∣∣ ∼ o
(
eθx) as x → ∞, if lim

x→∞
|f (x)|
eθx = .
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2 Proofs of Theorems 1.1 and 1.2
We write the definition of Besov space. One may check [–] for more details.

Proposition . [] Let s ∈ R and  ≤ p, r ≤ ∞. The nonhomogeneous Besov space is
defined by Bs

p,r(R) = {f ∈ S′(R)|‖f ‖Bsp,r (R) < ∞}, where

‖f ‖Bsp,r (R) =
{
(
∑∞

j=– jrs‖�jf ‖rLp )

r , r <∞,

supj≥– js‖�jf ‖Lp , r =∞.

2.1 Proof of Theorem 1.1
Using the Littlewood-Paley theory and estimates for solutions to the transport equation,
onemay follow similar arguments as in [] to establish the local well-posedness for system
(.) with somemodification. Here we omit the detailed proof. For system (.) with initial
data (u,ρ) ∈ Bs

p,r ×Bs–
p,r (s >max(+ 

p ,

 )), we see that the corresponding solution (u,ρ) ∈

C([,T];Bs
p,r) ∩ C([,T];Bs–

p,r ) × C([,T];Bs–
p,r ) ∩ C([,T];Bs–

p,r ). Thus we complete the
proof of Theorem ..

2.2 Proof of Theorem 1.2
We denote

F(u,ρ) =


u +

c

ρ, M = sup

t∈[,T]

∥∥(u,ρ)∥∥Hs×Hs– .

Multiplying the second equation in (.) by ρn– with n ∈N
∗ and integrating the resultant

equation with respect to x yield

∫
R

ρtρ
n– dx +

∫
R

uρxρ
n– dx + 

∫
R

uxρρn– dx + λ

∫
R

ρρn– dx = . (.)

We have∫
R

ρtρ
n– dx =


n

d
dt

∥∥ρ(t)
∥∥n
Ln =

∥∥ρ(t)
∥∥n–
Ln

d
dt

∥∥ρ(t)
∥∥
Ln ,∫

R

uρxρ
n– dx + 

∫
R

uxρρn– dx = –

n

∫
R

uxρn dx + 
∫
R

uxρn dx

≤
(
 –


n

)∥∥ux(t)∥∥L∞
∥∥ρ(t)

∥∥n
Ln ,

λ

∫
R

ρρn– dx = λ
∥∥ρ(t)

∥∥n
Ln .

Thus

d
dt

∥∥ρ(t)
∥∥
Ln ≤

[(
 –


n

)∥∥ux(t)∥∥L∞ + λ

]∥∥ρ(t)
∥∥
Ln . (.)

If s > 
 , using the Sobolev embedding theorem, we have ‖ux(t)‖L∞ ≤ ‖u(t)‖Hs ≤ M. Ap-

plying the Gronwall inequality to (.) yields

∥∥ρ(t)
∥∥
Ln ≤ ‖ρ‖Lne[(– 

n )M+λ]t .

http://www.boundaryvalueproblems.com/content/2014/1/108
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Noting u ∈ L ∩ L∞ gives rise to

lim
p→∞‖u‖Lp = ‖u‖L∞

and, taking the limit as n→ ∞, we obtain

∥∥ρ(t)
∥∥
L∞ ≤ ‖ρ‖L∞e(M+λ)t .

Multiplying the first equation in system (.) by un– with n ∈ N
∗ and integrating the

resultant equation with respect to x yield

∫
R

utun– dx +
∫
R

uuxun– dx + λ

∫
R

uun– dx +
∫
R

∂xg ∗ F(u,ρ)un– dx = . (.)

Using the Holder inequality, we have

∫
R

∂xg ∗ F(u,ρ)un– dx ≤ ∥∥∂xg ∗ F(u,ρ)
∥∥
Ln‖u‖n–Ln , (.)

which in combination with (.) yields

d
dt

‖u‖Ln ≤ λ‖u‖Ln +
∥∥∂xg ∗ F(u,ρ)

∥∥
Ln .

Using the Gronwall inequality, one derives

∥∥u(t)∥∥Ln ≤
(

‖u‖Ln +
∫ t



∥∥∂xg ∗ F(u,ρ)(τ )
∥∥
Ln dτ

)
eλt . (.)

Taking the limit as n→ ∞ in (.), one gets

∥∥u(t)∥∥L∞ ≤
(

‖u‖L∞ +
∫ t



∥∥∂xg ∗ F(u,ρ)(τ )
∥∥
L∞ dτ

)
eλt . (.)

Differentiating the first equation in (.) in the variable x yields

uxt + uuxx + ux + λux + ∂
x g ∗ F(u,ρ) = . (.)

Multiplying (.) by un–x with n ∈ N
∗, integrating the resultant equation with respect to

x and using

∫
R

(
uuxxun–x + uxu

n–
x

)
dx =

(
 –


n

)∫
R

un+x dx ≤ ‖ux‖L∞‖ux‖nLn (.)

and ∫
R

[
∂
x g ∗ F(u,ρ)

]
un–x dx ≤ ∥∥∂

x g ∗ F(u,ρ)
∥∥
Ln‖ux‖n–Ln ,

we have

d
dt

‖ux‖Ln ≤ (‖ux‖L∞ + λ
)‖ux‖Ln + ∥∥∂

x g ∗ F(u,ρ)
∥∥
Ln .
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We obtain

∥∥ux(t)∥∥L∞ ≤
[
‖ux‖L∞ +

∫ t



∥∥∂
x g ∗ F(u,ρ)(τ )

∥∥
L∞ dτ

]
e(M+λ)t . (.)

We introduce the weight function ϕN (x) which is independent on t

ϕN (x) =

⎧⎪⎨
⎪⎩
, x ≤ ,
eθx, x ∈ (,N),
eθN , x ≥N ,

where N ∈N∗. It follows ≤ (ϕN (x))x ≤ ϕN (x) a.e. x ∈R. Multiplying the first equation in
system (.) and (.) by ϕN (x), we obtain

∂t(uϕN ) + uϕNux + λuϕN + ϕN∂xg ∗ F(u,ρ) = , (.)

∂t(uxϕN ) + uuxxϕN + uxϕNux + λuxϕN + ϕN∂
x g ∗ F(u,ρ) = . (.)

Multiplying (.) by (uϕN )n– and (.) by (uxϕN )n–, respectively, and integrating the
resultant equation with respect to x, we also note∣∣∣∣

∫
R

uuxxϕN (uxϕN )n– dx
∣∣∣∣ =

∣∣∣∣
∫
R

u(uxϕN )n–
[
∂x(uxϕN ) – ux(ϕN )x

]
dx

∣∣∣∣
≤

∣∣∣∣ 
n

∫
R

ux(uxϕN )n dx
∣∣∣∣ +

∣∣∣∣
∫
R

uuxϕN (uxϕN )n– dx
∣∣∣∣

≤ (∥∥u(t)∥∥L∞ +
∥∥ux(t)∥∥L∞

)‖uxϕN‖nLn .

As in the weightless case, we estimate uϕN and uxϕN step by step as the previous estimates
for u and ux. Thus

‖uϕN‖L∞ + ‖uxϕN‖L∞

≤ e(M+λ)t
(‖uϕN‖L∞ + ‖uxϕN‖L∞

)
+ e(M+λ)t

∫ t



(∥∥ϕN∂xg ∗ F(u,ρ)
∥∥
L∞ +

∥∥ϕN∂
x g ∗ F(u,ρ)

∥∥
L∞

)
dτ . (.)

Multiplying the second equation in system (.) by ϕN , one deduces

(ρϕN )t + uρxϕN + uxρϕN + λρϕN = . (.)

Multiplying (.) by (ρϕN )n–, integrating the resultant equation with respect to x and
using∣∣∣∣

∫
R

uρxϕN (ρϕN )n– dx
∣∣∣∣ =

∣∣∣∣
∫
R

u(ρϕN )n–
[
∂x(ρϕN ) – ρ(ϕN )x

]
dx

∣∣∣∣
≤

∣∣∣∣ 
n

∫
R

ux(ρϕN )n dx
∣∣∣∣ +

∣∣∣∣
∫
R

uρϕN (ρϕN )n– dx
∣∣∣∣

≤ (∥∥u(t)∥∥L∞ +
∥∥ux(t)∥∥L∞

)‖ρϕN‖nLn ,∫
R

uxρϕN (ρϕN )n– dx ≤ 
∥∥ux(t)∥∥L∞‖ρϕN‖nLn ,

http://www.boundaryvalueproblems.com/content/2014/1/108
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we have

d
dt

‖ρϕN‖Ln ≤ (
‖ux‖L∞ +

∥∥u(t)∥∥L∞ + λ
)‖ρϕN‖Ln .

Applying the Gronwall inequality and the Sobolev embedding theorem yields

‖ρϕN‖Ln ≤ e(M+λ)t‖ρϕN‖Ln .

Taking the limit as n→ ∞, one obtains

‖ρϕN‖L∞ ≤ e(M+λ)t‖ρϕN‖L∞ . (.)

There exists c >  which depends on θ ∈ (, ), such that for all N ∈N
∗

ϕN (x)
∫
R

e–|x–y| 
ϕN (y)

dy ≤ c.

Thus

∣∣ϕN∂xg ∗ F(u,ρ)
∣∣

≤
∣∣∣∣ ϕN (x)

∫
R

sgn(x – y)e–|x–y|
(


u +

c

ρ

)
dy

∣∣∣∣
≤ 


ϕN (x)

∣∣∣∣
∫
R

e–|x–y| 
ϕN (y)

ϕN (y)
(


u +

c

ρ

)
dy

∣∣∣∣
≤ ( + c)c


(‖u‖L∞‖uϕN‖L∞ + ‖ρ‖L∞‖ρϕN‖L∞

)
. (.)

Using ∂
x g ∗ f = g ∗ f – f for all f , we have

∣∣ϕN∂
x g ∗ F(u,ρ)

∣∣
=

∣∣∣∣ ϕN (x)
∫
R

e–|x–y|
(


u +

c

ρ

)
dy – ϕN (x)

(


u +

c

ρ

)∣∣∣∣
≤ 


ϕN

∣∣∣∣
∫
R

e–|x–y| 
ϕN (y)

ϕN (y)
(


u +

c

ρ

)
dy

∣∣∣∣ +
∣∣∣∣ϕN (x)

(


u +

c

ρ

)∣∣∣∣
≤ ( + c)(c + )


(‖u‖L∞‖uϕN‖L∞ + ‖ρ‖L∞‖ρϕN‖L∞

)
. (.)

Plugging (.), (.) into (.) and using (.), there exists C >  such that

‖uϕN‖L∞ + ‖uxϕN‖L∞ + ‖ρϕN‖L∞

≤ C
(‖uϕN‖L∞ + ‖uxϕN‖L∞ + ‖ρϕN‖L∞

)
+C

∫ t



(‖u‖L∞ + ‖ux‖L∞ + ‖ρ‖L∞
)

× (‖uϕN‖L∞ + ‖uxϕN‖L∞ + ‖ρϕN‖L∞
)
dτ . (.)

http://www.boundaryvalueproblems.com/content/2014/1/108
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Using the Gronwall inequality, one deduces that for all N ∈ N
∗ and t ∈ [,T]

‖uϕN‖L∞ + ‖uxϕN‖L∞ + ‖ρϕN‖L∞

≤ C
(‖uϕN‖L∞ + ‖uxϕN‖L∞ + ‖ρϕN‖L∞

)
≤ C

(∥∥eθxu
∥∥
L∞ +

∥∥eθxux
∥∥
L∞ +

∥∥eθxρ
∥∥
L∞

)
.

Finally, taking the limit as N → ∞, one obtains

sup
t∈[,T]

(∥∥eθxu
∥∥
L∞ +

∥∥eθxux
∥∥
L∞ +

∥∥eθxρ
∥∥
L∞

)
≤ C

(∥∥eθxu
∥∥
L∞ +

∥∥eθxux
∥∥
L∞ +

∥∥eθxρ
∥∥
L∞

)
. (.)

Thus

∣∣u(t,x)∣∣, ∣∣∂xu(t,x)∣∣, ∣∣ρ(t,x)∣∣ ∼O
(
e–θx) as x→ ∞

uniformly on the interval [,T]. This completes the proof of Theorem ..

3 Proofs of Theorems 1.3 and 1.4
3.1 Proof of Theorem 1.3
() For c > , integrating the first equation in (.) over the interval [, t], one has

u(t,x) – u(,x) +
∫ t


uux(τ ,x) dτ + λ

∫ t


u(τ ,x) dτ

= –
∫ t


∂xg ∗

(


u +

c

ρ

)
dτ . (.)

From the assumption in Theorem ., one deduces

u(t,x) – u(,x)∼ o
(
e–x

)
as x → ∞. (.)

It follows from Theorem . that

∫ t


uux(τ ,x) dτ ∼O

(
e–θx

)
as x → ∞;

∫ t


u(τ ,x) dτ ∼O

(
e–θx) as x→ ∞.

For θ ∈ (  , ), we have

∫ t


uux(τ ,x) dτ ∼ o

(
e–x

)
as x → ∞.

For the right side in (.), we have

∫ t


∂xg ∗

(


u +

c

ρ

)
dτ = ∂xg ∗

∫ t



(


u +

c

ρ

)
dτ = ∂xg ∗ p(x), (.)

http://www.boundaryvalueproblems.com/content/2014/1/108
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where p(x) =
∫ t
 ( u

 + c
ρ

) dτ . From Theorem ., one has

 ≤ p(x)∼ O
(
e–θx

)
, thus p(x)∼ o

(
e–x

)
as x→ ∞.

Then

∂xg ∗ p(x) = –



∫
R

sgn(x – y)e–|x–y|p(y) dy

= –


e–x

∫ x

–∞
eyp(y) dy +



ex

∫ ∞

x
e–yp(y) dy. (.)

Noting ex
∫ ∞
x e–yp(y) dy = o()ex

∫ ∞
x e–y dy = o()e–x ∼ o(e–x), if there is at least one of the

equalities u(t,x) 
=  and ρ(t,x) 
=  is valid, we have p(x) 
= . Then there exists c >  such
that ∫ x

–∞
eyp(y) dy ≥ c for x  .

Thus

–∂xg ∗ p(x)≥ c

e–x for x ,

which combined with the above estimates yields a contradiction.We obtain p(x) = . Con-
sequently, u = , ρ = .
() For c = , similar to the case c > , one deduces u = . Inserting u =  into the second

equation in (.), one derives

ρt = –λρ. (.)

From (.), we have ρ(t,x) = ρ(x)e–λt . This completes the proof of case () in Theorem ..

3.2 Proof of Theorem 1.4
For λ = , integrating the first equation in system (.) on the interval [, t], one obtains

u(t,x) – u(,x) +
∫ t


uux(τ ,x) dτ = –

∫ t


∂xg ∗

(


u +

c

ρ

)
dτ . (.)

From the assumption in Theorem . u(,x) ∼ O(e–x) as x → ∞ and Theorem ., one
deduces

∫ t


uux(τ ,x) dτ ∼O

(
e–θx

)
as x→ ∞. (.)

For θ ∈ (  , ), then

∫ t


uux(τ ,x) dτ ∼ o

(
e–x

)
as x→ ∞.

For the right side in (.), firstly, we have




∫ t


∂xg ∗ u(τ ,x) dτ =



∂xg ∗

∫ t


u(τ ,x) dτ =



∂xg ∗ p(x), (.)

http://www.boundaryvalueproblems.com/content/2014/1/108
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where p(x) =
∫ t
 u

(τ ,x) dτ . Using Theorem ., we obtain

 ≤ p(x)∼O
(
e–θx

)
as x→ ∞.

Thus

∂xg ∗ p(x) = –



∫
R

sgn(x – y)e–|x–y|p(y) dy

= –


e–x

∫ x

–∞
eyp(y) dy +



ex

∫ ∞

x
e–yp(y) dy. (.)

Noting

ex
∫ ∞

x
e–yp(y) dy ∼O

(
e–θx

) ∼ o
(
e–x

)
as x→ ∞

and

–


e–x

∫ x

–∞
eyp(y) dy ≤ –

c

e–x for x ,

we have




∫ t


∂xg ∗ u(τ ,x) dτ ∼O

(
e–x

)
as x→ ∞.

Similarly, we have




∫ t


∂xg ∗ ρ(τ ,x) dτ ∼O

(
e–x

)
as x → ∞.

Then u(t,x)∼O(e–x) as x → ∞. From Theorem ., if ρ(x) ∼O(e–θx) as x→ ∞, we have
ρ(t,x)∼O(eθx) as x → ∞. This completes the proof of Theorem ..

4 Proofs of Theorems 1.5 and 1.6
4.1 Proof of Theorem 1.5
From the proof of Theorem ., here we need to differentiate the second equation in (.)
with variable x, and one has

ρxt + uxρx + uρxx + uxxρ + λρx = . (.)

Multiplying (.) by ρn–
x and integrating the resultant equation with respect to x, we also

note ∫
R

ρxtρ
n–
x dx = ‖ρx‖n–Ln

d
dt

‖ρx‖Ln ,∫
R

(uxρx + uρxx)ρn–
x dx =

(
 –


n

)∫
R

uxρn
x dx ≤ ‖ux‖L∞‖ρx‖nLn ,


∫
R

uxxρρn–
x dx ≤ ‖uxxρ‖Ln‖ρx‖n–Ln ≤ ‖uxx‖L∞‖ρ‖Ln‖ρx‖n–Ln ,

λ

∫
R

ρxρ
n–
x dx = λ‖ρx‖nLn .

http://www.boundaryvalueproblems.com/content/2014/1/108
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Thus, we obtain

d
dt

‖ρx‖Ln ≤ (
‖ux‖L∞ + λ

)‖ρx‖Ln + ‖uxx‖L∞‖ρ‖Ln . (.)

Taking the limit as n→ ∞ and applying the Gronwall inequality yield

‖ρx‖L∞ ≤
[
‖ρx‖L∞ + M

∫ t


‖ρ‖L∞ dτ

]
e(M+λ)t . (.)

In order to obtain the estimates for ‖ρxϕN‖L∞ , we multiply (.) with the weight function
ϕN (x), then

ρxtϕN + uxρxϕN + uρxxϕN + uxxρϕN + λρxϕN = . (.)

Multiplying (.) with (ρxϕN )n– and integrating the resultant equation with respect to x,
we note

∫
R

ρxtϕN (ρxϕN )n– dx = ‖ρxϕN‖n–Ln
d
dt

‖ρxϕN‖Ln ,∫
R

(uxρxϕN )(ρxϕN )n– dx ≤ ‖ux‖L∞‖ρxϕN‖nLn ,∫
R

(uρxxϕN )(ρxϕN )n– dx ≤
∫
R

u(ρxϕN )n–
[
∂x(ρxϕN ) – ρx(ϕN )x

]
dx

≤
∣∣∣∣
∫
R

ux(ρxϕN )n dx
∣∣∣∣ +

∣∣∣∣
∫
R

u(ρxϕN )n dx
∣∣∣∣

≤ (‖u‖L∞ + ‖ux‖L∞
)‖ρxϕN‖nLn ,


∫
R

uxxρϕN (ρxϕN )n– dx ≤ ‖uxx‖L∞‖ρϕN‖Ln‖ρxϕN‖n–Ln ,

λ

∫
R

ρxϕN (ρxϕN )n– dx = λ‖ρxϕN‖nLn .

Hence, we have

d
dt

‖ρxϕN‖Ln

≤ (
‖ux‖L∞ + ‖u‖L∞ + λ

)‖ρxϕN‖Ln + ‖uxx‖L∞‖ρϕN‖Ln . (.)

Taking the limit as n→ ∞ and using the Gronwall inequality, one obtains

‖ρxϕN‖L∞ ≤
(

‖ρxϕN‖L∞ + M
∫ t


‖ρϕN‖L∞ dτ

)
e(M+λ)t . (.)

From (.) and (.), one deduces that there exists C such that

Y (t) ≤ CY +C

∫ t


y(τ )Y (τ ) dτ , (.)

http://www.boundaryvalueproblems.com/content/2014/1/108
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where

Y (t) = ‖uϕN‖L∞ + ‖uxϕN‖L∞ + ‖ρϕN‖L∞ + ‖ρxϕN‖L∞ ,

y(t) = ‖u‖L∞ + ‖ux‖L∞ + ‖uxx‖L∞ + ‖ρ‖L∞ + ‖ρx‖L∞ + .

Applying the Gronwall inequality to (.), for all N ∈N
∗ and t ∈ [,T], one has

Y (t) ≤ CY ≤ C
(∥∥ueθx∥∥

L∞ +
∥∥uxeθx∥∥

L∞ +
∥∥ρeθx∥∥

L∞ +
∥∥ρxeθx∥∥

L∞
)
. (.)

Now taking the limit as N → ∞ in (.), one obtains

sup
t∈[,T]

(∥∥u(t,x)eθx∥∥
L∞ +

∥∥ux(t,x)eθx∥∥
L∞ +

∥∥ρ(t,x)eθx∥∥
L∞ +

∥∥ρx(t,x)eθx∥∥
L∞

)
≤ C

(∥∥ueθx∥∥
L∞ +

∥∥uxeθx∥∥
L∞ +

∥∥ρeθx∥∥
L∞ +

∥∥ρxeθx∥∥
L∞

)
.

Using the assumption in Theorem ., we complete the proof.

4.2 Proof of Theorem 1.6
The proof of Theorem . is similar to the proof of Theorem ., here we omit it.
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