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Abstract
The linear delay differential equation x′(t) = p(t)x(t – r), t ≥ t0, is considered, where
r > 0 and the coefficient p : [t0,∞)→R is continuous and small in the sense that∫ t+r
t |p(s)|ds → 0, t → ∞. It is shown that the large time behavior of the solutions can
be described in terms of a special solution of the associated formal adjoint equation
and the initial data. In the special case of the Dickman-de Bruijn equation,
x′(t) = – x(t–1)

t , t ≥ 1, our result yields an explicit asymptotic representation of the
solutions as t → ∞.
MSC: 34K06; 34K25; 11A51

Keywords: delay differential equation; formal adjoint equation; Dickman-de Bruijn
equation; asymptotic behavior

1 Introduction
The linear scalar delay differential equation

x′(t) = –
x(t – )

t
, t ≥ , (.)

plays a significant role in analytic number theory. Its special solution x : [,∞) →R with
initial values x(t) =  for t ∈ [, ] is called theDickman-de Bruijn function. The Dickman-
de Bruijn function was first studied by actuary Dickman [] and later by de Bruijn [, ] to
estimate the proportion of smooth numbers up to a given bound. In [] (see also []) van
der Lune proposed some problems regarding the solutions of (.). The solutions to these
problems, given by Bierkens, appeared in []. Suppose that φ : [, ] → R is a continuous
function and let x = xφ denote the unique solution of (.) with initial values

x(t) = φ(t),  ≤ t ≤ . (.)

Among others, it was shown that if the limit

c(φ) = lim
t→∞

[
txφ(t)

]
(.)
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exists and is finite, then its value is given by

c(φ) = φ() –
∫ 


φ(t)dt. (.)

We emphasize that the solution presented in [] does not imply the existence of the limit
(.).
Our aim in this paper is twofold. First, we give an alternative proof of the limit relation

(.) including the existence of the limit in (.). Second, we will show that the above result
on the Dickman-de Bruijn equation (.) can be extended to the general linear equation

x′(t) = p(t)x(t – r), t ≥ t, (.)

where r > , t ∈ R and p : [t,∞) →R is a continuous function such that

∫ t+r

t

∣∣p(s)∣∣ds→  as t → ∞. (.)

Our main result (see Theorem . below) provides an asymptotic description of the so-
lutions of (.). The asymptotic formula is given in terms of the initial data and a special
solution of the associated formal adjoint equation

y′(t) = –p(t + r)y(t + r), t ≥ t. (.)

The special solution of (.) is eventually positive, it has bounded growth and it is unique
up to a constant multiple.
The large time behavior of the solutions of (.) is discussed in Section  and our general

result on the asymptotic description of the solutions (.) is presented in Section .

2 Large time behavior of the Dickman-de Bruijn equation
In this section, we prove the existence of the limit (.) for the solutions of (.).

Theorem. Suppose that φ : [, ]→R is a continuous function and let xφ be the unique
solution of the initial value problem (.) and (.). Then

lim
t→∞

[
txφ(t)

]
= φ() –

∫ 


φ(t)dt. (.)

The proof of Theorem . will be based on the identity

txφ(t) –
∫ t

t–
xφ(s)ds = c(φ), t ≥ , (.)

where c(φ) is the constant given by (.). Using (.), it is easily shown that the derivative of
the function on the left-hand side of (.) is equal to  identically on (,∞). This, together
with (.), implies (.). Since the proof is straightforward, we omit it.
Now we can give a simple short proof of Theorem ..
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Proof of Theorem . Write xφ = x for brevity. First we show that

M = sup
t≥

[
t
∣∣x(t)∣∣] < ∞. (.)

Define

u(t) = tx(t), t ≥ . (.)

Then (.) can be written in the form

u(t) = c +
∫ t

t–

u(s)
s

ds, t ≥ , (.)

where c = c(φ). From this, we find for t ≥ ,

∣∣u(t)∣∣ ≤ |c| +
∫ t

t–

|u(s)|
s

ds≤ |c| +
∫ t



|u(s)|
s

ds = K +
∫ t



|u(s)|
s

ds,

where

K = |c| +
∫ 



|u(s)|
s

ds.

From the last inequality, by the application of Gronwall’s lemma (see, e.g., [, Chapter ,
Lemma .]), we conclude that

∣∣u(t)∣∣ ≤ K exp

(∫ t




s
ds

)
=
Kt

, t ≥ .

Hence

sup
t≥

|u(t)|
t

≤ K

.

From this and (.), we find for t ≥ ,

∣∣u(t)∣∣ ≤ |c| +
∫ t

t–

|u(s)|
s

ds≤ |c| + K

.

In view of (.), this implies (.).
From (.) and (.), we obtain for t ≥ ,

∣∣tx(t) – c
∣∣ =

∣∣∣∣
∫ t

t–
x(s)ds

∣∣∣∣ ≤
∫ t

t–

∣∣x(s)∣∣ds ≤
∫ t

t–

M
s
ds≤ M

t – 
.

Letting t → ∞ in the last inequality, we obtain

lim
t→∞

[
tx(t) – c

]
= 

which is equivalent to the limit relation (.). �
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We remark that the existence of the limit in (.) can also be deduced from the results
by Győri and the first author (see [, Theorem .] and its proof ) and by Diblík (see [,
Theorem  and Example ]). However, the above results cannot be used to compute the
value of the limit explicitly in terms of the initial data.

3 Main result
In this section, we present our main result on the large time behavior of the solutions of
(.). First we show that under the smallness condition (.) the formal adjoint equation
has an eventually positive solution with bounded growth.

Theorem . Suppose condition (.) holds. Then (.) has a solution y : [t,∞) → R

which is positive for all large t and such that

lim sup
t→∞

y(t + r)
y(t)

< ∞. (.)

We will prove Theorem . by applying a technique known from the oscillation theory
of delay differential equations (see [, Section .]).

Proof Let p+ and p– denote the positive part and the negative part of p, respectively, de-
fined by

p±(t) =max
{
,±p(t)

}
, t ≥ t.

Since  ≤ p– ≤ |p|, by virtue of (.), there exists t > t such that

∫ t+r

t
p–(s)ds≤ 

e
, t ≥ t.

Let C([t,∞),R) be the space of continuous functions mapping [t,∞) into R with the
topology of uniform convergence on compact subsets of [t,∞). Let � denote the set of
functions from C([t,∞),R) which satisfy the system of inequalities

exp

(
–e

∫ t

t
p+(s + r)ds

)
≤ y(t)≤ exp

(
e
∫ t

t
p–(s + r)ds

)
, t ≥ t,

and

y(t + r)
y(t)

≤ e, t ≥ t.

Clearly, � is a nonempty, closed and convex subset of C([t,∞),R). Define the operator
F : � → C([t,∞),R) by

F(y)(t) = exp

(
–

∫ t

t

p(s + r)y(s + r)
y(s)

ds
)
, t ≥ t, y ∈ �.

It is easily verified that F is continuous and F(�) ⊂ �. Furthermore, the functions from
F(�) are uniformly bounded and equicontinuous on each compact subinterval of [t,∞).
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Therefore, by the Arzela-Ascoli theorem, the closure of F(�) is compact in C([t,∞),R).
By the application of the Schauder-Tychonoff fixed point theorem, we conclude that there
exists y ∈ � such that F(y) = y. It is easily seen that this fixed point y is a solution of (.) on
[t,∞) with property (.). Clearly, the solution y : [t,∞)→ R can be extended backward
to all t ∈ [t, t) by the method of steps. �

It should be noted that under the smallness condition (.), (.) may have a positive
solution which does not satisfy condition (.). Indeed, the equation

y′(t) = te–t–y(t + ), t ≥ ,

a special case of (.) when r = , t =  and p(t) = –(t – )e–t+, has the positive solution
y(t) = et for which the ratio y(t + )/y(t) = et+ is unbounded as t → ∞.
In the next theorem, we show that up to a constant multiple the special solution of (.)

described in Theorem . is unique.

Theorem . Suppose condition (.) holds. Let y and y be eventually positive solutions
of (.) satisfying condition (.). Then y is a constant multiple of y.

Proof We begin with two simple observations. First, if y is a solution of (.), then

y(t) = y(t) –
∫ t

t
p(s + r)y(s + r)ds whenever t ≥ t ≥ t. (.)

Second, if y is a solution of (.) which is positive on [T ,∞) for some T > t and satisfies
condition (.), then

y(t) ≤ y(t) exp
(
M

∫ t

t

∣∣p(s + r)
∣∣ds

)
whenever t ≥ t ≥ T , (.)

whereM is an arbitrary constant such that

M ≥ sup
t≥T

y(t + r)
y(t)

. (.)

Indeed, from (.) we find for t ≥ T ,

y′(t) = –p(t + r)
y(t + r)
y(t)

y(t).

Hence

y(t) = y(t) exp
(
–

∫ t

t
p(s + r)

y(s + r)
y(s)

ds
)
, t ≥ t ≥ T .

This, together with (.), implies (.).
By assumptions, there exists T > t such that both solutions y and y are positive on

[T ,∞) and satisfy condition (.). As noted before (see (.)), ifM >  is sufficiently large,

http://www.boundaryvalueproblems.com/content/2014/1/114
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then

yj(t)≤ yj(t) exp
(
M

∫ t

t

∣∣p(s + r)
∣∣ds

)
whenever t ≥ t ≥ T , j = , . (.)

SinceM > , if q >  is sufficiently small, then eqM <M. By virtue of (.), there exists t > T
such that

∫ t+r

t

∣∣p(s)∣∣ds < q, t ≥ t. (.)

We will show that y(t) = cy(t) for all t ≥ t, where c = y(t)/y(t). In view of the linearity
of (.), the function y = cy is a solution of (.) and, by virtue of (.), the quantity

S = sup
t≥t

[∣∣y(t) – y(t)
∣∣ exp

(
–M

∫ t

t

∣∣p(s + r)
∣∣ds

)]

is finite. Applying (.) to both solutions y and y of (.) and taking into account that
y(t) = y(t), we obtain, for t ≥ t,

∣∣y(t) – y(t)
∣∣ =

∣∣∣∣
∫ t

t
p(s + r)

(
y(s + r) – y(s + r)

)
ds

∣∣∣∣
≤

∫ t

t

∣∣p(s + r)
∣∣∣∣y(s + r) – y(s + r)

∣∣ds

≤ S
∫ t

t

∣∣p(s + r)
∣∣ exp

(
M

∫ s+r

t

∣∣p(u + r)
∣∣du

)
ds

= S
∫ t

t

∣∣p(s + r)
∣∣ exp

(
M

∫ s

t

∣∣p(u + r)
∣∣du

)
exp

(
M

∫ s+r

s

∣∣p(u + r)
∣∣du

)
ds

≤ SeqM
∫ t

t

∣∣p(s + r)
∣∣ exp

(
M

∫ s

t

∣∣p(u + r)
∣∣du

)
ds

= SeqM
[

M

exp

(
M

∫ s

t

∣∣p(u + r)
∣∣du

)]t

t

≤ S
eqM

M
exp

(
M

∫ t

t

∣∣p(u + r)
∣∣du

)
,

where the last but one inequality is a consequence of (.). From the last inequality, we
obtain

∣∣y(t) – y(t)
∣∣ exp

(
–M

∫ t

t

∣∣p(u + r)
∣∣du

)
≤ S

eqM

M
, t ≥ t.

Hence

S ≤ eqM

M
S.

Since eqM <M, this implies that S =  and therefore y(t) = y(t) = cy(t) for all t ∈ [t,∞).
Finally, by the uniqueness of the backward continuation of the solutions of (.), we con-
clude that y(t) = cy(t) for all t ∈ [t,∞). �
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Now we can formulate our main result about the large time behavior of the solutions of
(.).

Theorem . Suppose condition (.) holds. Let xφ denote the solution of (.) with initial
data

x(t) = φ(t), t – r ≤ t ≤ t, (.)

where φ : [t – r, t] →R is a continuous function. Then

xφ(t) =


y(t)
(
c(φ) + o()

)
, t → ∞, (.)

where y is any eventually positive solution of (.) satisfying (.) and c(φ) is a constant
given by

c(φ) = φ(t)y(t) +
∫ t

t–r
p(s + r)φ(s)y(s + r)ds. (.)

As shown in Theorem ., the special solution y of (.) in the asymptotic relation (.)
is unique up to a constant multiple. Thus, (.) gives the same asymptotic representation
independently of the choice of y.
Theorem . is a generalization of Theorem . to (.). Indeed, in the special case r = ,

t =  and p(t) = –t–; (.) reduces to the Dickman-de Bruijn equation (.). Its formal
adjoint equation

y′(t) =
y(t + )
t + 

, t ≥ ,

has the positive solution y(t) = t satisfying condition (.). Therefore, Theorem . applies
and its conclusion reduces to the limit relation (.).
For qualitative results similar to Theorem., see [, , , ] and the references therein.
The proof of Theorem.will be based on thewell-known duality between the solutions

of a linear delay differential equation and its formal adjoint equation (see [, Section .]).
Namely,

x(t)y(t) +
∫ t+r

t
p(s)x(s – r)y(s)ds = constant (.)

for t ≥ t whenever x and y are solutions of (.) and (.), respectively. We will also need
the following simple lemma.

Lemma . Let c ∈R and suppose that a : [t,∞) →R is a continuous function such that
∫ t+r

t

∣∣a(s)∣∣ds→ , t → ∞. (.)

Then every continuous solution of the integral equation

z(t) = c +
∫ t+r

t
a(s)z(s – r)ds, t ≥ t, (.)

converges to c as t → ∞.

http://www.boundaryvalueproblems.com/content/2014/1/114


Pituk and Röst Boundary Value Problems 2014, 2014:114 Page 8 of 9
http://www.boundaryvalueproblems.com/content/2014/1/114

Proof Let q ∈ (, ). By virtue of (.), there exists T > t such that

∫ t+r

t

∣∣a(s)∣∣ds < q, t ≥ T . (.)

Define

M = max
T–r≤t≤T

∣∣z(t)∣∣.
Choose a constant K such that

K >max
{
M, |c|( – q)–

}
. (.)

Clearly, |z(t)| ≤ M < K for t ∈ [T – r,T] and we claim that

∣∣z(t)∣∣ < K for all t ≥ T – r. (.)

Otherwise, there exists t > T such that

∣∣z(t)∣∣ < K for t ∈ [T – r, t) and
∣∣z(t)∣∣ = K .

From this and (.), we find that

K =
∣∣z(t)∣∣ ≤ |c| +

∫ t+r

t

∣∣a(s)∣∣∣∣z(s – r)
∣∣ds

≤ |c| +K
∫ t+r

t

∣∣a(s)∣∣ds≤ |c| +Kq,

the last inequality being a consequence of (.). Hence K ≤ |c|( – q)–, contradicting
(.). Thus, (.) holds.
From (.) and (.), we find for t ≥ T ,

∣∣z(t) – c
∣∣ ≤

∫ t+r

t

∣∣a(s)∣∣∣∣z(s – r)
∣∣ds ≤ K

∫ t+r

t

∣∣a(s)∣∣ds.

Letting t → ∞ in the last inequality and using (.), we conclude that z(t) → c as
t → ∞. �

Now we are in a position to give a proof of Theorem ..

Proof of Theorem . Write xφ = x for brevity and let y be a solution of (.) which is
positive on [t,∞) for some t > t and satisfies condition (.). By virtue of (.) and (.),
we have

x(t)y(t) +
∫ t+r

t
p(s)x(s – r)y(s)ds = c(φ) (.)

for t ≥ t with c(φ) as in (.). If we let

z(t) = x(t)y(t), t ≥ t,

http://www.boundaryvalueproblems.com/content/2014/1/114


Pituk and Röst Boundary Value Problems 2014, 2014:114 Page 9 of 9
http://www.boundaryvalueproblems.com/content/2014/1/114

then (.) can be written in the form (.) with

c = c(φ), a(t) = –p(t)
y(t)

y(t – r)
, t ≥ t + r,

and t replaced with t + r. Clearly, conditions (.) and (.) imply that assumption (.)
of Lemma . is satisfied. By the application of Lemma ., we conclude that

lim
t→∞ z(t) = lim

t→∞
[
x(t)y(t)

]
= c

which is only a reformulation of the limit relation (.). �

Finally, we remark that applying a transformation technique described in [] and [],
Theorem . can possibly be extended to a class of equations with time-varying delays.
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