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Abstract
A certain way of replacing a given boundary value problem by another one,
a solution of which solves also the original problem, is considered.
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Consider the solvability of the boundary value problem (BVP)

(
ϕ
(
t,x,x′))′ = f

(
t,x,x′), t ∈ I = [a,b], ()

Hx = h, Hx = h, α ≤ x≤ β , ()

where ϕ ∈ C(I × R,R) is strictly increasing in x′ for fixed t and x, f : I × R → R satisfies
the Caratheodory conditions, that is, f (t, ·, ·) is measurable in I for fixed x,x′ ∈ R, f (·,x,x′)
is continuous on R for fixed t ∈ I , and for any compact set P ⊂ R there exists function
g ∈ L(I,R) such, that for any (t,x,x′) ∈ I × P, the estimate |f (t,x,x′)| ≤ g(t) holds, H,H ∈
C(C(I,R),R), h,h ∈ R, α is the lower function, β the upper function.
This boundary value problem is replaced by another one, which is dependent on the

parameterM ∈ (M, +∞),M > ,

(
ϕM

(
t,x,x′))′ = fM

(
t,x,x′), t ∈ I = [a,b],

Hx = h, Hx = h, α ≤ x ≤ β ,
()

where ϕM ∈ C(I × R,R) is strictly increasing in x′ for fixed t and x, and f : I × R → R
satisfies the Caratheodory conditions.

Definition  A function x ∈ C(I,R) is a solution of (), if ϕ(t,x(t),x′(t)) is absolutely con-
tinuous on I and () is satisfied almost everywhere on I .

We provide below definitions of generalized upper and lower functions and the gener-
alized solution along with Theorem  from [–]. This is needed to prove the main result.

Definition  The class BB+(I,R) consists of functions α : I → R, which possess the prop-
erty: for any t ∈ (a,b] there exist the left derivative α′

l(t) and the limit limτ→t– α′
l(τ ), and
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α′
l(t) ≥ limτ→t– α′

l(τ ); for any t ∈ [a,b) there exist the right derivative α′
r(t) and the limit

limτ→t+ α′
r(τ ), and α′

r(t) ≤ limτ→t+ α′
r(τ ), and, for any t ∈ (a,b), α′

l(t)≤ α′
r(t).

The class BB–(I,R) consists of functions β : I → R, which possess the following prop-
erty: for any t ∈ (a,b] there exist the left derivative β ′

l (t) and the limit limτ→t– β ′
l (τ ), and

β ′
l (t) ≤ limτ→t– β ′

l (τ ); for any t ∈ [a,b) there exist the right derivative β ′
r(t) and the limit

limτ→t+ β ′
r(τ ), and β ′

r(t)≥ limτ→t+ β ′
r(τ ), and, for any t ∈ (a,b), β ′

l (t)≥ β ′
r(t).

Definition  We call a bounded function α ∈ BB+(I,R) a generalized lower function and
write α ∈ AG(I,R), if in any interval [c,d] ∈ I , where this function satisfies the Lipschitz
condition, for any t ∈ (c,d) and t ∈ (t,d) where the derivative exists, the inequality

ϕ
(
t,α(t),α′(t)

)
– ϕ

(
t,α(t),α′(t)

) ≥
∫ t

t
f
(
s,α(s),α′(s)

)
ds

holds. We will call a bounded function β ∈ BB–(I,R) a generalized upper function and
write β ∈ BG(I,R), if in any interval [c,d] ∈ I , where this function satisfies the Lipschitz
condition, for any t ∈ (c,d) and t ∈ (t,d) where the derivative exists, the inequality

ϕ
(
t,β(t),β ′(t)

)
– ϕ

(
t,β(t),β ′(t)

) ≤
∫ t

t
f
(
s,β(s),β ′(s)

)
ds

holds.

A function x : I → R will be called a generalized solution, if x ∈ AG(I,R)∩ BG(I,R).
A generalized solution has a derivative at any point, possibly infinite, either –∞ or +∞,

and x′ is continuous on [–∞, +∞]; if in some interval the derivative x′ does not attain the
values –∞ or +∞, then x is a solution of () in this interval.

Theorem  Let α ∈ AG(I,R), β ∈ BG(I,R) and α ≤ β . Then for any A ∈ [α(a),β(a)] and
B ∈ [α(b),β(b)] there exists a generalized solution of the Dirichlet problem

(
ϕ
(
t,x,x′))′ = f

(
t,x,x′), x(a) = A, x(b) = B, α ≤ x≤ β . ()

In addition to conditions on α and β the compactness conditions are needed for solvabil-
ity of the boundary value problem ()-(). The Nagumo condition [] for ϕ-Laplacian and
the Schrader condition [] are sufficient conditions for compactness of a set of solutions.
We accept the following compactness conditions.

Definition  We say that the compactness condition is fulfilled, if for all A ∈ [α(a),β(a)]
and B ∈ [α(b),β(b)] any generalized solution of the Dirichlet problem () is a solution.

It is clear that this condition is weaker than the Schrader condition.
A set of solutions of the Dirichlet problem () will be denoted by S.

Remark  If α ∈ AG(I,R), β ∈ BG(I,R), α ≤ β and the compactness condition is fulfilled,
then the Dirichlet problem () has a solution.

http://www.boundaryvalueproblems.com/content/2014/1/111


Lepin Boundary Value Problems 2014, 2014:111 Page 3 of 4
http://www.boundaryvalueproblems.com/content/2014/1/111

Theorem  Let α ∈ AG(I,R), β ∈ BG(I,R) and the compactness condition be fulfilled. If
the boundary value problem () has a solution uM for all M ∈ (M, +∞) and for t ∈ I

ϕM
(
t,x,x′) = ϕ

(
t,x,x′), fM

(
t,x,x′) = f

(
t,x,x′), α ≤ x≤ β ,

∣∣x′∣∣ ≤M,

then there exists M ∈ (M, +∞) such that uM solves the boundary value problem ()-().

Proof Notice that the results in [] imply that sup{‖x′‖C : x ∈ S} =M < +∞. Suppose the
contrary. Let the sequence {Mi}, whereMi ∈ (M, +∞), i = , , . . . tend to infinity. Consider
the sequence {ui}, where ui = uMi , i = , , . . . . We can assume, without loss of generality,
that it converges in any rational points of the interval (a,b) to the function u, located
between α and β . Notice that without loss of generality for any interval (a,b) ⊂ (a,b)
it follows from the boundedness of u and the Mean Value Formula that there exists an
interval [c,d] ⊂ (a,b) such that

sup
{∣∣u′

i(t)
∣∣ : i ∈ {, , . . .}, t ∈ [c,d]

}
= L < +∞.

It is clear that ui, i ∈ {, , . . .}, and u satisfy the Lipschitz condition with constant L in
[c,d]. The u can be extended by continuity to the entire interval [c,d], and thus we obtain
a function u that satisfies the Lipschitz condition. It follows from the Lipschitz condition
that {ui(t)} converges to u(t) for any t ∈ [c,d]. It is clear that the derivatives {u′

i(t)} converge
to the derivative u′(t) for any t ∈ [c,d]. Therefore, u(t) is a solution of () in the interval
[c,d]. Continuing the construction of u(t) on both sides, one gets a solution of () on the
maximal interval (c,d). If c > a, then limt→c+ u′(t) is either –∞ or +∞. Similarly, if
d < b, then limt→d– u′(t) is either –∞ or +∞. If c = a and limt→a+ u′(t) is not –∞ or
+∞, then u(t) can be continued to a. Similarly, if d = b and limt→b– u′(t) is not –∞ nor
+∞, then u(t) can be continued to b. By repeating this construction, find an open set I
in I , where the function u(t) is defined and u(t) is a solution of () on intervals from I.
A set I = I\I is closed and nowhere dense. For t ∈ I the limit limi→∞ u′

i(t) is equal to –∞
or +∞. Indeed, assuming the contrary and acting as above, we get t ∈ I. Extend u(t) to
irrational points of I. If a ∈ I, then u(a) = limt→a+ u(t), and in the remaining cases u(τ ) =
limt→τ– u(t). The above limits exist since u(t) is monotone in neighborhood of any point
from I. Similarly we get for t ∈ I, u′(t) = limi→∞ u′

i(t) and limτ→t u′(τ ) = u′(t). Therefore
u(t) is a generalized solution of (). It follows from the compactness condition that u(t)
is a solution of (). Let us show that the sequence {u′

i(t)} uniformly converges to u′(t).
Suppose the contrary is true. We assume, without loss of generality, that there exist ε > 
and a sequence {ti}, where ti ∈ I , i = , , . . . such that |u′(ti) – u′

i(ti)| > ε, i = , , . . . and
limi→∞ ti = t. Consider the case u′

i(ti) > u′(ti) + ε, i = , , . . . . We can assume, without
loss of generality, that u′

i(t) > u′(t) + ε/, i = , , . . . , and this contradicts the equality
limi→∞ u′

i(t) = u′(t). The uniform convergence is proved. We can conclude now that all
ui(t) are the solutions of the boundary value problem ()-(). �

Remark Theorem gives the possibility to prove the solvability of boundary value prob-
lems if the solvability of more simple boundary value problems is known.

Remark  If α′(a) ≥ β ′(a) and the inequalities α′(a) ≥ x′(a) ≥ β ′(a) hold for a solution x
of the boundary value problem ()-(), then the compactness condition (Definition ) can
be weakened.
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Definition Wewill say that the compactness condition holds if for anyA ∈ [β ′(a),α′(a)]
and B ∈ [α(b),β(b)] all generalized solutions of the problem

(
ϕ
(
t,x,x′))′ = f

(
t,x,x′), x′(a) = A, x(b) = B, α ≤ x≤ β ,

are classical solutions.

Example One way to use Theorem  is to verify that for all t ∈ I , x,x′ ∈ R and M ∈
(M, +∞),M > , the following conditions are satisfied:

ϕM
(
t,x,x′) = ϕ

(
t,x,x′),

fM
(
t,x,x′) = f

(
t,x, δ

(
–M,x′,M

))
,

where δ(u, v,w) = u if v < u, δ(u, v,w) = v if u≤ v ≤ w, δ(u, v,w) = w if w < v.
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