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1 Introduction
In this paper, we consider the boundary value problem generated by the system of Dirac
equations on the finite interval  < x < π :

By′ +�(x)y = λρ(x)y ()

with boundary conditions

y() = y(π ) = , ()

where

B =

(
 
– 

)
, �(x) =

(
p(x) q(x)
q(x) –p(x)

)
, y =

(
y(x)
y(x)

)
,

p(x), q(x) are real valued functions, p(x) ∈ L(,π ), q(x) ∈ L(,π ), λ is a spectral param-
eter,

ρ(x) =

{
,  ≤ x≤ a,
α, a < x ≤ π ,

and  �= α > .
The inverse problem for the Dirac operator with separable boundary conditions was

completely solved by two spectra in [, ]. The reconstruction of the potential from one
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spectrum and norming constants was investigated in []. For the Dirac operator, the in-
verse periodic and antiperiodic boundary value problems were given in [–]. Using the
Weyl-Titschmarsh function, the direct and inverse problems for a Dirac type-system were
developed in [, ]. Uniqueness of the inverse problem for the Dirac operator with a dis-
continuous coefficient by the Weyl function was studied in [] and discontinuity condi-
tions inside an interval were worked out in [, ]. The inverse problem for weighted
Dirac equations was obtained in []. The reconstruction of the potential by the spectral
function was given in []. For the Dirac operator with peculiarity, the inverse problem
was found in []. Inverse nodal problems for the Dirac operator were examined in [,
]. In the case of potentials that belong entrywise to Lp(, ), for some p ∈ [,∞), the in-
verse spectral problem for the Dirac operator was studied in [], and in this work, not
only the Gelfand-Levitan-Marchenko method but also the Krein method [] was used.
In the positive half line, the inverse scattering problem for the Dirac operator with discon-
tinuous coefficient was analyzed in []. Besides, in a finite interval, for Sturm-Liouville
operator inverse problem has widely been developed (see [–]). The inverse problem
of the Sturm-Liouville operator with discontinuous coefficient was worked out in [, ]
and discontinuous conditions inside an interval were obtained in []. In the mathemat-
ical and physical literature, the direct and inverse problems for the Dirac operator are
widespread, so there are numerous investigations as regards the Dirac operator. There-
fore, we can mention the studies concerned with a discontinuity, which is close to our
topic, in the references list.
In this paper, our aim is to solve the inverse problem for the Dirac operator with a piece-

wise continuous coefficient on a finite interval. Let λn and αn (n ∈ Z) be, respectively,
eigenvalues and normalizing numbers of the boundary value problem (), (). The quanti-
ties {λn,αn} (n ∈ Z) are called spectral data. We can state the inverse problem for a system
of Dirac equations in the following way: knowing the spectral data {λn,αn} (n ∈ Z) to in-
dicate a method of determining the potential �(x) and to find necessary and sufficient
conditions for {λn,αn} (n ∈ Z) to be the spectral data of a problem (), (). In this paper,
this problem is completely solved.
We give a brief account of the contents of this paper in the following section.

2 Preliminaries
Let S(x,λ) be solution of the system () satisfying the initial conditions

S(,λ) = , S(,λ) = –.

The solution S(x,λ) has an integral representation [] as follows:

S(x,λ) = S(x,λ) +
∫ μ(x)


A(x, t)

(
sinλt
– cosλt

)
dt, ()

where

S(x,λ) =

(
sinλμ(x)
– cosλμ(x)

)
, μ(x) =

{
x,  ≤ x≤ a,
αx – αa + a, a < x ≤ π ,
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A = (Aij)i,j= is a quadratic matrix function Aij(x, ·) ∈ L(,π ) and A(x, t) is the solution of
the problem

BA′
x(x, t) + ρ(x)A′

t(x, t)B = –�(x)A(x, t),

�(x) = ρ(x)A
(
x,μ(x)

)
B – BA

(
x,μ(x)

)
, ()

A(x, )B = .

Equation () gives the relation between the kernel A(x, t) and the coefficient �(x) of ().
Let ψ(x,λ) be solutions of the system () satisfying the initial conditions

ψ(π ,λ) = , ψ(π ,λ) = –.

The characteristic function �(λ) of the problem (), () is

�(λ) :=W
[
S(x,λ),ψ(x,λ)

]
= S(x,λ)ψ(x,λ) – S(x,λ)ψ(x,λ), ()

whereW [S(x,λ),ψ(x,λ)] is theWronskian of the solutions S(x,λ) andψ(x,λ) and indepen-
dent of x ∈ [,π ]. The zeros λn of the characteristic function coincide with the eigenvalues
of the boundary value problem (), (). The functions S(x,λ) andψ(x,λ) are eigenfunctions
and there exists a sequence βn such that

ψ(x,λn) = βnS(x,λn), βn �= . ()

Denote the normalizing numbers by

αn :=
∫ π



(∣∣S(x,λn)
∣∣ + ∣∣S(x,λn)

∣∣)ρ(x)dx.
The following relation is valid:

�̇(λn) = αnβn, ()

where �̇(λ) = d
dλ

�(λ). In fact, since S(x,λ) andψ(x,λ) are solutions of the problem (), (),
we get

ψ ′
(x,λ) + p(x)ψ(x,λ) + q(x)ψ(x,λ) = λρ(x)ψ(x,λ),

–ψ ′
(x,λ) + q(x)ψ(x,λ) – p(x)ψ(x,λ) = λρ(x)ψ(x,λ),

S′
(x,λn) + p(x)S(x,λn) + q(x)S(x,λn) = λnρ(x)S(x,λn),

–S′
(x,λn) + q(x)S(x,λn) – p(x)S(x,λn) = λnρ(x)S(x,λn).

Multiplying the equations by S′
(x,λn), S′

(x,λn), –ψ ′
(x,λ), –ψ ′

(x,λ), respectively, adding
them together, integrating from  to π and using the condition (),

∫ π



{
S(x,λn)ψ(x,λ) + S(x,λn)ψ(x,λ)

}
ρ(x)dx =

�(λ) –�(λn)
λ – λn
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is found. From () as λ → λn, we obtain

βnαn = �̇(λn).

The following two theorems are obtained by Huseynov and Latifova in [].

Theorem  (i) The boundary value problem (), () has a countable set of simple eigenval-
ues λn (n ∈ Z) where

λn =
nπ

απ – αa + a
+ εn, {εn} ∈ l. ()

(ii) The eigen vector-functions of problem (), () can be represented in the form

S(x,λn) =

(
sin nπμ(x)

απ–αa+a
– cos nπμ(x)

απ–αa+a

)
+

(
ξ
()
n (x)

ξ
()
n (x)

)
,

∞∑
n=–∞

{∣∣ξ ()
n (x)

∣∣ + ∣∣ξ ()
n (x)

∣∣} ≤ C; μ(x) =

{
x,  ≤ x≤ a,
αx – αa + a, a < x ≤ π .

(iii) The normalizing numbers of problem (), () have the form

αn = απ – αa + a + δn, {δn} ∈ l. ()

Theorem  (i) The system of eigen vector-functions {S(x,λn)} (n ∈ Z) of problem (), () is
complete in space L,ρ(,π ;C).
(ii) Let f (x) be an absolutely continuous vector-function on the segment [,π ] and f() =

f(π ) = . Then

f (x) =
+∞∑

n=–∞
cnS(x,λn), ()

cn =

αn

〈
f (x),S(x,λn)

〉
,

moreover, the series converges uniformly with respect to x ∈ [,π ].
(iii) For f (x) ∈ L,ρ(,π ;C) series () converges in L,ρ(,π ;C);moreover, the Parseval

equality holds:

‖f ‖ =
+∞∑

n=–∞
αn|cn|. ()

From [], the following inequality holds:

∣∣�(λ)
∣∣ ≥ Cδ exp

(| Imλ|μ(π )), ()

where Cδ is a positive number and this inequality is valid in the domain

Gδ =
{
λ :

∣∣λ – λ
n
∣∣ ≥ δ,n = ,±,±, . . .

}
,
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where λ
n =

nπ
μ(π ) (n ∈ Z) are zeros of the function �(λ) = sinλμ(π ) and δ is a sufficiently

small number.
In Section , the fundamental equation

A
(
x,μ(t)

)
+ F(x, t) +

∫ μ(x)


A(x, ξ )F(ξ , t)dξ = ,  < t < x,

is derived by using the method by Gelfand-Levitan-Marchenko, where

F(x, t) =
∞∑

n=–∞

[

αn

(
sinλnx
– cosλnx

)
S̃(t,λn) –


α
n

(
sinλ

nx
– cosλ

nx

)
S̃

(
t,λ

n
)]

and

F(x, t) = F
(
μ(x), t

)
.

In Section , we show that the fundamental equation has a unique solution A(x, t) and
the boundary value problem (), () can be uniquely determined from the spectral data.
In Section , the result is obtained from Lemma  that the function S(x,λ) defined by ()
satisfies the equation

BS′(x,λ) +�(x)S(x,λ) = λρ(x)S(x,λ),

where

�(x) = ρ(x)A
(
x,μ(x)

)
B – BA

(
x,μ(x)

)
,

where A(x, t) is the solution of the fundamental equation. In Lemma , using the funda-
mental equation, the Parseval equality

∫ π



(
g (x) + g (x)

)
ρ(x)dx =

∞∑
n=–∞


αn

(∫ π


S̃(t,λn)g(t)ρ(t)dt

)

is found.Wedemonstrate by using Lemma, Lemma, and Lemma  that {λn,αn} (n ∈ Z)
are spectral data of the boundary value problem (), (). Then necessary and sufficient
conditions for the solvability of problem (), () are obtained in Theorem . Finally, we
give an algorithm of the construction of the function �(x) by the spectral data {λn,αn}
(n ∈ Z).
Note that throughout this paper, φ̃ denotes the transposed matrix of φ.

3 Fundamental equation
Theorem  For each fixed x ∈ (,π ] the kernel A(x, t) from the representation () satisfies
the following equation:

A
(
x,μ(t)

)
+ F(x, t) +

∫ μ(x)


A(x, ξ )F(ξ , t)dξ = ,  < t < x, ()

http://www.boundaryvalueproblems.com/content/2014/1/110
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where

F(x, t) =
∞∑

n=–∞

[

αn

(
sinλnx
– cosλnx

)
S̃(t,λn) –


α
n

(
sinλ

nx
– cosλ

nx

)
S̃

(
t,λ

n
)]

()

and

F(x, t) = F
(
μ(x), t

)
, ()

where λ
n and α

n are, respectively, eigenvalues and normalizing numbers of the boundary
value problem (), () when �(x)≡ .

Proof According to () we have

S(x,λ) = S(x,λ) –
∫ μ(x)


A(x, t)

(
sinλt
– cosλt

)
dt. ()

It follows from () and () that

N∑
n=–N


αn

S(x,λn)S̃(t,λn) =
N∑

n=–N


αn

S(x,λn)S̃(t,λn)

+
∫ μ(x)


A(x, ξ )

( N∑
n=–N


αn

(
sinλnξ

– cosλnξ

)
S̃(t,λn)

)
dξ

and

N∑
n=–N


αn

S(x,λn)S̃(t,λn) =
N∑

n=–N


αn

S(x,λn)S̃(t,λn)

–
N∑

n=–N


αn

S(x,λn)
∫ μ(t)


(sinλnξ , – cosλnξ )Ã(t, ξ )dξ .

Using the last two equalities, we obtain

N∑
n=–N

[

αn

S(x,λn)S̃(t,λn) –

α
n
S
(
x,λ

n
)
S̃
(
t,λ

n
)]

=
N∑

n=–N

[

αn

S(x,λn)S̃(t,λn) –

α
n
S

(
x,λ

n
)
S̃

(
t,λ

n
)]

+
∫ μ(x)


A(x, ξ )

N∑
n=–N

[

α
n

(
sinλ

nξ

– cosλ
nξ

)
S̃

(
t,λ

n
)]

dξ

+
∫ μ(x)


A(x, ξ )

N∑
n=–N

[

αn

(
sinλnξ

– cosλnξ

)
S̃(t,λn) –


α
n

(
sinλ

nξ

– cosλ
nξ

)
S̃

(
t,λ

n
)]

dξ

+
N∑

n=–N


αn

S(x,λn)
∫ μ(t)


(sinλnξ , – cosλnξ )Ã(t, ξ )dξ

http://www.boundaryvalueproblems.com/content/2014/1/110
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or

�N (x, t) = IN(x, t) + IN(x, t) + IN(x, t) + IN(x, t), ()

where

�N (x, t) =
N∑

n=–N

[

αn

S(x,λn)S̃(t,λn) –

α
n
S
(
x,λ

n
)
S̃
(
t,λ

n
)]
,

IN(x, t) =
N∑

n=–N

[

αn

S(x,λn)S̃(t,λn) –

α
n
S

(
x,λ

n
)
S̃

(
t,λ

n
)]
,

IN(x, t) =
∫ μ(x)


A(x, ξ )

N∑
n=–N

[

α
n

(
sinλ

nξ

– cosλ
nξ

)
S̃

(
t,λ

n
)]

dξ ,

IN(x, t) =
∫ μ(x)


A(x, ξ )

N∑
n=–N

[

αn

(
sinλnξ

– cosλnξ

)
S̃(t,λn)

–

α
n

(
sinλ

nξ

– cosλ
nξ

)
S̃

(
t,λ

n
)]

dξ ,

IN(x, t) =
N∑

n=–N


αn

S(x,λn)
∫ μ(t)


(sinλnξ , – cosλnξ )Ã(t, ξ )dξ .

It is easily found by using () and () that

F(x, t) =
∞∑

n=–∞

[

αn

S(x,λn)S̃(t,λn) –

α
n
S

(
x,λ

n
)
S̃

(
t,λ

n
)]
. ()

Let f (x) ∈ AC[,π ]. Then according to the expansion formula () inTheorem,we obtain
uniformly on x ∈ [,π ]

lim
N→∞

∫ π


�N (x, t)f (t)ρ(t)dt =

∞∑
n=–∞

cnS(x,λn) –
∞∑

n=–∞
cnS

(
x,λ

n
)
= . ()

From (), we find

lim
N→∞

∫ π


IN(x, t)f (t)ρ(t)dt

= lim
N→∞

∫ π



N∑
n=–N

[

αn

S(x,λn)S̃(t,λn) –

α
n
S

(
x,λ

n
)
S̃

(
t,λ

n
)]
f (t)ρ(t)dt

=
∫ π


F(x, t)f (t)ρ(t)dt. ()

It follows from () that

(
sinλξ

– cosλξ

)
=

{
S(ξ ,λ), ξ < a,
S( ξ

α
+ a – a

α
,λ), ξ > a.

()

http://www.boundaryvalueproblems.com/content/2014/1/110
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Taking into account () and expansion formula () in Theorem , we get

lim
N→∞

∫ π


IN(x, t)f (t)ρ(t)dt

=
∫ π



[∫ μ(x)


A(x, ξ )

N∑
n=–N

[

α
n

(
sinλ

nξ

– cosλ
nξ

)
S̃

(
t,λ

n
)]

dξ

]
f (t)ρ(t)dt

=
∫ π



[∫ a


A(x, ξ )

∞∑
n=–∞


α
n
S

(
ξ ,λ

n
)
S̃

(
x,λ

n
)
dξ

]
f (t)ρ(t)dt

+
∫ π



[∫ αx–αa+a

a
A(x, ξ )

∞∑
n=–∞


α
n
S

(
ξ

α
+ a –

a
α
,λ

n

)
S̃

(
x,λ

n
)
dξ

]
f (t)ρ(t)dt

=
∫ a


A(x, ξ )f (ξ )dξ +

∫ αx–αa+a

a
A(x, ξ )f

(
ξ

α
+ a –

a
α

)
dξ .

Substituting ξ

α
+ a – a

α
→ ξ ′, we obtain

lim
N→∞

∫ π


IN(x, t)f (t)ρ(t)dt

=
∫ a


A(x, ξ )f (ξ )dξ + α

∫ x

a
A

(
x,αξ ′ – αa + a

)
f
(
ξ ′)dξ ′

=
∫ a


A(x, t)f (t)dt + α

∫ x

a
A(x,αt – αa + a)f (t)dt

=
∫ x


A

(
x,μ(t)

)
f (t)ρ(t)dt. ()

Now, we calculate

lim
N→∞

∫ π


IN(x, t)f (t)ρ(t)dt

= lim
N→∞

∫ π



∫ μ(x)


A(x, ξ )

N∑
n=–N

[

αn

(
sinλnξ

– cosλnξ

)
S̃(t,λn)

–

α
n

(
sinλ

nξ

– cosλ
nξ

)
S̃

(
t,λ

n
)]

f (t)ρ(t)dξ dt

=
∫ π



[∫ μ(x)


A(x, ξ )F(ξ , t)dξ

]
f (t)ρ(t)dt. ()

Using () and the residue theorem, we get

lim
N→∞

∫ π


IN(x, t)f (t)ρ(t)dt

= lim
N→∞

∫ π



[ N∑
n=–N


αn

S(x,λn)
∫ μ(t)


(sinλnξ , – cosλnξ )Ã(t, ξ )dξ

]
f (t)ρ(t)dt

= lim
N→∞

∫ π



[ N∑
n=–N

ψ(x,λn)
�̇(λn)

∫ μ(t)


(sinλnξ , – cosλnξ )Ã(t, ξ )dξ

]
f (t)ρ(t)dt

http://www.boundaryvalueproblems.com/content/2014/1/110
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= lim
N→∞

∫ π



[ N∑
n=–N

Res
λ=λn

ψ(x,λ)
�(λ)

∫ μ(t)


(sinλξ , – cosλξ )Ã(t, ξ )dξ

]
f (t)ρ(t)dt

= lim
N→∞

∫ π



[


π i

∫
�N

ψ(x,λ)
�(λ)

∫ μ(t)


(sinλξ , – cosλξ )Ã(t, ξ )dξ dλ

]
f (t)ρ(t)dt

= lim
N→∞

∫ π



[


π i

∫
�N

ψ(x,λ)
�(λ)

e| Imλ|μ(t)

× e–| Imλ|μ(t)
∫ μ(t)


(sinλξ , – cosλξ )Ã(t, ξ )dξ dλ

]
f (t)ρ(t)dt, ()

where �N = {λ : |λ| = λ
N + π

μ(π ) } is oriented counter-clockwise, N is a sufficiently large
number. Taking into account the asymptotic formulas as |λ| → ∞

ψ(x,λ) = – sinλ
(
μ(π ) –μ(x)

)
+O

(


|λ|e
| Imλ|(μ(π )–μ(x))

)
,

ψ(x,λ) = – cosλ
(
μ(π ) –μ(x)

)
+O

(


|λ|e
| Imλ|(μ(π )–μ(x))

)

and the relations ([], Lemma ..)

lim|λ|→∞ max
≤t≤π

e–| Imλ|(μ(t))
∣∣∣∣
∫ μ(t)


Ai,(t, ξ ) sinλξ dξ

∣∣∣∣ = ,

lim|λ|→∞ max
≤t≤π

e–| Imλ|(μ(t))
∣∣∣∣
∫ μ(t)


Ai,(t, ξ ) cosλξ dξ

∣∣∣∣ = , i = , ,

it follows from () and () that

lim
N→∞

∫ π


IN(x, t)f (t)ρ(t)dt = . ()

Thus, using (), (), (), () (), and (), we find

∫ x


A

(
x,μ(t)

)
f (t)ρ(t)dt +

∫ π


F(x, t)f (t)ρ(t)dt

+
∫ π



[∫ μ(x)


A(x, ξ )F(ξ , t)dξ

]
f (t)ρ(t)dt = .

Since f (x) can be chosen arbitrarily,

A
(
x,μ(t)

)
+ F(x, t) +

∫ μ(x)


A(x, ξ )F(ξ , t)dξ = ,  < t < x

is obtained. �

4 Uniqueness
Lemma  For each fixed x ∈ (,π ], () has a unique solution A(x, ·) ∈ L(,μ(x)).

Proof When a < x, () can be rewritten as

LxA(x, ·) +KxA(x, ·) = –F(x, ·),

http://www.boundaryvalueproblems.com/content/2014/1/110
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where

(Lxf )(t) =

{
f (t), t ≤ a < x,
f (αt – αa + a), a < t ≤ x,

()

(Kxf ) =
∫ αx–αa+a


f (ξ )F(ξ , t)dξ ,  < t < x.

Now, we shall prove that Lx is invertible, i.e. has a bounded inverse in L(,π ).
Consider the equation (Lxf )(t) = ϕ(t), ϕ(t) ∈ L(,π ;C). From this and (),

f (t) =
(
L–x ϕ

)
(t) =

{
ϕ(t), t ≤ a,
ϕ( t+αa–a

α
), a < t.

We show that

‖f ‖L =
∥∥L–x ϕ

∥∥ ≤ C‖ϕ‖L .

In fact,

∫ π



(∣∣f(t)∣∣ + ∣∣f(t)∣∣)dt
=

∫ a



(∣∣ϕ(t)
∣∣ + ∣∣ϕ(t)

∣∣)dt
+

∫ π

a

(∣∣∣∣ϕ

(
t + αa – a

α

)∣∣∣∣


+
∣∣∣∣ϕ

(
t + αa – a

α

)∣∣∣∣
)

dt

=
∫ a



(∣∣ϕ(t)
∣∣ + ∣∣ϕ(t)

∣∣)dt + α

∫ ( π+αa–a
α )

a

(∣∣ϕ(t)
∣∣ + ∣∣ϕ(t)

∣∣)dt
≤ C

∫ π



(∣∣ϕ(t)
∣∣ + ∣∣ϕ(t)

∣∣)dt.
Thus, the operator Lx is invertible in L(,π ). Therefore the fundamental equation () is
equivalent to

A(x, ·) + L–x KxA(x, ·) = –L–x F(x, ·)

and L–x Kx is completely continuous in L(,π ). Then it is sufficient to prove that the equa-
tion

g
(
μ(t)

)
+

∫ μ(x)


g(ξ )F(ξ , t)dξ =  ()

has only the trivial solution g(t) = . Let g(t) be a non-trivial solution of (). Then

∫ x



(
g

(
μ(t)

)
+ g

(
μ(t)

))
ρ(t)dt

+
∫ x



∫ μ(x)



(
g(ξ )F(ξ , t), g

(
μ(t)

))
ρ(t)dξ dt = .
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It follows from () that

∫ x



(
g

(
μ(t)

)
+ g

(
μ(t)

))
ρ(t)dt

+
∫ x


g̃
(
μ(t)

)
ρ(t)

∫ μ(x)


g(ξ )

( ∞∑
n=–∞


αn

(
sinλnξ

– cosλnξ

)
S̃(t,λn)

–

α
n

(
sinλ

nξ

– cosλ
nξ

)
S̃

(
t,λ

n
))

dξ dt = .

Using (), we get

∫ x



(
g

(
μ(t)

)
+ g

(
μ(t)

))
ρ(t)dt

+
∫ x


g̃
(
μ(t)

)
ρ(t)

∫ a


g(ξ )

∞∑
n=–∞


αn

S(ξ ,λn)S̃(t,λn)dξ dt

–
∫ x


g̃
(
μ(t)

)
ρ(t)

∫ a


g(ξ )

∞∑
n=–∞


α
n
S

(
ξ ,λ

n
)
S̃

(
t,λ

n
)
dξ dt

+
∫ x


g̃
(
μ(t)

)
ρ(t)

∫ αx–αa+a


g(ξ )

∞∑
n=–∞


αn

S
(

ξ

α
+ a –

a
α
,λn

)
S̃(t,λn)dξ dt

–
∫ x


g̃
(
μ(t)

)
ρ(t)

∫ αx–αa+a


g(ξ )

∞∑
n=–∞


α
n
S

(
ξ

α
+ a –

a
α
,λ

n

)
S̃

(
t,λ

n
)
dξ dt = .

Substituting ξ

α
+ a – a

α
→ ξ into the last two integrals, we obtain

∫ x



(
g

(
μ(t)

)
+ g

(
μ(t)

))
ρ(t)dt

+
∫ x


g̃
(
μ(t)

)
ρ(t)

∫ a


g(ξ )

∞∑
n=–∞


αn

S(ξ ,λn)S̃(t,λn)dξ dt

–
∫ x


g̃
(
μ(t)

)
ρ(t)

∫ a


g(ξ )

∞∑
n=–∞


α
n
S

(
ξ ,λ

n
)
S̃

(
t,λ

n
)
dξ dt

+ α

∫ x


g̃
(
μ(t)

)
ρ(t)

∫ x

a
g(αξ – αa + a)

∞∑
n=–∞


αn

S(ξ ,λn)S̃(t,λn)dξ dt

– α

∫ x


g̃
(
μ(t)

)
ρ(t)

∫ x

a
g(αξ – αa + a)

∞∑
n=–∞


α
n
S

(
ξ ,λ

n
)
S̃

(
t,λ

n
)
dξ dt

=
∫ x



(
g

(
μ(t)

)
+ g

(
μ(t)

))
ρ(t)dt

+
∫ x


g̃
(
μ(t)

)
ρ(t)

∫ x


g
(
μ(ξ )

)
ρ(ξ )

∞∑
n=–∞


αn

S(ξ ,λn)S̃(t,λn)dξ dt

–
∫ x


g̃
(
μ(t)

)
ρ(t)

∫ x


g
(
μ(ξ )

)
ρ(ξ )

∞∑
n=–∞


α
n
S

(
ξ ,λ

n
)
S̃

(
t,λ

n
)
dξ dt = . ()
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Using the Parseval equality,

g
(
μ(t)

)
=

∞∑
n=–∞

(

α
n

∫ x


g
(
μ(t)

)
S̃

(
t,λ

n
)
ρ(t)dt

)
S

(
t,λ

n
)
,

it follows from () that

∫ x


g̃
(
μ(t)

)
ρ(t)

∫ x


g
(
μ(ξ )

)
ρ(ξ )

∞∑
n=–∞


αn

S(ξ ,λn)S̃(t,λn)dξ dt = .

Since the system {S(t,λn)} (n ∈ Z) is complete in L,ρ(,π ;C), we have g(μ(t)) ≡ , i.e.
(Lxg)(t) = . For Lx invertible in L(,π ), A(x, ·) =  is obtained. �

Theorem  Let L(�(x)) and L̂(�̂(x)) be two boundary value problems and

λn = λ̂n, αn = α̂n (n ∈ Z).

Then

�(x) = �̂(x) a.e. on (,π ).

Proof According to () and (), F(x, t) = F̂(x, t) and F(x, t) = F̂(x, t). Then, from the
fundamental equation (), we have A(x, t) = Â(x, t). It follows from () that �(x) = �̂(x)
a.e. on (,π ). �

5 Reconstruction by spectral data
Let the real numbers {λn,αn} (n ∈ Z) of the form () and () be given. Using these numbers,
we construct the functions F(x, t) and F(x, t) by () and () and determine A(x, t) from
the fundamental equation ().
Now, let us construct the function S(x,λ) by () and the function �(x) by (). From

[], F(x, t) and F(x, t) have a derivative in both variables and these derivatives belong to
L,ρ(,π ).

Lemma  The following relations hold:

BS′(x,λ) +�(x)S(x,λ) = λρ(x)S(x,λ), ()

S(,λ) = , S(,λ) = –. ()

Proof Differentiating to x and y, (), respectively, we get

A′
x
(
x,μ(t)

)
+ F ′

x(x, t) +A
(
x,μ(x)

)
F

(
μ(x), t

)
+

∫ μ(x)


A′
x(x, ξ )F(ξ , t)dξ = , ()

ρ(t)A′
t
(
x,μ(t)

)
+ F ′

t(x, t) +
∫ μ(x)


A(x, ξ )F ′

t (ξ , t)dξ = . ()

It follows from () and () that

∂

∂t
F(x, t)B + ρ(t)B

∂

∂x
F(x, t) = , ()

http://www.boundaryvalueproblems.com/content/2014/1/110
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ρ(x)
∂

∂t
F(x, t)B + ρ(t)B

∂

∂x
F(x, t) = , ()

and using the fundamental equation (), we obtain

A(x, )B = . ()

Multiplying () on the left by B and ρ(t) we get

ρ(t)BF ′
x(x, t) + ρ(t)BA′

x
(
x,μ(t)

)
+ ρ(t)BA

(
x,μ(x)

)
F

(
μ(x), t

)
+ ρ(t)

∫ μ(x)


BA′

x(x, ξ )F(ξ , t)dξ =  ()

and multiplying () on the right by B and ρ(x) we have

ρ(x)F ′
t(x, t)B + ρ(x)ρ(t)A′

t
(
x,μ(t)

)
B + ρ(x)

∫ μ(x)


A(x, ξ )F ′

t (ξ , t)Bdξ = . ()

Adding () and () and using (), we find

ρ(t)BA′
x
(
x,μ(t)

)
+ ρ(t)BA

(
x,μ(x)

)
F

(
μ(x), t

)
+ ρ(t)

∫ μ(x)


BA′

x(x, ξ )F(ξ , t)dξ

= –ρ(x)ρ(t)A′
t
(
x,μ(t)

)
B – ρ(x)

∫ μ(x)


A(x, ξ )F ′

t (ξ , t)Bdξ ≡ I(x, t). ()

From (), we get

I(x, t) = –ρ(x)ρ(t)A′
t
(
x,μ(t)

)
B + ρ(x)ρ(t)

∫ μ(x)


A(x, ξ )BF ′

ξ
(ξ , t)dξ . ()

Integrating by parts and from ()

I(x, t) = –ρ(x)ρ(t)A′
t
(
x,μ(t)

)
B + ρ(t)ρ(x)A

(
x,μ(x)

)
BF

(
μ(x), t

)
– ρ(x)ρ(t)

∫ μ(x)


A′

ξ (x, ξ )BF(ξ , t)dξ ()

is obtained. Substituting () into () and dividing by ρ(t) �= , we have

BA′
x
(
x,μ(t)

)
+ BA

(
x,μ(x)

)
F

(
μ(x), t

)
+ ρ(x)A′

t
(
x,μ(t)

)
B

– ρ(x)A
(
x,μ(x)

)
BF

(
μ(x), t

)
+

∫ μ(x)



[
BA′

x(x, ξ ) + ρ(x)A′
ξ (x, ξ )B

]
F(ξ , t)dξ = . ()

Multiplying () on the left by �(x) in the form of () and adding to ()

BA′
x
(
x,μ(x)

)
+ ρ(x)A′

t
(
x,μ(t)

)
B +�(x)A

(
x,μ(t)

)
+

∫ μ(x)



[
BA′

x(x, ξ ) + ρ(x)A′
ξ (x, ξ )B +�(x)A(x, ξ )

]
F(ξ , t)dt =  ()
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is obtained. Setting

J(x, t) := BA′
x(x, t) + ρ(x)A′

t(x, t)B +�(x)A(x, t),

we can rewrite () as follows:

J
(
x,μ(t)

)
+

∫ μ(x)


J(x, ξ )F(ξ , t)dξ = . ()

According to Lemma , the homogeneous equation () has only the trivial solution, i.e.

BA′
x(x, t) + ρ(x)A′

t(x, t)B +�(x)A(x, t) = ,  < t < x. ()

Differentiating () and multiplying on the left by B, we have

BS′(x,λ) = λρ(x)B

(
cosλμ(x)
sinλμ(x)

)
+ BA

(
x,μ(x)

)(
sinλμ(x)
– cosλμ(x)

)

+
∫ μ(x)


BA′

x(x, t)

(
sinλt
– cosλt

)
dt. ()

On the other hand, multiplying () on the left by λρ(x) and then integrating by parts and
using (), we find

λρ(x)S(x,λ) = –λρ(x)

(
sinλμ(x)
– cosλμ(x)

)
+ ρ(x)A

(
x,μ(x)

)
B

(
sinλμ(x)
– cosλμ(x)

)

– ρ(x)
∫ μ(x)


A′
t(x, t)B

(
sinλt
– cosλt

)
dt. ()

It follows from () and () that

λρ(x)S(x,λ) = BS′(x,λ) –
[
BA

(
x,μ(x)

)
– ρ(x)A

(
x,μ(x)

)
B
](

sinλμ(x)
– cosλμ(x)

)

–
∫ μ(x)



[
BA′

x(x, t) + ρ(x)A′
t(x, t)B

](
sinλt
– cosλt

)
dt.

Taking into account () and (),

BS′(x,λ) +�(x)S(x,λ) = λρ(x)S(x,λ)

is obtained. For x = , from () we get (). �

Lemma  For each function g(x) ∈ L,ρ(,π ;C), the following relation holds:

∫ π



(
g (x) + g (x)

)
ρ(x)dx =

∞∑
n=–∞


αn

(∫ π


S̃(t,λn)g(t)ρ(t)dt

)

. ()
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Proof It follows from () and () that

S(x,λ) = S(x,λ) +
∫ x


A

(
x,μ(t)

)
S(t,λ)ρ(t)dt. ()

Using the expression

F(x, t) =

{
F(x, t), x < a,
F( x

α
+ a – a

α
, t), x > a,

the fundamental equation () is transformed into the following form:

A
(
x,μ(t)

)
+ F(x, t) +

∫ x


A

(
x,μ(ξ )

)
F(ξ , t)ρ(ξ )dξ = . ()

From (), we get

S(x,λ) = S(x,λ) +
∫ x


H

(
x,μ(t)

)
S(x,λ)ρ(t)dt ()

and for the kernel H(x,μ(t)) we have the identity

H̃
(
x,μ(t)

)
= F(x, t) +

∫ x


A

(
x,μ(ξ )

)
F(ξ , t)ρ(ξ )dξ ,  < t < x. ()

Denote

Q(λ) :=
∫ π


S̃(t,λ)g(t)ρ(t)dt

and using () it is transformed into the following form:

Q(λ) =
∫ π


S̃(t,λ)h(t)dt,

where

h(t) = g(t) +
∫ π

t
Ã

(
s,μ(t)

)
g(s)ρ(s)ds. ()

Similarly, in view of (), we have

g(t) = h(t) +
∫ π

t
H̃

(
s,μ(t)

)
h(s)ρ(s)ds. ()

According to (),

∫ π


F(x, t)h(t)ρ(t)dt =

∫ π


F(x, t)

[
g(t) +

∫ π

t
Ã

(
s,μ(t)

)
g(s)ρ(s)ds

]
ρ(t)dt

=
∫ π



[
F(x, t) +

∫ t


F(x, s)Ã

(
t,μ(s)

)
ρ(s)ds

]
g(t)ρ(t)dt
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=
∫ x



[
F(x, t) +

∫ t


F(x, s)Ã

(
t,μ(s)

)
ρ(s)ds

]
g(t)ρ(t)dt

+
∫ π

x

[
F(x, t) +

∫ t


F(x, s)Ã

(
t,μ(s)

)
ρ(s)ds

]
g(t)ρ(t)dt.

It follows from () and () that

∫ π


F(x, t)h(t)ρ(t)dt =

∫ x


H

(
x,μ(t)

)
g(t)ρ(t)dt –

∫ π

x
Ã

(
t,μ(x)

)
g(t)ρ(t)dt. ()

From () and the Parseval equality we obtain

∫ π



(
h (t) + h(t)

)
ρ(t)dt +

∫ π


h̃(x)F(x, t)h(t)ρ(t)ρ(x)dxdt

=
∫ π



(
h (t) + h(t)

)
ρ(t)dt +

∞∑
n=–∞


αn

(∫ π


S̃(t,λn)h(t)ρ(t)dt

)

–
∞∑

n=–∞


α
n

(∫ π


S̃

(
t,λ

n
)
h(t)ρ(t)dt

)

=
∞∑

n=–∞


αn

(∫ π


S̃(t,λn)h(t)ρ(t)dt

)

=
∞∑

n=–∞

Q(λn)
αn

.

Taking into account (), we have

∞∑
n=–∞

Q(λn)
αn

=
∫ π



(
h (t) + h(t)

)
ρ(t)dt

+
∫ π


h̃(x)

(∫ x


H

(
x,μ(t)

)
g(t)ρ(t)dt

)
ρ(x)dx

–
∫ π


h̃(x)

(∫ π

x
Ã

(
t,μ(x)

)
g(t)ρ(t)dt

)
ρ(x)dx

=
∫ π



(
h (t) + h(t)

)
ρ(t)dt

+
∫ π



(∫ π

t
h̃(x)H

(
x,μ(t)

)
ρ(x)dx

)
g(t)ρ(t)dt

–
∫ π


h̃(x)

(∫ π

x
Ã

(
t,μ(x)

)
g(t)ρ(t)dt

)
ρ(x)dx,

whence, by () and (),

∞∑
n=–∞

Q(λn)
αn

=
∫ π



(
h (t) + h(t)

)
ρ(t)dt

+
∫ π



(
g̃(t) – h̃(t)

)
g(t)ρ(t)dt –

∫ π


h̃(x)

(
h(x) – g(x)

)
ρ(x)dx

=
∫ π



(
g (t) + g (t)

)
ρ(t)dt

is obtained, i.e., () is valid. �
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Corollary  For any function f (x) and g(x) ∈ L,ρ(,π ;C), the following relation holds:

∫ π


g̃(x)f (x)ρ(x)dx =

∞∑
n=–∞


αn

(∫ π


g̃(t)S(t,λn)ρ(t)dt

)(∫ π


S̃(t,λn)f (t)ρ(t)dt

)
. ()

Lemma  The relation

∫ π


S̃(t,λn)S(t,λk)ρ(t)dt =

{
, n �= k,
αn, n = k

()

is valid.

Proof () Let f (x) ∈W 
 [,π ]. Consider the series

f ∗(x) =
∞∑

n=–∞
cnS(x,λn), ()

where

cn :=

αn

∫ π


S̃(x,λn)f (x)ρ(x)dx. ()

Using Lemma  and integrating by parts, we get

cn =


λnαn

∫ π



[
–

∂

∂x
S̃(x,λn)B + S̃(x,λn)�(x)

]
f (x)dx

= –


λnαn

{
S̃(π ,λn)Bf (π ) – S̃(,λn)Bf ()

}

+


λnαn

∫ π


S̃(x,λn)

[
Bf ′(x) +�(x)f (x)

]
dx.

Applying the asymptotic formulas inTheorem , {cn} ∈ l is found. Consequently the series
() converges absolutely and uniformly on [,π ]. According to () and (), we have

∫ π


g̃(x)f (x)ρ(x)dx =

∞∑
n=–∞


αn

(∫ π


g̃(t)S(t,λn)ρ(t)dt

)(∫ π


S̃(t,λn)f (t)ρ(t)dt

)

=
∞∑

n=–∞
cn

(∫ π


g̃(t)S(t,λn)ρ(t)dt

)

=
∫ π


g̃(t)

∞∑
n=–∞

cnS(t,λn)ρ(t)dt

=
∫ π


g̃(t)f ∗(t)dt.

Since g(x) is arbitrary, f (x) = f ∗(x) is obtained, i.e.

f (x) =
∞∑

n=–∞
cnS(x,λn). ()
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() Fix k ∈ Z and assume f (x) = S(x,λk). Then, by virtue of (),

S(x,λk) =
∞∑

n=–∞
cnkS(x,λn),

where

cnk =

αn

∫ π


S̃(x,λn)S(x,λk)dx.

The system S(x,λn) is minimal in L,ρ(,π ;C) and consequently by (), the system
S(x,λn) is minimal in L,ρ(,π ;C). Hence cnk = δnk and we obtain (). �

Lemma  For all n ∈ Z the equality

S(π ,λn) = 

is valid.

Proof It is easily found that

(λn – λm)
∫ π



[
S(x,λn)S(x,λm) – S(x,λn)S(x,λm)

]
ρ(x)dx

=
[
S(x,λn)S(x,λm) – S(x,λn)S(x,λm)

]∣∣π
 .

According to (), we get

S(π ,λn)S(π ,λm) – S(π ,λn)S(π ,λm) = . ()

We shall prove that for any n, S(π ,λn) �= . Assume the contrary, i.e. there exists m such
that S(π ,λm) = . Then for n �= m, it follows from () that S(π ,λn) = . On the other
hand, since as n→ ∞

S(π ,λn) = (–)n+ +O
(

n

)
,

S(π ,λn) �= . This contradicts the condition S(π ,λn) = , n �=m. Hence, S(π ,λn) �=  for
any n. From (), we have

S(π ,λn)
S(π ,λn)

=
S(π ,λm)
S(π ,λm)

=H .

Thus, we get S(π ,λn) =HS(π ,λn), for any n. Since

S(π ,λn) =O
(

n

)
, as n→ ∞,

we find H = , and then S(π ,λn) =  is obtained. �
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Theorem  For the sequences {λn,αn} (n ∈ Z) to be the spectral data for a certain bound-
ary value problem L(�(x)) of the form (), () with �(x) ∈ L(,π ), it is necessary and suf-
ficient that the relations () and () hold.

Proof Necessity of the problem is proved in []. Let us prove the sufficiency. Let the
real numbers {λn,αn} (n ∈ Z) of the form () and () be given. It follows from Lemma ,
Lemma , and Lemma  that the numbers {λn,αn} (n ∈ Z) are spectral data for the con-
structed boundary value problem L(�(x)). The theorem is proved. �

The algorithm of the construction of the function �(x) by the spectral data {λn,αn} (n ∈
Z) follows from the proof of the theorem:
() By the given numbers {λn,αn} (n ∈ Z) the functions F(x, t) and F(x, t) are

constructed, respectively, by () and ().
() The function A(x, t) is found from ().
() �(x) is calculated by ().
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