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Abstract
The authors consider the following impulsive differential equations involving the
one-dimensional singular p-Laplacian: (φp(y′′(t)))′′ = λω(t)f (t, y(t)), t ∈ J, t �= tk ,
k = 1, 2, . . . ,m, �y′|t=tk = –μIk(tk , y(tk)), k = 1, 2, . . . ,m, ay(0) – by′(0) =

∫ 1
0 h(s)y(s)ds,

ay(1) + by′(1) =
∫ 1
0 h(s)y(s)ds, φp(y′′(0)) = φp(y′′(1)) =

∫ 1
0 h(t)φp(y′′(t))dt, where λ > 0 and

μ > 0 are two parameters. Several new and more general existence and multiplicity
results are derived in terms of different values of λ > 0 and μ > 0. In this case, our
results cover equations without impulsive effects and are compared with some
recent results.

Keywords: multi-parameter; impulsive differential equations; one-dimensional
singular p-Laplacian; positive solution; cone and partial ordering

1 Introduction
The theory and applications of the fourth-order ordinary differential equation are emerg-
ing as an important area of investigation; it is often referred to as the beam equation.
In [], Sun and Wang pointed out that it is necessary and important to consider various
fourth-order boundary value problems (BVPs for short) according to different forms of
supporting. Owing to its importance in engineering, physics, and material mechanics,
fourth-order BVPs have attracted much attention from many authors; see, for example
[–] and the references therein.
Very recently, Zhang and Liu [] studied the following fourth-order four-point bound-

ary value problem without impulsive effect:

⎧⎪⎨
⎪⎩
(φp(x′′(t)))′′ = w(t)f (t,x(t)), t ∈ [, ],
x() = , x() = ax(ξ ),
x′′() = , x′′() = bx′′(η),

where  < ξ ,η < ,  ≤ a < b < . By using the upper and lower solutionmethod, fixed point
theorems, and the properties of the Green’s function G(t, s) and H(t, s), the authors give
sufficient conditions for the existence of one positive solution.
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In this paper, we investigate the existence of positive solutions of fourth-order impulsive
differential equations with two parameters

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(φp(y′′(t)))′′ = λω(t)f (t, y(t)), t ∈ J , t �= tk ,k = , , . . . ,m,
�y′|t=tk = –μIk(tk , y(tk)), k = , , . . . ,m,
ay() – by′() =

∫ 
 g(s)y(s)ds,

ay() + by′() =
∫ 
 g(s)y(s)ds,

φp(y′′()) = φp(y′′()) =
∫ 
 h(s)φp(y′′(s))ds,

(.)

where λ >  and μ >  are two parameters, a,b > , J = [, ], φp(s) is a p-Laplace operator,
i.e., φp(s) = |s|p–s, p > , (φp)– = φq, 

p +

q = , ω is a nonnegative measurable function on

(, ), ω �=  on any open subinterval in (, ) which may be singular at t =  and/or t = ,
tk (k = , , . . . ,m) (wherem is fixed positive integer) are fixed points with  = t < t < t <
· · · < tk < · · · < tm < tm+ = , �y′|t=tk = y′(t+k ) – x′(t–k ), where y′(t+k ) and y′(t–k ) represent the
right-hand limit and left-hand limit of y′(t) at t = tk , respectively. In addition, ω, f , Ik , g ,
and h satisfy

(H) ω ∈ Lloc(, );
(H) f ∈ C([, ]× [, +∞), [, +∞)) with f (t, y) >  for all t and y > ;
(H) Ik ∈ C([, ]× [, +∞), [, +∞)) with Ik(t, y) >  (k = , , . . . ,n) for all t and y > ;
(H) g,h ∈ L[, ] are nonnegative and ξ ∈ [,a), ν ∈ [, ), where

ξ =
∫ 


g(t)dt, ν =

∫ 


h(t)dt. (.)

Some special cases of (.) have been investigated. For example, Bai andWang [] stud-
ied the existence of multiple solutions of problem (.) with p = , Ik = , k = , , . . . ,m and
ω ≡  for t ∈ J . By using a fixed point theorem and degree theory, the authors proved the
existence of one or two positive solutions of problem (.).
Feng [] considered problem (.) with λ = , Ik(tk , y(tk)) = Ik(y(tk)), ω ≡  for t ∈ J and

μ = . By using a suitably constructed cone and fixed point theory for cones, the author
proved the existence results of multiple positive solutions of problem (.).
Motivated by the papers mentioned above, we will extend the results of [, , ] to

problem (.). We remark that on impulsive differential equations with a parameter only a
few results have been obtained, not to mention impulsive differential equations with two
parameters; see, for instance, [–]. However, these results only dealt with the case that
p =  and μ = .
The rest of the paper is organized as follows: in Section , we state the main results of

problem (.). In Section , we provide some preliminary results, and the proofs of the
main results together with several technical lemmas are given in Section .

2 Main results
In this section, we state the main results, including existence and multiplicity of positive
solutions for problem (.).
We begin by introducing the notation

f  = lim sup
y→+

max
t∈J

f (t, y)
φp(y)

, f ∞ = lim sup
y→∞

max
t∈J

f (t, y)
φp(y)

,

http://www.boundaryvalueproblems.com/content/2014/1/112
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f = lim inf
y→+

min
t∈J

f (t, y)
φp(y)

, f∞ = lim inf
y→∞ min

t∈J
f (t, y)
φp(y)

,

I(k) = lim sup
y→+

max
t∈J

Ik(t, y)
y

, I∞(k) = lim sup
y→∞

max
t∈J

Ik(t, y)
y

,

I(k) = lim inf
y→+

min
t∈J

Ik(t, y)
y

, I∞(k) = lim inf
y→∞ min

t∈J
Ik(t, y)

y
, k = , , . . . ,m.

We also choose four numbers r, r, r, and R satisfying

 < r < r < δr < r < R < +∞, (.)

where δ is defined in (.).

Theorem . Assume that (H)-(H) hold.
(i) If f ∞ =  and I∞ = , then there exist λ >  and μ >  such that, for any λ > λ

and μ > μ, problem (.) has a positive solution u(t), t ∈ J with

δr ≤ u(t) ≤ 
δ
R, t ∈ J . (.)

(ii) If f  =  and I = , then there exist λ >  and μ >  such that, for any λ > λ and
μ > μ, problem (.) has a positive solution u(t) with

δr ≤ u(t) ≤ R, t ∈ J . (.)

(iii) If f  = f ∞ = I∞ = I = , then there exist λ >  and μ >  such that, for any λ > λ

and μ > μ, problem (.) has at least two positive solutions u(t) and u(t) with

δr ≤ u(t) ≤ r < δr ≤ u(t)≤ R, t ∈ J . (.)

Theorem . Assume that (H)-(H) hold.
(i) If f∞ = +∞ and I∞ = +∞, then there exist λ̄ >  and μ̄ >  such that, for any

 < λ < λ̄ and  < μ < μ̄, problem (.) has a positive solution u(t), t ∈ J with
property (.).

(ii) If f = +∞ and I = +∞, then there exist λ̄ >  and μ̄ >  such that, for any
 < λ < λ̄ and  < μ < μ̄, problem (.) has a positive solution u(t), t ∈ J with
property (.).

(iii) If f = f∞ = I∞ = I = +∞, then there exist λ̄ >  and μ̄ >  such that, for any
 < λ < λ̄ and  < μ < μ̄, problem (.) has at least two positive solutions u(t) and
u(t) with

δr ≤ u(t) ≤ r < δr ≤ u(t)≤ 
δ
R, t ∈ J . (.)

3 Preliminaries
Let J ′ = J \ {t, t, . . . , tm}, and

PC[, ] =
{
y ∈ C[, ] : y′|(tk ,tk+) ∈ C(tk , tk+), y′(t–k )

, y′(t+k ) exists,k = , , . . . ,m
}
.

http://www.boundaryvalueproblems.com/content/2014/1/112
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Then PC[, ] is a real Banach space with norm

‖y‖PC =max
{‖y‖∞,

∥∥y′∥∥∞
}
, (.)

where ‖y‖∞ = supt∈J |y(t)|, ‖y′‖∞ = supt∈J |y′(t)|.
A function y ∈ PC[, ] ∩ C(J ′) with ϕp(y′′) ∈ C(, ) is called a solution of problem

(.) if it satisfies (.).
We shall reduce problem (.) to an integral equation. To this goal, firstly by means of

the transformation

φp
(
y′′(t)

)
= –x(t), (.)

we convert problem (.) into

{
x′′(t) + λω(t)f (t, y(t)) = , t ∈ J ,
x() = x() =

∫ 
 h(t)x(t)dt

(.)

and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
y′′(t) = –φq(x(t)), t ∈ J , t �= tk ,
�y′|t=tk = –μIk(tk , y(tk)), k = , , . . . ,m,
ay() – by′() =

∫ 
 g(s)y(s)ds,

ay() + by′() =
∫ 
 g(s)y(s)ds.

(.)

Lemma . If (H), (H), and (H) hold, then problem (.) has a unique solution x given
by

x(t) = λ

∫ 


H(t, s)ω(s)f

(
s, y(s)

)
ds, (.)

where

H(t, s) =G(t, s) +


 – ν

∫ 


G(s, τ )h(τ )dτ , (.)

G(t, s) =

{
t( – s),  ≤ t ≤ s ≤ ,
s( – t),  ≤ s ≤ t ≤ .

(.)

Proof The proof of Lemma . is similar to that of Lemma . in []. �

Write e(t) = t( – t). Then from (.) and (.), we can prove that H(t, s) and G(t, s) have
the following properties.

Proposition . If (H) holds, then we have

H(t, s) > , G(t, s) > , ∀t, s ∈ (, ), (.)

H(t, s)≥ , G(t, s)≥ , ∀t, s ∈ J , (.)

e(t)e(s)≤G(t, s) ≤G(t, t) = t( – t) = e(t) ≤ ē = max
t∈[,]

e(t) =


, ∀t, s ∈ J , (.)

http://www.boundaryvalueproblems.com/content/2014/1/112
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ρe(s)≤H(t, s)≤ γ s( – s) = γ e(s) ≤ 


γ , ∀t, s ∈ J , (.)

where

γ =


 – ν
, ρ =

∫ 
 e(τ )h(τ )dτ

 – ν
. (.)

Remark . From (.) and (.), we obtain

ρe(s)≤H(s, s)≤ γ s( – s) = γ e(s)≤ 


γ , ∀s ∈ J .

Lemma . If (H), (H), and (H) hold, then problem (.) has a unique solution y and y
can be expressed in the form

y(t) =
∫ 


H(t, s)φq

(
x(s)

)
ds +μ

m∑
k=

H(t, tk)Ik
(
tk , y(tk)

)
, (.)

where

H(t, s) =G(t, s) +


a – ξ

∫ 


G(s, τ )g(τ )dτ , (.)

G(t, s) =

d

{
(b + as)(b + a( – t)), if  ≤ s ≤ t ≤ ,
(b + at)(b + a( – s)), if  ≤ t ≤ s ≤ ,

(.)

d = a(b + a).

Proof The proof of Lemma . is similar to that of Lemma . in []. �

From (.) and (.), we can prove that H(t, s) and G(t, s) have the following proper-
ties.

Proposition . If (H) holds, then we have

H(t, s) > , G(t, s) > , ∀t, s ∈ J ; (.)


d
b ≤G(t, s)≤G(s, s)≤ 

d
(b + a), ∀t, s ∈ J , (.)

ρ ≤H(t, s)≤H(s, s)≤ ρ, ∀t, s ∈ J , (.)

where

ρ =
bγ
a + b

, ρ =
γ(b + a)

a + b
, γ =


a – ξ

.

Suppose that y is a solution of problem (.). Then from Lemma . and Lemma ., we
have

y(t) =
∫ 


H(t, s)φq

(
λ

∫ 


H(s, τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
ds +μ

m∑
k=

H(t, tk)Ik
(
tk , y(tk)

)
.
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Define a cone in PC[, ] by

K =
{
y ∈ PC[, ] : y ≥ , y(t)≥ δ‖y‖PC , t ∈ J

}
, (.)

where

δ =
ρρ

q–

ργ q– . (.)

It is easy to see K is a closed convex cone of PC[, ].
Define an operator Tμ

λ : K → PC[, ] by

(
Tμ

λ y
)
(t) =

∫ 


H(t, s)φq

(
λ

∫ 


H(s, τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
ds

+μ

m∑
k=

H(t, tk)Ik
(
tk , y(tk)

)
. (.)

From (.), we know that y ∈ PC[, ] is a solution of problem (.) if and only if y is a
fixed point of operator Tμ

λ .

Lemma . Suppose that (H)-(H) hold. Then Tμ
λ (K ) ⊂ K and Tμ

λ : K → K is completely
continuous.

Proof The proof of Lemma . is similar to that of Lemma . in []. �

To obtain positive solutions of problem (.), the following fixed point theorem in cones
is fundamental, which can be found in [, p.].

Lemma . Let P be a cone in a real Banach space E. Assume �, � are bounded open
sets in E with  ∈ �, �̄ ⊂ �. If

A : P ∩ (�̄ \ �) → P

is completely continuous such that either
(a) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂� and ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�, or
(b) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂� and ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�,

then A has at least one fixed point in P ∩ (�̄ \ �).

Remark . To make the reader clear what �̄, ∂�, ∂�, and � \ �̄ mean, we give
typical examples of � and �, e.g.,

� =
{
x ∈ C[a,b] : ‖x‖∞ < r

}
, � =

{
x ∈ C[a,b] : ‖x‖∞ < R

}
with  < r < R, where ‖x‖∞ = supt∈[a,b] |x(t)|.

4 Proofs of themain results
For convenience we introduce the following notation:

η = ϕq

(∫ 


ω(s)ds

)
, η∗ = ϕq

(∫ tm

t
ω(s)ds

)

http://www.boundaryvalueproblems.com/content/2014/1/112
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and

�r =
{
y ∈ K : ‖y‖PC < r

}
, ∂�r =

{
y ∈ K : ‖y‖PC = r

}
,

where r >  is a constant.

Proof of Theorem . Part (i). Noticing that f (t, y) > , Ik(t, y) >  (k = , , . . . ,m) for all t
and y > , we can define

mr = min
t∈J ,δr≤y≤r

{
f (t, y)

}
> , m∗ =min{mk ,k = , , . . . ,m} > ,

where r > , and

mk = min
t∈J ,δr≤y≤r

{
Ik(t, y)

}
, k = , , . . . ,m.

Let

λ ≥
(


ρη∗ r

)p–[
ρmrt( – tm)

]–, μ ≥ 
mρm∗ r.

Then, for u ∈ K ∩ ∂�r and λ > λ, μ > μ, we have

(
Tμ

λ y
)
(t) =

∫ 


H(t, s)φq

(
λ

∫ 


H(s, τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
ds

+μ

m∑
k=

H(t, tk)Ik
(
tk , y(tk)

)

≥ ρρ
q–ϕq

(
λ

∫ 


e(τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
+μρ

m∑
k=

Ik
(
tk , y(tk)

)

≥ ρρ
q–ϕq

(
λ

∫ 


e(τ )ω(τ )mr dτ

)
+μρ

m∑
k=

m∗

= ρρ
q–mq–

r λq–ϕq

(∫ 


e(τ )ω(τ )dτ

)
+μmρm∗

≥ ρρ
q–mq–

r λq–ϕq

(∫ tm

t
e(τ )ω(τ )dτ

)
+μmρm∗

≥ ρρ
q–mq–

r λq–[t( – tm)
]q–

ϕq

(∫ tm

t
ω(τ )dτ

)
+μmρm∗

> ρρ
q–mq–

r λ
q–


[
t( – tm)

]q–
ϕq

(∫ tm

t
ω(τ )dτ

)
+μmρm∗

= ρρ
q–mq–

r λ
q–


[
t( – tm)

]q–
η∗ +μmρm∗

≥ 

r +



r = r = ‖y‖PC ,

which implies that

‖Tμ
λ y‖PC > ‖y‖PC , ∀y ∈ K ∩ ∂�r ,λ > λ and μ > μ. (.)

http://www.boundaryvalueproblems.com/content/2014/1/112
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If f ∞ = , I∞ = , then there exist l > , l > , and R > r >  such that

f (t, y) < lϕp(y), Ik(t, y) < ly, ∀t ∈ J , y ≥ R,k = , , . . . ,m,

where l satisfies

max
{
ρ,a(a + b)

}
ηϕq

(



γ λl
)

≤ , (.)

l satisfies

max
{
ρ,a(a + b)

}
mμl ≤ . (.)

Let α = R
δ
. Thus, when y ∈ K ∩ ∂�α we have

y(t) ≥ δ‖y‖PC = δα = R, t ∈ J ,

and then we get

(
Tμ

λ y
)
(t) =

∫ 


H(t, s)φq

(
λ

∫ 


H(s, τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
ds

+μ

m∑
k=

H(t, tk)Ik
(
tk , y(tk)

)

≤ ρ

(



λγ

)q–

ϕq

(∫ 


ω(τ )f

(
τ , y(τ )

)
dτ

)
+μρ

m∑
k=

Ik
(
tk , y(tk)

)

≤ ρ

(



λγ

)q–

ϕq

(∫ 


ω(τ )lφp

(
y(τ )

)
dτ

)
+μρ

m∑
k=

ly(tk)

≤ ρ

(



λγ

)q–

ϕq

(∫ 


ω(τ )lφp

(‖y‖PC
)
dτ

)
+μρ

m∑
k=

l‖y‖PC

≤ ρ

(



λγ

)q–

lq– ‖y‖PCϕq

(∫ 


ω(τ )dτ

)
+μρml‖y‖PC

= ρ

(



λγ

)q–

lq– ‖y‖PCη +μρml‖y‖PC

≤ 

‖y‖PC +



‖y‖PC = ‖y‖PC , (.)

∣∣(Tμ
λ y

)′(t)
∣∣ ≤

∫ 



∣∣H ′
t(t, s)

∣∣φq

(
λ

∫ 


H(s, τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
ds

+μ

m∑
k=

∣∣H ′
t(t, tk)

∣∣Ik(tk , y(tk))

≤ a(b + a)
(



λγ

)q–

ϕq

(∫ 


ω(τ )f

(
τ , y(τ )

)
dτ

)
+μa(b + a)

m∑
k=

Ik
(
tk , y(tk)

)

≤ a(b + a)
(



λγ

)q–

ϕq

(∫ 


ω(τ )lφp

(
y(τ )

)
dτ

)
+μa(b + a)

m∑
k=

ly(tk)

http://www.boundaryvalueproblems.com/content/2014/1/112
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≤ a(b + a)
(



λγ

)q–

ϕq

(∫ 


ω(τ )lφp

(‖y‖PC
)
dτ

)

+μa(b + a)
m∑
k=

l‖y‖PC

≤ a(b + a)
(



λγ

)q–

lq– ‖y‖PCη +μa(b + a)ml‖y‖PC

≤ 

‖y‖PC +



‖y‖PC = ‖y‖PC , (.)

where

H ′
t(t, s) =G′

t(t, s) =

{
–a(b + as), if ≤ s ≤ t ≤ ,
a(b + a( – s)), if ≤ t ≤ s ≤ 

and

max
t,s∈J ,t �=s

∣∣H ′
t(t, s)

∣∣ = max
t,s∈J ,t �=s

∣∣G′
t(t, s)

∣∣ = a(b + a).

It follows from (.) and (.) that

∥∥Tμ
λ y

∥∥
PC ≤ ‖y‖PC , ∀y ∈ K ∩ ∂�α . (.)

Applying (b) of Lemma . to (.) and (.) shows that Tμ
λ has a fixed point y ∈ K ∩

(�̄α \ �r) with r ≤ ‖y‖PC ≤ α = 
δ
R. Hence, since for y ∈ K we have y(t) ≥ δ‖y‖PC , t ∈ J ,

it follows that (.) holds. This gives the proof of part (i).
Part (ii). Noticing that f (t, y) > , Ik(t, y) >  (k = , , . . . ,m) for all t and y > , we can

define

mR = min
t∈J ,δR≤y≤R

{
f (t, y)

}
> , m∗∗ =min

{
m∗

k ,k = , , . . . ,m
}
> ,

where R > , and

m∗
k = min

t∈J ,δR≤y≤R

{
Ik(t, y)

}
, k = , , . . . ,m.

Let

λ ≥
(


ρη∗R

)p–[
ρmRt( – tm)

]–, μ ≥ 
mρm∗∗R.

Then, for y ∈ K ∩ ∂�R and λ > λ, μ > μ, we have

(
Tμ

λ y
)
(t) =

∫ 


H(t, s)φq

(
λ

∫ 


H(s, τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
ds

+μ

m∑
k=

H(t, tk)Ik
(
tk , y(tk)

)

http://www.boundaryvalueproblems.com/content/2014/1/112
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≥ ρρ
q–ϕq

(
λ

∫ 


e(τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
+μρ

m∑
k=

Ik
(
tk , y(tk)

)

≥ ρρ
q–ϕq

(
λ

∫ 


e(τ )ω(τ )mR dτ

)
+μρ

m∑
k=

m∗∗

= ρρ
q–mq–

R λq–ϕq

(∫ 


e(τ )ω(τ )dτ

)
+μmρm∗∗

≥ ρρ
q–mq–

R λq–ϕq

(∫ tm

t
e(τ )ω(τ )dτ

)
+μmρm∗∗

≥ ρρ
q–mq–

R λq–[t( – tm)
]q–

ϕq

(∫ tm

t
ω(τ )dτ

)
+μmρm∗∗

> ρρ
q–mq–

R λ
q–


[
t( – tm)

]q–
ϕq

(∫ tm

t
ω(τ )dτ

)
+μmρm∗∗

= ρρ
q–mq–

R λ
q–


[
t( – tm)

]q–
η∗ +μmρm∗∗

≥ 

R +



R = ‖y‖PC ,

which implies that

∥∥Tμ
λ y

∥∥
PC > ‖y‖PC , ∀y ∈ K ∩ ∂�R,λ > λ and μ > μ. (.)

If f  = , I = , then there exist l > , l > , and  < r < R such that

f (t, y) < lϕp(y), Ik(t, y) < ly (∀t ∈ J , ≤ y≤ r,k = , , . . . ,m),

where l and l satisfy (.) and (.), respectively.
Similar to the proof of (.), we can prove that

∥∥Tμ
λ y

∥∥
PC ≤ ‖y‖PC , ∀y ∈ K ∩ ∂�r . (.)

Applying (a) of Lemma . to (.) and (.) shows that Tμ
λ has a fixed point y ∈ K ∩

(�̄R \ �r) with r ≤ ‖y‖PC ≤ R. Hence, since for y ∈ K we have y(t) ≥ δ‖y‖PC for t ∈ J , it
follows that (.) holds. This gives the proof of part (ii).
Consider part (iii). Choose two numbers r and r satisfying (.). By part (i) and part

(ii), there exist λ >  and μ >  such that

∥∥Tμ
λ y

∥∥
PC > ‖y‖PC , ∀y ∈ K ∩ ∂�ri , i = , . (.)

Since f  = f ∞ = I∞ = I = , from the proof of part (i) and part (ii), it follows that

∥∥Tμ
λ y

∥∥
PC < ‖y‖PC , ∀y ∈ K ∩ ∂�r (.)

and

∥∥Tμ
λ y

∥∥
PC < ‖y‖PC , ∀y ∈ K ∩ ∂�R. (.)

http://www.boundaryvalueproblems.com/content/2014/1/112
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Applying Lemma . to (.)-(.) shows that Tμ
λ has two fixed points y and y such

that y ∈ K ∩ (�̄r \ �r) and y ∈ K ∩ (�̄R \ �r ). These are the desired distinct positive
solutions of problem (.) for λ >  and μ >  satisfying (.). Then the result of part (iii)
follows. �

Proof of Theorem . Part (i). Noticing that f (t, y) > , Ik(t, y) >  (k = , , . . . ,m) for all t
and y > , we can define

Mr = max
t∈J ,δr≤y≤r

{
f (t, y)

}
> , M∗ =max{Mk ,k = , , . . . ,m} > ,

where r > , and

Mk = max
t∈J ,δr≤y≤r

{
Ik(t, y)

}
, k = , , . . . ,m.

Let

λ̄ ≤ 
(


max{ρ,a(a + b)}η r

)p–

(Mrγ )–,

μ̄ ≤ 
max{ρ,a(a + b)}mM∗ r.

Then, for y ∈ K ∩ ∂�r and λ < λ̄, μ < μ̄, we have

(
Tμ

λ y
)
(t) =

∫ 


H(t, s)φq

(
λ

∫ 


H(s, τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
ds

+μ

m∑
k=

H(t, tk)Ik
(
tk , y(tk)

)

≤ ρ

(



γ

)q–

ϕq

(
λ

∫ 


ω(τ )f

(
τ , y(τ )

)
dτ

)
+μρ

m∑
k=

Ik
(
tk , y(tk)

)

≤ ρ

(



γ λ

)q–

ϕq

(∫ 


ω(τ )Mr dτ

)
+μρ

m∑
k=

M∗

= ρ

(



γ λMr

)q–

ϕq

(∫ 


ω(τ )dτ

)
+μρmM∗

< ρ

(



γ λ̄Mr

)q–

η + μ̄ρmM∗

≤ 

r +



r = ‖y‖PC . (.)

Similar to the proof of (.), we can prove

∣∣(Tμ
λ y

)′(t)
∣∣ < ‖y‖PC . (.)

It follows from (.) and (.) that

∥∥Tμ
λ y

∥∥
PC < ‖y‖PC , ∀y ∈ K ∩ ∂�r . (.)

http://www.boundaryvalueproblems.com/content/2014/1/112
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If f∞ =∞, I∞ =∞, then there exist l > , l > , and R > r >  such that

f (t, y) > lϕp(y), Ik(t, y) > ly (∀t ∈ J , y≥ R,k = , , . . . ,m),

where l satisfies

ρρ
q–λq–lq– δ

[
t( – tm)

]q–
η∗ ≥ , (.)

l satisfies

μρmlδ ≥ . (.)

Let α = R
δ
. Thus, when y ∈ K ∩ ∂�α we have

y(t) ≥ δ‖y‖PC = δα = R, t ∈ J ,

and then we get

(
Tμ

λ y
)
(t) =

∫ 


H(t, s)φq

(
λ

∫ 


H(s, τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
ds

+μ

m∑
k=

H(t, tk)Ik
(
tk , y(tk)

)

≥ ρρ
q–ϕq

(
λ

∫ 


e(τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
+μρ

m∑
k=

Ik
(
tk , y(tk)

)

≥ ρρ
q–λq–ϕq

(∫ 


e(τ )ω(τ )lφp

(
y(τ )

)
dτ

)
+μρ

m∑
k=

ly(tk)

≥ ρρ
q–λq–ϕq

(∫ 


e(τ )ω(τ )lφp

(
δ‖y‖PC

)
dτ

)
+μρ

m∑
k=

lδ‖y‖PC

= ρρ
q–λq–lq– δ‖y‖PCϕq

(∫ 


e(τ )ω(τ )dτ

)
+μρmlδ‖y‖PC

≥ ρρ
q–λq–lq– δ‖y‖PCϕq

(∫ tm

t
e(τ )ω(τ )dτ

)
+μρmlδ‖y‖PC

≥ ρρ
q–λq–lq– δ‖y‖PC

[
t( – tm)

]q–
ϕq

(∫ tm

t
ω(τ )dτ

)
+μρmlδ‖y‖PC

> ρρ
q–λq–lq– δ‖y‖PC

[
t( – tm)

]q–
η∗ +μρmlδ‖y‖PC

≥ 

α +



α = α.

This yields

∥∥Tμ
λ y

∥∥
PC ≥ ‖y‖PC , ∀y ∈ K ∩ ∂�α . (.)

Applying (b) of Lemma . to (.) and (.) shows that Tμ
λ has a fixed point y ∈ K ∩

(�̄α \ �r) with r ≤ ‖y‖PC ≤ α = 
δ
R. Hence, since for y ∈ K we have y(t) ≥ δ‖y‖PC , t ∈ J ,

it follows that (.) holds. This gives the proof of part (i).

http://www.boundaryvalueproblems.com/content/2014/1/112
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Part (ii). Noticing that f (t, y) > , Ik(t, y) >  (k = , , . . . ,m) for all t and y > , we can
define

MR = max
t∈J ,≤y≤R

{
f (t, y)

}
> , M∗∗ =max

{
M∗

k ,k = , , . . . ,m
}
> ,

where R > , and

M∗
k = max

t∈J ,≤y≤R

{
Ik(t, y)

}
, k = , , . . . ,m.

Let

λ̄ ≤ 
(

R
ρη

)p–

(γMR)–, μ̄ ≤ R
ρmM∗∗ .

Then, for y ∈ K ∩ ∂�R and λ < λ̄, μ < μ̄, we have

(
Tμ

λ y
)
(t) =

∫ 


H(t, s)φq

(
λ

∫ 


H(s, τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
ds

+μ

m∑
k=

H(t, tk)Ik
(
tk , y(tk)

)

≤ ρ

(



γ

)q–

ϕq

(
λ

∫ 


ω(τ )f

(
τ , y(τ )

)
dτ

)
+μρ

m∑
k=

Ik
(
tk , y(tk)

)

≤ ρ

(



γ λ

)q–

ϕq

(∫ 


ω(τ )MR dτ

)
+μρ

m∑
k=

M∗∗

= ρ

(



γ λMR

)q–

ϕq

(∫ 


ω(τ )dτ

)
+μρmM∗∗

< ρ

(



γ λ̄MR

)q–

η + μ̄ρmM∗∗

≤ 

R +



R = ‖y‖PC . (.)

Similar to the proof of (.), we can prove

∣∣(Tμ
λ y

)′(t)
∣∣ ≤ ‖y‖PC , ∀y ∈ K ∩ ∂�R. (.)

It follows from (.) and (.) that

∥∥Tμ
λ y

∥∥
PC < ‖y‖PC , ∀y ∈ K ∩ ∂�R. (.)

If f =∞, I =∞, then there exist l > , l > , and  < r < R such that

f (t, y) > lϕp(y), Ik(t, y) > ly (∀t ∈ J , ≤ y≤ r,k = , , . . . ,m),

where l and l satisfy (.) and (.), respectively.

http://www.boundaryvalueproblems.com/content/2014/1/112
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Therefore, for y ∈ K ∩ ∂�r , we obtain

(
Tμ

λ y
)
(t) =

∫ 


H(t, s)φq

(
λ

∫ 


H(s, τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
ds

+μ

m∑
k=

H(t, tk)Ik
(
tk , y(tk)

)

≥ ρρ
q–ϕq

(
λ

∫ 


e(τ )ω(τ )f

(
τ , y(τ )

)
dτ

)
+μρ

m∑
k=

Ik
(
tk , y(tk)

)

≥ ρρ
q–λq–ϕq

(∫ 


e(τ )ω(τ )lφp

(
y(τ )

)
dτ

)
+μρ

m∑
k=

ly(tk)

≥ ρρ
q–λq–ϕq

(∫ 


e(τ )ω(τ )lφp

(
δ‖y‖PC

)
dτ

)
+μρ

m∑
k=

lδ‖y‖PC

= ρρ
q–λq–lq– δ‖y‖PCϕq

(∫ 


e(τ )ω(τ )dτ

)
+μρmlδ‖y‖PC

≥ ρρ
q–λq–lq– δ‖y‖PCϕq

(∫ tm

t
e(τ )ω(τ )dτ

)
+μρmlδ‖y‖PC

≥ ρρ
q–λq–lq– δ‖y‖PC

[
t( – tm)

]q–
ϕq

(∫ tm

t
ω(τ )dτ

)
+μρmlδ‖y‖PC

> ρρ
q–λq–lq– δ‖y‖PC

[
t( – tm)

]q–
η∗ +μρmlδ‖y‖PC

≥ 

‖y‖PC +



‖y‖PC = ‖y‖PC .

This yields

∥∥Tμ
λ y

∥∥
PC > ‖y‖PC , ∀y ∈ K ∩ ∂�r . (.)

Applying (a) of Lemma . to (.) and (.) shows that Tμ
λ has a fixed point y ∈

K ∩ (�̄R \ �r) with r ≤ ‖y‖PC ≤ R. Hence, since for y ∈ K we have y(t) ≥ δ‖y‖PC , t ∈ J , it
follows that (.) holds. This gives the proof of part (ii).
Consider part (iii). Choose two numbers r and r satisfying (.). By part (i) and part (ii),

there exist λ̄ >  and μ̄ >  such that

∥∥Tμ
λ y

∥∥
PC < ‖y‖PC , ∀ < λ < λ̄,  < μ < μ̄, y ∈ K ∩ ∂�ri , i = , . (.)

Since f = f∞ = I∞ = I =∞, from the proof of part (i) and part (ii), it follows that

∥∥Tμ
λ y

∥∥
PC > ‖y‖PC , ∀y ∈ K ∩ ∂�r (.)

and

∥∥Tμ
λ y

∥∥
PC > ‖y‖PC , ∀y ∈ K ∩ ∂�R. (.)

Applying Lemma . to (.)-(.) shows that Tμ
λ has two fixed points y and y such

that y ∈ K ∩ (�̄r \ �r) and y ∈ K ∩ (�̄R \ �r ). These are the desired distinct positive

http://www.boundaryvalueproblems.com/content/2014/1/112
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solutions of problem (.) for  < λ < λ̄ and  < μ < μ̄ satisfying (.). Then the proof of
part (iii) is complete. �

Remark . Comparing with Feng [], the main features of this paper are as follows.
(i) Two parameters λ >  and μ >  are considered.
(ii) ω ∈ Lloc(, ), not only ω(t)≡  for t ∈ J .
(iii) It follows from the proof of Theorem . that the conditions of Corollary . in []

are not the optimal conditions, which guarantee the existence of at least one
positive solution for problem (.). In fact, if f =∞, or f ∞ = , I∞(k) = , we can
prove that problem (.) has at least one positive solution, respectively.
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