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Abstract
We study the existence and multiplicity of positive periodic solutions for
second-order nonlinear damped differential equations by combing the analysis of
positiveness of the Green function for a linear damped equation. Our nonlinearity
may be singular in its dependent variable. The proof of the main result relies on the
Guo-Krasnosel’skii fixed point theorem on compression and expansion of cones.
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1 Introduction
In this paper, we study the existence and multiplicity of positive T-periodic solutions for
the following second-order singular differential equation:

–x′′ + a(t)x′ + b(t)x = λf
(
t,x,x′),  ≤ t ≤ T , (.)

where λ >  is a positive parameter, a,b ∈C(R/TZ,R) and the nonlinearity f ∈ ((R/TZ)×
(, +∞)×R,R). In particular, the nonlinearity may change sign and have a repulsive sin-
gularity at x = , which means that

lim
x→+

f (t,x, y) = +∞ uniformly in (t, y) ∈R
.

Equation (.) is a particular case of a more general class of Sturm equations of the type

–
[
p(t)x′]′ + q(t)x = f (t,x),

where p is a strictly positive absolutely continuous function. Such equations, even in the
case p ≡ , where they are referred to as being of Schrödinger or Klein-Gordon type, ap-
pear in many scientific areas including quantum field theory, gas dynamics, fluid mechan-
ics and chemistry.
Electrostatic or gravitational forces are the most important examples of singular inter-

actions. During the last few decades, the study of the existence of positive solutions for
singular differential equations has deserved the attention ofmany researchers [–]. Some
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strong force conditions introduced by Gordon [] are standard in the related earlier works
[, , ]. Comparedwith the case of strong singularity, the study of the existence of periodic
solutions under the presence of a weak singularity is more recent, but has also attracted
many researchers [, , , ]. In particular, the degree theory [, ], the method of up-
per and lower solutions [, ], Schauder’s fixed point theorem [, ], some fixed point
theorems in cones for completely continuous operators [–] and a nonlinear Leray-
Schauder alternative principle [–] are the most relevant tools.
However, singular differential equation (.), in which the nonlinearity is dependent on

the derivative and does not require f to be nonnegative, has not attracted much attention
in the literature. There are not so many existence results for (.) even when the nonlin-
earity is independent of the derivative. In this paper, we try to fill this gap and establish the
existence of positive T-periodic solutions of (.) using the Guo-Krasnosel’skii fixed point
theorem on compression and expansion of cones, which has been used to study positive
solutions for systems of ordinary, functional differential equations [–]. We remark
that it is sufficient to prove that T : K ∩ (�̃ \ �) → K is continuous and completely con-
tinuous in Lemma . (Section ). This point is essential and advantageous.
Asmentioned above, this paper ismainlymotivated by the recent paper [, ]. The aim

of this paper is to study themultiplicity of positive solutions to (.). It is proved that such a
problemhas at least two positive solutions under reasonable conditions (seeTheorem.).
And the remaining part of this paper is organized as follows. In Section , we find the
Green function of the linear damped equation

–x′′ + a(t)x′ + b(t)x = ,  ≤ t ≤ T , (.)

subject to periodic boundary conditions

x() = x(T), x′() = x′(T), (.)

and prove its positiveness. The fact is very crucial to our arguments. Moreover, the one-
signed property of the Green function implies that a maximum principle and an anti-
maximumprinciple hold for the corresponding linear differential equations subject to var-
ious boundary conditions, which is an important topic in differential equations (see [,
]). In Section , by employing the Guo-Krasnosel’skii fixed point theorem, we prove the
existence of twin positive solutions for (.) under the positiveness of the Green function
associated with (.)-(.). To illustrate the new results, some applications are also given.

2 The Green function and its positiveness
In this section, we consider the nonhomogeneous equation

–x′′ + a(t)x′ + b(t)x = h(t),  ≤ t ≤ T . (.)

We say that (.)-(.) is nonresonant if its unique T-periodic solution is the trivial one.
When (.)-(.) is nonresonant, as a consequence of Fredholm’s alternative, equation (.)
admits a unique T-periodic solution which can be written as

x(t) =
∫ T


G(t, s)h(s)ds,
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where h ∈C(R/TZ),G(t, s) is the Green function of (.), associated with (.), and we will
prove its positiveness. Throughout this paper, we assume that the following condition is
satisfied:
(H) a(t), b(t) are continuous functions and b(t) >  for all t ∈ [,T].

Lemma . Let K(s, τ ) : [,T]× [,T]→ [, +∞) be a continuous function. Then, for any
nonnegative continuous function ϕ(t) defined on [,T], the integral equation

x(t) = ϕ(t) +
∫ t



∫ s


K (s, τ )x(τ )dτ ds, t ∈ [,T] (.)

has a unique solution x(t),which is continuous on [,T] and satisfies the following inequal-
ity:

x(t)≥ ϕ(t), t ∈ [,T]. (.)

Proof We solve equation (.) by the method of successive approximations. Let

x(t) = ϕ(t), xn(t) =
∫ t



∫ s


K (s, τ )xn–(τ )dτ ds, n = , , . . . .

Take

α = max
≤t≤T

ϕ(t), β = max
≤s,τ≤T

K (s, τ ).

One can easily verify that

 ≤ xn(t) ≤ αβ
n


(n)!
tn, n = , , . . . ,

which implies that the series
∑∞

n= xn(t) converges uniformly with respect to t ∈ [,T].
Obviously, x(t) =

∑∞
n= xn(t) is a continuous solution of (.). Moreover, inequality (.)

holds because ϕ(t) and K (s, τ ) are nonnegative functions.
Next we prove the uniqueness. To do so, we first show that the solution of (.) is unique

on [t, t] ⊂ [,T] with t <
√
/β. Then the uniqueness of the solution on [,T] is direct

using the continuation property.
On the contrary, suppose that (.) has two solutions x and x on [t, t]. Then, for

t ∈ [t, t], we have

∣∣x(t) – x(t)
∣∣ = ∣∣∣∣

∫ t



∫ s


K (s, τ )

(
x(τ ) – x(τ )

)
dτ ds

∣∣∣∣
≤

∫ t



∫ s


K (s, τ )

∣∣x(τ ) – x(τ )
∣∣dτ ds

≤ max
t∈[t,t]

∣∣x(t) – x(t)
∣∣βt/

< max
t∈[t,t]

∣∣x(t) – x(t)
∣∣.

Hence it follows that x(t) = x(t) for all t ∈ [t, t]. �
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Let us denote by u(t) and v(t) the solutions of (.) satisfying the initial conditions

u() = , u′() = ; v() = , v′() = .

Lemma . u(t) and v(t) satisfy the following integral equations:

u(t) =  +
∫ t



∫ s


b(τ ) exp

(∫ s

τ

a(r)dr
)
u(τ )dτ ds, (.)

v(t) =
∫ t


exp

(∫ s


a(r)dr

)
ds +

∫ t



∫ s


b(τ ) exp

(∫ s

τ

a(r)dr
)
v(τ )dτ ds. (.)

Proof Since u(t) is a solution of (.), we have

(
u′(t) exp

(
–

∫ t


a(r)dr

))′
= b(t) exp

(
–

∫ t


a(r)dr

)
u(t). (.)

Integrating (.) from  to t and noticing u′() = , we obtain

u′(t) =
∫ t


b(τ ) exp

(∫ t

τ

a(r)dr
)
u(τ )dτ .

To obtain (.), we only need to integrate the above equality from to t and notice u() = .
In a similar way, we can prove (.). �

Lemma . For the solution x(t) of boundary value problem (.)-(.), the formula

x(t) =
∫ T


G(t, s)h(s)ds, t ∈ [,T], (.)

holds, where

G(t, s) =
v(T)
D

u(t)u(s) –
u′(T)
D

v(t)v(s)

+

{
v′(T)–

D u(t)v(s) – u(T)–
D u(s)v(t),  ≤ s ≤ t ≤ T ,

v′(T)–
D u(s)v(t) – u(T)–

D u(t)v(s),  ≤ t ≤ s ≤ T ,
(.)

is the Green function, the number D is defined by D = u(T) + v′(T) – .

Proof It is easy to see that the general solution of equation (.) has the form

x(t) = αu(t) + βv(t) +
∫ t



(
u(t)v(s) – u(s)v(t)

)
h(s)ds,

where α and β are arbitrary constants. Substituting this expression for x(t) in boundary
condition (.), we can obtain

α = αu(T) + βv(T) + u(T)
∫ T


v(s)h(s)ds – v(T)

∫ T


u(s)h(s)ds,

β = αu′(T) + βv′(T) + u′(T)
∫ T


v(s)h(s)ds – v′(T)

∫ T


u(s)h(s)ds.

After not very complicated calculations, we can get (.) and (.). �

http://www.boundaryvalueproblems.com/content/2014/1/115


Li et al. Boundary Value Problems 2014, 2014:115 Page 5 of 12
http://www.boundaryvalueproblems.com/content/2014/1/115

Remark . As a direct application of Lemma ., if a(t) = , b(t) = k > , then the Green
function G(t, s) of boundary value problem (.)-(.) has the form

G(t, s) =

{
ek(t–s)+ek(T–t+s)

k(ekT–) , ≤ s≤ t ≤ T ,
ek(s–t)+ek(T+t–s)

k(ekT–) , ≤ t ≤ s ≤ T .

Lemma . Assume that (H) holds. Then the Green function G(t, s) associated with (.)-
(.) is positive for all s, t ∈ [,T].

Proof Since G(t, s) = G(s, t), it is enough to prove that G(t, s) >  for  ≤ s ≤ t < T . Recall
that u(t) and v(t) satisfy integral equations (.) and (.). By condition (H) and Lemma.,
it follows that

u(t) ≥ , v(t)≥
∫ t


exp

(∫ s


a(r)dr

)
ds > , t ∈ [,T],

u(T) > , v′(T) > .
(.)

Now from (.) we get D = u(T) + v′(T) –  > . Setting

E(t, s) = u(s)v(t) – u(t)v(s),

E(t, s) =
(
v(T)u(t) – u(T)v(t)

)
u(s) +

(
v′(T)u(t) – u′(T)v(t)

)
v(s),

for s ≤ t, we have

G(t, s) =

D

(
E(t, s) + E(t, s)

)
.

Evidently, E(T , ) = , E(s, s) =  for s ∈ [,T] holds. Let us now show that

E(t, s) >  for s ∈ [,T) and t ∈ (s,T], (.)

E(t, s) >  for s ∈ [,T], t ∈ [s,T] and (t, s) �= (T , ). (.)

To prove (.), we note that for fixed s ∈ [,T),

∂E(t, s)
∂t

= a(t)
∂E(t, s)

∂t
+ b(t)E(t, s)

and

E(s, s) = ,
∂E(t, s)

∂t

∣∣∣
t=s

= .

Hence it follows that for all s ∈ (t,T], we have

E(t, s) =
∫ t


exp

(∫ s


a(r)dr

)
ds

+
∫ t



∫ τ


b(ω) exp

(∫ τ

ω

a(r)dr
)
E(ω, t)dωdτ . (.)

Using Lemma ., we get from (.) that E(t, s) >  for all t ∈ (s,T].
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Next, we prove (.), note that for fixed s ∈ [,T),

∂E(t, s)
∂t

= a(t)
∂E(t, s)

∂t
+ b(t)E(t, s)

and

E(T , s) = v(s),
∂E(t, s)

∂t

∣∣∣
t=T

= –u(s).

Hence it follows that, for all t ∈ [s,T], we have

E(t, s) = v(s) + u(s)
∫ T

t
exp

(∫ s


a(r)dr

)
ds

+
∫ T

t

∫ τ


b(ω) exp

(∫ τ

ω

a(r)dr
)
E(ω, t)dωdτ . (.)

Again using Lemma ., we get from (.) that E(t, s) >  if (t, s) �= (T , ), and the proof
is completed. �

Under hypothesis (H), we always define

A = min
≤s,t≤T

G(t, s), B = max
≤s,t≤T

G(t, s), σ = A/B. (.)

Thus B > A >  and  < σ < . When a(t) = , b(t) = k > , and a direct calculation shows
that

A =
ekT/

k(ekT – )
, B =

 + ekT

k(ekT – )
, σ =

ekT/

 + ekT
< .

3 Main results
In this section, we state and prove the new existence results for (.). The proof is based
on the following well-known fixed point theorem on compression and expansion of cones,
which we state here for the convenience of the reader, after introducing the definition of
a cone.

Definition . Let X be a Banach space and let K be a closed, nonempty subset of X. K is
a cone if

(i) αu + βv ∈ K for all u, v ∈ K and all α,β > ,
(ii) u, –u ∈ K implies u = .

We also recall that a compact operator means an operator which transforms every
bounded set into a relatively compact set. Let us define the function ω(t) = λ

∫ T
 G(t, s)ds

and use ‖ · ‖ to denote the usual L-norm over (,T), by ‖ · ‖ we denote the supremum
norm of C[,T].

Lemma . [] Let X be a Banach space and K (⊂ X) be a cone. Assume that �, � are
open subsets of X with  ∈ �, �̄ ⊂ �, and let

A : K ∩ (�̄ \ �) → K

http://www.boundaryvalueproblems.com/content/2014/1/115
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be a completely continuous operator such that either
(i) ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂� and ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂�; or
(ii) ‖Au‖ ≤ ‖u‖, u ∈ K ∩ ∂� and ‖Au‖ ≥ ‖u‖, u ∈ K ∩ ∂�.

Then A has a fixed point in K ∩ (�̄ \ �).
Let X =C[,T] and define

K =
{
x ∈ X : x(t)≥  and min

≤t≤T
x(t)≥ σ‖x‖

}
,

where σ is as in (.).
One may readily verify that K is a cone in X. Now, suppose that F : [,T] × R × R →

[,∞) is a continuous function. Define an operator

(Ax)(t) =
∫ T


G(t, s)F

(
s,x(s),x′(s)

)
ds

for x ∈ X and t ∈ [,T].

Lemma . A : X → K is well defined.

Proof Let x ∈ X, then we have

min
≤t≤T

(Ax)(t) = min
≤t≤T

∫ T


G(t, s)F

(
s,x(s),x′(s)

)
ds

≥ A
∫ T


F
(
s,x(s),x′(s)

)
ds

= σB
∫ T


F
(
s,x(s),x′(s)

)
ds

≥ σ max
≤t≤T

∫ T


G(t, s)F

(
s,x(s),x′(s)

)
ds

= σ‖Ax‖.

This implies that A(X) ⊂ K and the proof is completed. �

It is easy to prove.

Lemma . A is continuous and completely continuous.

Now we present our main result.

Theorem . Suppose that (.) satisfies (H). Furthermore, assume that

(H) f : [,T]×R
+ ×R →R is continuous and there exists a constant M >  such that

F(t,x, y) = f (t,x, y) +M ≥  for all (t,x, y) ∈ [,T]×R
+ ×R.

(H) limx→+ f (t,x, y) = +∞ and limx→+∞ f (t,x, y)/x = +∞ uniformly (t, y) ∈R
.

Then (.) has at least two positive T-periodic solutions for sufficiently small λ.

http://www.boundaryvalueproblems.com/content/2014/1/115
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Proof To show that (.) has a positive solution, we should only show that

–x′′ + a(t)x′ + b(t)x = λF
(
t,x(t) –Mω(t),x′(t) –Mω′(t)

)
(.)

has a positive solution x satisfying (.) and x(t) >Mω(t) for t ∈ [,T]. If it is right, then
φ(t) = x(t) –Mω(t) is a solution of (.) since

–φ′′(t) + a(t)φ′(t) + b(t)φ(t)

= –
(
x(t) –Mω(t)

)′′ + a(t)
(
x(t) –Mω(t)

)′ + b(t)
(
x(t) –Mω(t)

)
= λF

(
t,x(t) –Mω(t),x′(t) –Mω′(t)

)
– λM

= λf
(
t,x(t) –Mω(t),x′(t) –Mω′(t)

)
= λf

(
t,φ(t),φ′(t)

)
,

where –ω′′(t) + a(t)ω′(t) + b(t)ω(t) = λ is used.
Problem (.)-(.) is equivalent to the following fixed point of the operator equation:

x(t) = (Ax)(t),

where A is a completely continuous operator defined by

(Ax)(t) = λ

∫ T


G(t, s)F

(
s,x(s) –Mω(s),x′(s) –Mω′(s)

)
ds.

Since limx→+∞ f (t,x,y)
x = +∞, there exists r ≥MT such that

x ≥ σ r ⇒ f (t,x, y)
x

≥ 
σ
.

For r > , let �r = {x ∈ K : ‖x‖ < r} and note that ∂�r = {x ∈ K : ‖x‖ = r}.
First we show

‖Ax‖ ≤ ‖x‖ for x ∈ K ∩ ∂�r .

Let h(t) = max{f (t,x,x′) : σ
 r ≤ x ≤ r} and λ∗ = min{σ /A,MT/B‖h‖}. For any x ∈

∂�r and  < λ < λ∗, we can verify that

x(t) –Mω(t) ≥ σ‖x‖ –Mω(t) = σ r –Mω(t)

≥ σ r – λMBT ≥ σ r –
σ r


=
σ r


.

Then we have

(Ax)(t) = λ

∫ T


G(t, s)F

(
s,x(s) –Mω(s),x′(s) –Mω′(s)

)
ds

≤ λB
∫ T


F
(
s,x(s) –Mω(s),x′(s) –Mω′(s)

)
ds

http://www.boundaryvalueproblems.com/content/2014/1/115
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≤ λB‖h‖
≤ r = ‖x‖.

This implies ‖Ax‖ ≤ ‖x‖.
In view of the assumption

lim
x→+∞

f (t,x,x′)
x

= lim
x→+∞

F(t,x –Mω,x′ –Mω′)
x –Mω′ = +∞,

then there is r > σ r > r such that

F(t,x –Mω,x′ –Mω′)
x –Mω

≥ λ–σ –A–T–, x ≥ σ r.

Hence, we have

F
(
t,x –Mω,x′ –Mω′) ≥ λ–A–T–r, x≥ σ r.

Next, we show that

‖Ax‖ ≥ ‖x‖ for x ∈ K ∩ ∂�r .

To see this, let x ∈ K ∩ ∂�r, then

‖Ax‖ = max
≤t≤T

∣∣∣∣λ
∫ T


G(t, s)F

(
s,x(s) –Mω(s),x′(s) –Mω′(s)

)
ds

∣∣∣∣
≥ λA

∫ T


F
(
s,x(s) –Mω(s),x′(s) –Mω′(s)

)
ds

≥ λA
∫ T


λ–A–T–r ds

≥ r = ‖x‖.

It follows from Lemma . thatA has a fixed point x̃(t) such that x̃(t) ∈ �̄r \ �r , which
is a positive periodic solution of (.) for λ < λ∗ satisfying

r < ‖x̃‖ < r.

So, equation (.) has a positive solution x(t) = x̃(t) –Mω(t) ≥ σ r – σMT
 ≥ σMT

 .
On the other hand, since

lim
x→+

f (t,x, y) = +∞,

hence, there exists a positive number  < r < r such that

f (t,x, y) > , x ∈R
+ with  < x ≤ r <

σMT


,

http://www.boundaryvalueproblems.com/content/2014/1/115
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problem (.)-(.) is equivalent to the following fixed point of the operator equation:

x(t) =
(
A′x

)
(t),

where A′ is a continuous and completely continuous operator defined by

(
A′x

)
(t) = λ

∫ T


G(t, s)f

(
s,x(s),x′(s)

)
ds.

And for any ρ > , define

(ρ) =max
{
f (t,x, y) : x ∈R

+,σρ ≤ x ≤ ρ, (t, y) ∈ [,T]×R
}
.

Furthermore, for any x ∈ K ∩ ∂�r, we have

(
A′x

)
(t) = λ

∫ T


G(t, s)f

(
s,x(s),x′(s)

)
ds

≤ λB
∫ T


f
(
s,x(s),x′(s)

)
)ds

≤ λB(r)T .

Thus, from the above inequality, there exists λ∗∗ such that

∥∥A′x
∥∥ < ‖x‖ for x ∈ ∂�r ,  < λ < λ∗∗.

Since limx→+ f (t,x,x′) = +∞, then there is a positive number  < r < σ r < r such that

f
(
t,x,x′) > γ x, x ∈ R

+ with  < x ≤ r,

where γ satisfies λγ σAT > .
If x ∈ K ∩ ∂�r, then

∥∥A′x
∥∥ = max

≤t≤T

∣∣∣∣λ
∫ T


G(t, s)f

(
s,x(s),x′(s)

)
ds

∣∣∣∣
≥ λA

∫ T


f
(
s,x(s),x′(s)

)
ds

≥ λA
∫ T


γ xds

≥ λA
∫ T


γ σ‖x‖ds

≥ ‖x‖.

It follows from Lemma . that A′ has a fixed point x(t) such that x(t) ∈ �̄r \ �r ,
which is a positive periodic solution of (.) for λ < λ∗∗ satisfying

r < ‖x‖ < r.

http://www.boundaryvalueproblems.com/content/2014/1/115
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Noting that

r < ‖x‖ < r <
σ r


< ‖x‖ < r,

we can conclude that x and x are the desired distinct positive periodic solutions of (.)
for λ <min{λ∗,λ∗∗}. �

Example Let the nonlinearity in (.) be

f (t,x, y) =
(
 + |y|γ )(

c(t)x–α + d(t)xβ + e(t)
)
, ≤ t ≤ T ,

where α > , β > , γ ≥ , c(t),d(t), e(x) ∈ C[,T]. It is clear that f (t,x, y) satisfies condi-
tions (H), (H). Then (.) has at least two positive T-periodic solutions for sufficiently
small λ.
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