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Abstract
In this paper, we consider semilinear biharmonic equations with concave-convex non-
linearities involvingweight functions, where the concave nonlinear term isλf (x)|u|q–1u
and the convex nonlinear term is h(x)|u|p–1u with λ ∈R

+. By use of the Nehari man-
ifold and the direct variational methods, the existence of multiple positive solutions is
established as λ ∈ (0,λ∗), here the explicit expression of λ∗ = λ∗(f ,h,p,q, S) is provided.
MSC: 35J35; 35J40; 35J65
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1 Introduction
In recent years, there has been extensive attention on semilinear second-order elliptic
equations,

⎧⎨
⎩
–Δu = gλ(x,u), in �,

u = , on ∂�,
(.)

here � is a bounded smooth domain in R
N (N ≥ ), gλ : � × R → R and λ is a positive

parameter; see [–] and the references therein. As gλ is sublinear, say, gλ = λuq,  < q < ,
the monotone iteration scheme or the method of sub-solutions and super-solutions are
effective; see []. As gλ is superlinear, for example, gλ = λu+ |u|p–u,  < p < N+

N– , variational
methods are applicable; see []. In contrast with the pure sublinear case and the pure
superlinear case, in [] Ambrosetti et al. considered problem (.) when gλ is, roughly, the
sum of a sublinear and a superlinear term. To be precise, they considered the following
problem:

⎧⎨
⎩
–Δu = λuq + up, in �,

 ≤ u ∈H
(�),

(.)

with  < q <  < p≤ N+
N– . They proved that problem (.) admits at least two positive solu-

tions for λ sufficiently small. In [], Sun and Li considered a similar problem:
⎧⎨
⎩
–Δu = uq + λup, in �,

 ≤ u ∈H
(�),
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with  < q <  < p = N+
N– , the authors studied the value of �, the supremum of the set

λ, related to the existence and multiplicity of positive solutions and established uniform
lower bounds for �. In [], Wu considered the subcritical case of problem (.) with λuq

replaced by λf (x)uq, here f (x) ∈ C(�) is a sign-changing function, and he showed that
problem (.) has at least two positive solutions as λ is small enough.
Some interesting generalizations of (.) have been provided in the framework of quasi-

linear elliptic equations or systems, semilinear second-order elliptic systems or fourth-
order elliptic equations.More recently, the semilinear fourth-order elliptic equations have
been studied by many authors, we refer the reader to [–] and the references therein.
Motivated by some work in [, , ], we deal with the following semilinear biharmonic
elliptic equation:

⎧⎨
⎩

Δu = λf (x)|u|q–u + h(x)|u|p–u, in �,

u =Δu = , on ∂�,
(.)

where � is a bounded smooth domain in R
N (N ≥ ),  < q <  < p < ∗∗ (∗∗ = N+

N– for
N >  and ∗∗ =∞ for N = ), λ >  is a parameter, f ∈ C(�) is a positive or sign-changing
weight function and h ∈ C(�) is a positive weight function.
For convenience and simplicity, we introduce some notations. The norm of u in Lr(�) is

denoted by |u|r = (
∫
�

|u(x)|r)/r , the norm of u in C(�) is denoted by |u|∞ =maxx∈� |u(x)|;
H

(�) ∩ H(�) is denoted by H(�), endowed with the norm ‖u‖ = |Δu|; S denotes the
best Sobolev constant for the embedding of H(�) in Lp+(�) (see []); to be precise,
|u|p+ ≤ S‖u‖ for all u ∈ H(�).
Now we define

Jλ(u) =


‖u‖ – λ

q + 

∫
�

f (x)|u|q+ dx – 
p + 

∫
�

h(x)|u|p+ dx, u ∈H(�).

It is well known that theweak solutions of problem (.) are the critical points of the energy
functional Jλ (see Rabinowitz []).
Next, we consider the Nehari minimization problem: for λ > ,

αλ(�) = inf
{
Jλ(u) | u ∈ Mλ(�)

}
,

whereMλ(�) = {u ∈H(�)\{} | 〈J ′λ(u),u〉 = }. Define

ψλ(u) =
〈
J ′λ(u),u

〉
= ‖u‖ – λ

∫
�

f (x)|u|q+ dx –
∫

�

h(x)|u|p+ dx.

Then for u ∈Mλ(�),

〈
ψ ′

λ(u),u
〉
= ‖u‖ – λ(q + )

∫
�

f (x)|u|q+ dx – (p + )
∫

�

h(x)|u|p+ dx.

Similarly to the method used in Tarantello [], we splitMλ(�) into three parts:

M+
λ (�) =

{
u ∈Mλ(�) | 〈ψ ′

λ(u),u
〉
> 

}
,

M
λ(�) =

{
u ∈Mλ(�) | 〈ψ ′

λ(u),u
〉
= 

}
,

M–
λ (�) =

{
u ∈ Mλ(�) | 〈ψ ′

λ(u),u
〉
< 

}
.
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Note that all solutions of (.) are clearly in the Nehari manifold, Mλ(�). Hence, our
approach to solve problem (.) is to analyze the structure ofMλ(�), and then to deal with
the minimization problems for Jλ on M+

λ (�) and M–
λ (�) applying the direct variational

method.
The following is our main result.

Theorem . Let λ∗ = p–
p–q · [ –q

(p–q)|h|∞ ]
–q
p– S

(p–q)
–p |f |–p∗ with p∗ = p+

p–q , then problem (.) has
at least two positive solutions for any λ ∈ (,λ∗).

The paper is organized as follows: in Section , we give some lemmas; in Section , we
prove Theorem ..

2 Preliminaries
In this section, we prove several lemmas.

Lemma . For λ ∈ (,λ∗) (where λ∗ is given in Theorem .), we have M
λ(�) = φ.

Proof Suppose thatM
λ(�) = φ for all λ > . If u ∈M

λ(�), then we have

‖u‖ = λ

∫
�

f (x)|u|q+ dx +
∫

�

h(x)|u|p+ dx (.)

and

‖u‖ = λ(q + )
∫

�

f (x)|u|q+ dx + (p + )
∫

�

h(x)|u|p+ dx. (.)

By (.)-(.), the Sobolev inequality, and the Hölder inequality, we get

‖u‖ = p – q
 – q

∫
�

h(x)|u|p+ dx≤ p – q
 – q

|h|∞Sp+‖u‖p+ (.)

and

‖u‖ = λ · p – q
p – 

∫
�

f (x)|u|q+ dx ≤ λ · p – q
p – 

|f |p∗Sq+‖u‖q+, (.)

where p∗ = p+
p–q . Thus, using (.) and (.), we have

λ ≥ p – 
p – q

· |f |–p∗S–(q+)
[
 – q
p – q

|h|–∞S–(p+)
] –q

p–

=
p – 
p – q

·
[

 – q
(p – q)|h|∞

] –q
p–

S
(p–q)
–p |f |–p∗ = λ∗. (.)

Hence, by (.) the desired conclusion yields. �

Lemma . If u ∈ M–
λ (�), then

‖u‖ > S
+p
–p

[
 – q

(p – q)|h|∞
] 

p–
and

∫
�

h(x)|u|p+ dx > |h|


–p∞
[
(p – q)S

 – q

] +p
–p

.
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Proof From u ∈M–
λ (�), it is easy to see that

‖u‖ < p – q
 – q

∫
�

h(x)|u|p+ dx.

By the Sobolev inequality, we get

‖u‖ > S
+p
–p

[
 – q

(p – q)|h|∞
] 

p–
.

In addition,

∫
�

h(x)|u|p+ dx > |h|


–p∞
[
(p – q)S

 – q

] +p
–p

.

The proof is completed. �

By Lemma ., for λ ∈ (,λ∗) we writeMλ(�) =M+
λ (�)∪M–

λ (�) and define

α+
λ (�) = inf

u∈M+
λ (�)

Jλ(u), α–
λ (�) = inf

u∈M–
λ (�)

Jλ(u).

The following lemma shows that the minimizers on Mλ(�) are ‘usually’ critical points
for Jλ.

Lemma . For λ ∈ (,λ∗), if u is a local minimizer for Jλ on Mλ(�), then J ′λ(u) =  in
[H(�)]∗.

Proof If u is a local minimizer for Jλ onMλ(�), then u is a solution of the optimization
problem

minimize Jλ(u) subject to ψλ(u) = .

Hence, by the theory of Lagrange multipliers, there exists θ ∈R such that

J ′λ(u) = θψ ′
λ(u) in

[
H(�)

]∗. (.)

Thus,

〈
J ′λ(u),u

〉
= θ

〈
ψ ′

λ(u),u
〉
. (.)

From u ∈ Mλ(�) and Lemma ., we have 〈J ′λ(u),u〉 =  and 〈ψ ′
λ(u),u〉 = . So, by

(.)-(.) we get J ′λ(u) =  in [H(�)]∗. �

For each u ∈ H(�)\{}, we write

tmax =
(

( – q)‖u‖
(p – q)

∫
�
h(x)|u|p+ dx

) 
p–

> .

Then we have the following lemma.

http://www.boundaryvalueproblems.com/content/2014/1/117
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Lemma . For each u ∈H(�)\{} and λ ∈ (,λ∗), we have
(i) there is a unique t– = t–(u) > tmax >  such that t–(u)u ∈M–

λ (�) and
Jλ(t–(u)u) =maxt≥ Jλ(tu);

(ii) t–(u) is a continuous function for nonzero u;
(iii) M–

λ (�) = {u ∈H(�)\{} | 
‖u‖ t

–( u
‖u‖ ) = };

(iv) if
∫
�
f (x)|u|q+ dx > , then there is a unique  < t+ = t+(u) < tmax such that

t+(u)u ∈M+
λ (�) and Jλ(t+(u)u) =min≤t≤t– Jλ(tu).

Proof (i) Fix u ∈H(�)\{}. Let

s(t) = t–q‖u‖ – tp–q
∫

�

h(x)|u|p+ dx, t ≥ .

Then we have s() = , s(t) → –∞ as t → ∞, s(t) is concave and reaches its maximum at
tmax. Moreover,

s(tmax) = t–qmax‖u‖ – tp–qmax

∫
�

h(x)|u|p+ dx

= ‖u‖q+
[(

 – q
p – q

) –q
p–

–
(
 – q
p – q

) p–q
p–

]( ‖u‖p+∫
�
h(x)|u|p+ dx

) –q
p–

≥ ‖u‖q+
(
p – 
p – q

)(
 – q
p – q

) –q
p–

(


|h|∞Sp+

) –q
p–

. (.)

Case I.
∫
�
f (x)|u|q+ dx ≤ .

There is a unique t– > tmax such that s(t–) = λ
∫
�
f (x)|u|q+ dx and s′(t–) < . Now,

〈
J ′λ

(
t–u

)
, t–u

〉
=

∥∥t–u∥∥ – λ

∫
�

f (x)
∣∣t–u∣∣q+ dx –

∫
�

h(x)
∣∣t–u∣∣p+ dx

=
(
t–

)q+[s(t–) – λ

∫
�

f (x)|u|q+ dx
]

= 

and

〈
ψ ′

λ

(
t–u

)
, t–u

〉
= ( – q)

∥∥t–u∥∥ – (p – q)
∫

�

h(x)
∣∣t–u∣∣p+ dx

=
(
t–

)+q[( – q)
(
t–

)–q‖u‖ – (p – q)
(
t–

)p–q– ∫
�

h(x)|u|p+ dx
]

=
(
t–

)+qs′(t–) < .

Thus, t–u ∈M–
λ (�). In addition,

dJλ(tu)
dt

= t‖u‖ – λtq
∫

�

f (x)|u|q+ dx – tp
∫

�

h(x)|u|p+ dx

= t–
〈
J ′λ(tu), tu

〉
=  if and only if t = t–

http://www.boundaryvalueproblems.com/content/2014/1/117
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and

dJλ(tu)
dt

∣∣∣∣
t=t–

= ‖u‖ – λq
(
t–

)q– ∫
�

f (x)|u|q+ dx – p
(
t–

)p– ∫
�

h(x)|u|p+ dx

=
(
t–

)–〈
ψ ′

λ

(
t–u

)
, t–u

〉
< .

Hence, Jλ(t–u) =maxt≥ Jλ(tu).
Case II.

∫
�
f (x)|u|q+ dx > .

From (.) and

s() =  < λ

∫
�

f (x)|u|q+ dx ≤ λ|f |p∗Sq+‖u‖q+

< ‖u‖q+
(
p – 
p – q

)(
 – q
p – q

) –q
p–

(


|h|∞Sp+

) –q
p–

≤ s(tmax) for λ ∈ (,λ∗),

there exist unique t+ and t– such that  < t+ < tmax < t–,

s
(
t+

)
= λ

∫
�

f (x)|u|q+ dx = s
(
t–

)

and

s′
(
t+

)
>  > s′

(
t–

)
.

Similar to the argument in Case I above, we have t+u ∈M+
λ (�), t–u ∈M–

λ (�), and

Jλ
(
t–u

)
=max

t≥
Jλ(tu), Jλ

(
t+u

)
= min

≤t≤t–
Jλ(tu).

(ii) By the uniqueness of t–(u) and the external property of t–(u), we find that t–(u) is
continuous function of u = .
(iii) For u ∈ M–

λ (�), let v = u
‖u‖ . By item (i), there is a unique t–(v) >  such that t–(v)v ∈

M–
λ (�), that is, t–( u

‖u‖ )


‖u‖u ∈ M–
λ (�). Since u ∈ M–

λ (�), we have t–( u
‖u‖ )


‖u‖ = , which im-

plies

M–
λ (�) ⊂

{
u ∈H(�)\{}

∣∣∣ 
‖u‖ t

–
(

u
‖u‖

)
= 

}
.

Conversely, let u ∈ H(�)\{} such that 
‖u‖ t

–( u
‖u‖ ) = . Then t–( u

‖u‖ )
u

‖u‖ ∈ M–
λ (�). There-

fore,

M–
λ (�) =

{
u ∈H(�)\{}

∣∣∣ 
‖u‖ t

–
(

u
‖u‖

)
= 

}
.

(iv) By Case II of item (i). �

By f ∈ C(�) and changes sign in �, we have Θ = {x ∈ � | f (x) > } is an open set in
RN . Without loss of generality, we may assume that Θ is a domain in RN . Consider the

http://www.boundaryvalueproblems.com/content/2014/1/117
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following biharmonic equation:

⎧⎨
⎩

Δu = h(x)|u|p–u, in Θ ,

u =Δu = , on ∂Θ .
(.)

Associated with (.), we consider the energy functional

K (u) =


‖u‖ – 

p + 

∫
Θ

h(x)|u|p+ dx, u ∈H(Θ)

and the minimization problem

β(Θ) = inf
{
K (u) | u ∈N(Θ)

}
,

where N(Θ) = {u ∈ H(Θ)\{} | 〈K ′(u),u〉 = }. Now we prove that problem (.) has a
positive solution w such that K (w) = β(Θ) > .

Lemma . For any u ∈ H(Θ)\{}, there exists a unique t(u) >  such that t(u)u ∈ N(Θ).
The maximum of K (tu) for t ≥  is reached at t = t(u), the map

t :H(Θ)\{} → (, +∞); u �→ t(u)

is continuous and the induced continuous map u→ t(u)u defines a homeomorphism of the
unit sphere of H(Θ) with N(Θ).

Proof For any given u ∈H(Θ)\{}, consider the function g(t) = K (tu), t ≥ . Clearly,

g ′(t) =  ⇔ tu ∈N(Θ) ⇔ ‖u‖ = tp–
∫

�

h(x)|u|p+ dx. (.)

It is easy to verify that g() = , g(t) >  for t >  small and g(t) <  for t >  large. Hence,
maxt≥ g(t) is reached at a unique t = t(u) such that g ′(t(u)) =  and t(u)u ∈N(Θ). To prove
the continuity of t(u), assume that un → u in H(Θ)\{}. It is easy to verify that {t(un)} is
bounded. If a subsequence of {t(un)} converges to t, it follows from (.) that t = t(u)
and then t(un)→ t(u). Finally the continuous map from the unit sphere of H(Θ) to N(Θ),
u→ t(u)u, is inverse to the retraction u → u

‖u‖ . �

Define

c∗ = inf
u∈H(Θ)\{}

max
t≥

K (tu), c = inf
γ∈Γ

max
t∈[,]

K
(
γ (t)

)
,

where Γ = {γ ∈ C([, ],H(Θ)) | γ () = ,K (γ ()) < }.

Lemma . β(Θ) = c∗ = c >  is a critical value of K .

Proof From Lemma ., we know that β(Θ) = c∗. Since K (tu) <  for u ∈ H(Θ)\{} and
t large, we obtain c ≤ c∗. The manifold N(Θ) separates H(Θ) into two components. The
component containing the origin also contains a small ball around the origin. Moreover,

http://www.boundaryvalueproblems.com/content/2014/1/117
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K (u) ≥  for all u in this component, because 〈K ′(tu),u〉 ≥ , ∀t ∈ [, t(u)]. Then each
γ ∈ Γ has to crossN(Θ) and β(Θ) ≤ c. Since the embeddingH(Θ) ↪→ Lp+(Θ) is compact
(see []), it is easy to prove that c >  is a critical value of K and w a positive solution
corresponding to c. �

With the help of Lemma ., we have the following result.

Lemma . (i) For λ ∈ (,λ∗), there exists tλ >  such that

αλ(�) ≤ α+
λ (�) < –

 – q
q + 

tλβλ(Θ) < ;

(ii) Jλ is coercive and bounded below on Mλ(�) for all λ > .

Proof (i) Let w be a positive solution of problem (.) such that K (w) = β(Θ). Then

∫
�

f (x)wq+
 dx =

∫
Θ

f (x)wq+
 dx > .

Set tλ = t+(w) as defined by Lemma .(iv). Hence, tλw ∈M+
λ (�) and

Jλ(tλw) =


‖tλw‖ – λ

q + 

∫
�

f (x)|tλw|q+ dx – 
p + 

∫
�

h(x)|tλw|p+ dx

=
(


–


q + 

)
‖tλw‖ +

(


q + 
–


p + 

)∫
�

h(x)|tλw|p+ dx

< –
 – q
q + 

tλβ(Θ) < .

This implies

αλ(�) ≤ α+
λ (�) < –

 – q
q + 

tλβ(Θ) < .

(ii) For u ∈ Mλ(�), we have ‖u‖ = λ
∫
�
f (x)|u|q+ dx +

∫
�
h(x)|u|p+ dx. Then by the

Hölder, Sobolev, and Young inequalities,

Jλ(u) =
p – 

(p + )
‖u‖ – λ(p – q)

(p + )(q + )

∫
�

f (x)|u|q+ dx

≥ p – 
(p + )

‖u‖ – λ(p – q)
(p + )(q + )

|f |p∗Sq+‖u‖q+

≥ p – 
(p + )

‖u‖ – λ


–q C(p,q)
(|f |p∗Sq+

) 
–q ,

here C(p,q) = [ p–q
(p+)(q+) ]


–q · [ (p+)p– ]

+q
–q .

Thus, Jλ is coercive onMλ(�) and

Jλ(u) ≥ –λ


–q C(p,q)
(|f |p∗Sq+

) 
–q

for all λ > . �

http://www.boundaryvalueproblems.com/content/2014/1/117
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Next, we will use the idea of Tarantello [] to get the following results.

Lemma . For λ ∈ (,λ∗) and any given u ∈Mλ(�), there exist ε >  and a differentiable
functional ξ : B(; ε) ⊂ H(�) → R

+ such that ξ () = , the function ξ (v)(u + v) ∈ Mλ(�)
and

〈
ξ ′(), v

〉
=

∫
�

ΔuΔv – λ(q + )
∫
�
f |u|q–uv – (p + )

∫
�
h|u|p–uv

( – q)‖u‖ – (p – q)
∫
�
h(x)|u|p+ dx (.)

for all v ∈ H(�).

Proof Define F :R×H(�) →R as follows:

F(ξ ,w) = ξ ‖u +w‖ – λξ q+
∫

�

f (x)|u +w|q+ dx – ξ p+
∫

�

h(x)|u +w|p+ dx.

Since F(, ) = 〈J ′λ(u),u〉 =  and by Lemma ., we obtain

F ′
ξ (, ) = ‖u‖ – λ(q + )

∫
�

f (x)|u|q+ dx – (p + )
∫

�

h(x)|u|p+ dx

=
〈
ψ ′

λ(u),u
〉 = ,

we can get the desired results applying the implicit function theorem at the point (, ).
�

Lemma . For λ ∈ (,λ∗) and any given u ∈ M–
λ (�), there exist ε >  and a differentiable

functional ξ– : B(; ε)⊂H(�) →R
+ such that ξ–() = , the function ξ–(v)(u+ v) ∈M–

λ (�)
and

〈(
ξ–)′(), v

〉
=

∫
�

ΔuΔv – λ(q + )
∫
�
f |u|q–uv – (p + )

∫
�
h|u|p–uv

( – q)‖u‖ – (p – q)
∫
�
h(x)|u|p+ dx (.)

for all v ∈ H(�).

Proof In view of Lemma ., there exist ε >  and a differentiable functional ξ– such that
ξ–() = , ξ–(v)(u + v) ∈ Mλ(�) for all v ∈ B(; ε) ⊂ H(�) and we have (.). By use of
u ∈ M–

λ (�), we have 〈ψ ′
λ(u),u〉 < . In combination with the continuity of the functions ψ ′

λ

and ξ–, we get 〈ψ ′
λ(ξ–(v)(u + v)), ξ–(v)(u + v)〉 <  as ε sufficiently small, this implies that

ξ–(v)(u + v) ∈M–
λ (�). �

3 Proof of Theorem 1.1
Firstly, we provide the existence of minimizing sequences for Jλ on Mλ(�) and M–

λ (�) as
λ is sufficiently small.

Proposition . Let λ ∈ (,λ∗), then
(i) there exists a minimizing sequence {un} ⊂Mλ(�) such that

Jλ(un) = αλ(�) + o() and J ′λ(un) = o() in
[
H(�)

]∗;
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(ii) there exists a minimizing sequence {un} ⊂M–
λ (�) such that

Jλ(un) = α–
λ (�) + o() and J ′λ(un) = o() in

[
H(�)

]∗.

Proof (i) By Lemma .(ii) and the Ekeland variational principle [], there exists a mini-
mizing sequence {un} ⊂Mλ(�) such that

Jλ(un) < αλ(�) +

n

(.)

and

Jλ(un) < Jλ(w) +

n

‖w – un‖ for each w ∈Mλ(�). (.)

Taking n large, from Lemma .(i) and (.), we have

Jλ(un) =
(


–


p + 

)
‖un‖ –

(


q + 
–


p + 

)
λ

∫
�

f (x)|un|q+ dx

< αλ(�) +

n
< –

 – q
q + 

tλβ(Θ). (.)

This implies

|f |p∗Sq+‖un‖q+ ≥
∫

�

f (x)|un|q+ dx > (p + )( – q)
λ(p – q)

tλβ(Θ) > , (.)

that is,

‖un‖ >
[
(p + )( – q)

λ(p – q)
tλβ(Θ)S–(q+)|f |–p∗

] 
q+

. (.)

Now, we will show that

〈
J ′λ(un),ϕ

〉 →  as n→ ∞,∀ϕ ∈H(�).

Exactly as in Lemma . we may apply suitable functionals ξn(v) >  to un and obtain

ξn(v)(un + v) ∈Mλ(�), ∀v ∈H(�),‖v‖ < εn. (.)

Hence, if ϕ ∈H(�) and s >  small, substituting in (.) v = sϕ and applying (.), we have


n

[∣∣ξn(sϕ) – 
∣∣ · ‖un‖ + ξn(sϕ)‖sϕ‖]

≥ Jλ(un) – Jλ
(
ξn(sϕ)(un + sϕ)

)

=


‖un‖ – λ

q + 

∫
�

f (x)|un|q+ dx – 
p + 

∫
�

h(x)|un|p+ dx

–


ξ 
n (sϕ)‖un + sϕ‖ + λ

q + 
ξ q+
n (sϕ)

∫
�

f (x)|un + sϕ|q+ dx

http://www.boundaryvalueproblems.com/content/2014/1/117
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+


p + 
ξp+
n (sϕ)

∫
�

h(x)|un + sϕ|p+ dx

= –
ξ 
n (sϕ) – 


‖un + sϕ‖ – 


(‖un + sϕ‖ – ‖un‖

)

+ λ
ξ
q+
n (sϕ) – 
q + 

∫
�

f (x)|un + sϕ|q+ dx

+
λ

q + 

∫
�

f (x)
(|un + sϕ|q+ – |un|q+

)
dx

+
ξ
p+
n (sϕ) – 
p + 

∫
�

h(x)|un + sϕ|p+ dx + 
p + 

∫
�

h(x)
(|un + sϕ|p+ – |un|p+

)
dx.

Dividing by s >  and passing to the limit as s→  we derive


n

[∣∣ξ ′
n()ϕ

∣∣‖un‖ + ‖ϕ‖]

≥ –
[
ξ ′
n()ϕ

][‖un‖ – λ

∫
�

f (x)|un|q+ dx –
∫

�

h(x)|un|p+ dx
]

–
∫

�

ΔunΔϕ dx + λ

∫
�

f (x)|un|q–unϕ dx +
∫

�

h(x)|un|p–unϕ dx

= –
∫

�

ΔunΔϕ dx + λ

∫
�

f (x)|un|q–unϕ dx +
∫

�

h(x)|un|p–unϕ dx. (.)

Since

ξ ′
n()ϕ =


∫
�

ΔunΔϕ – λ(q + )
∫
�
f |un|q–unϕ – (p + )

∫
�
h|un|p–unϕ

( – q)‖un‖ – (p – q)
∫
�
h(x)|un|p+ dx ,

by the boundedness of un we get

∥∥ξ ′
n()

∥∥ ≤ C

|( – q)‖un‖ – (p – q)
∫
�
h(x)|un|p+ dx| (.)

for a suitable positive constant C.
Next, we show that |( – q)‖un‖ – (p – q)

∫
�
h(x)|un|p+ dx| is bounded away from zero.

Arguing by contradiction, assume that

( – q)‖un‖ – (p – q)
∫

�

h(x)|un|p+ dx = o(), n→ ∞. (.)

Since un ∈Mλ(�), we have

‖un‖ = λ

∫
�

f (x)|un|q+ dx +
∫

�

h(x)|un|p+ dx,

and consequently by (.),

p – 
 – q

∫
�

h(x)|un|p+ dx = λ

∫
�

f (x)|un|q+ dx + o(), n→ ∞. (.)
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Then by (.), the Hölder inequality, Sobolev inequality and (.)-(.), we obtain

 < (λ∗ – λ)
∫

�

f (x)|un|q+ dx

≤ p – 
 – q

∫
�

h(x)|un|p+ dx
[ (p – q)

∫
�
h(x)|un|p+ dx

( – q)‖un‖
] q–p

p–
– λ

∫
�

f (x)|un|q+ dx

= o(),

moreover, ‖un‖ = o(), which contradicts (.).
Thus, we get from (.) that

∥∥ξ ′
n()

∥∥ ≤ C, independent of n.

Hence, by (.) it follows that

∫
�

ΔunΔϕ dx – λ

∫
�

f (x)|un|q–unϕ dx –
∫

�

h(x)|un|p–unϕ dx ≥ –
C

n
,

which implies that 〈J ′λ(un),ϕ〉 → , as n→ ∞.
(ii) Similar to the arguments in (i), by Lemma . and Lemma ., we can prove (ii). �

Now, we establish the existence of a local minimum for Jλ onM+
λ (�).

Theorem . Let λ ∈ (,λ∗), then the functional Jλ has a minimizer u+ in M+
λ (�) and it

satisfies
(i) Jλ(u+) = αλ(�) = α+

λ (�);
(ii) u+ is a positive solution of problem (.);
(iii) Jλ(u+) →  as λ → .

Proof By Proposition .(i), there is a minimizing sequence {un} for Jλ onMλ(�) such that

Jλ(un) = αλ(�) + o() and J ′λ(un) = o() in
[
H(�)

]∗. (.)

Then by Lemma . and the compact imbedding theorem, there exist a subsequence {un}
and u+ ∈H(�) such that

un ⇀ u+ weakly in H(�), (.)

un → u+ strongly in Lp+(�) (.)

and

un → u+ strongly in Lq+(�). (.)

First, we claim that

∫
�

f (x)
∣∣u+∣∣q+ dx > .

http://www.boundaryvalueproblems.com/content/2014/1/117
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If not, by (.) we conclude that
∫

�

f (x)|un|q+ dx →
∫

�

f (x)
∣∣u+∣∣q+ dx ≤  as n→ ∞.

Therefore, as n→ ∞,

Jλ(un) =


‖un‖ – λ

q + 

∫
�

f (x)|un|q+ dx – 
p + 

∫
�

h(x)|un|p+ dx

=
(


–


q + 

)
λ

∫
�

f (x)|un|q+ dx +
(


–


p + 

)∫
�

h(x)|un|p+ dx

=
(


–


q + 

)
λ

∫
�

f (x)
∣∣u+∣∣q+ dx +

(


–


p + 

)∫
�

h(x)
∣∣u+∣∣p+ dx + o(),

this contradicts Jλ(un) → αλ(�) <  as n→ ∞.
In combination with (.)-(.), it is easy to verify that u+ ∈Mλ(�) is a nontrivial weak

solution of problem (.).
Now we prove that un → u+ strongly in H(�). Supposing the contrary, then ‖u+‖ <

lim infn→∞ ‖un‖ and so

∥∥u+∥∥ – λ

∫
�

f (x)
∣∣u+∣∣q+ dx –

∫
�

h(x)
∣∣u+∣∣p+ dx

< lim inf
n→∞

(
‖un‖ – λ

∫
�

f (x)|un|q+ dx –
∫

�

h(x)|un|p+ dx
)
= ,

this contradicts u+ ∈ Mλ(�). Hence, un → u+ strongly in H(�). This implies

Jλ(un) → Jλ
(
u+

)
= αλ(�) as n→ ∞.

Moreover, we have u+ ∈ M+
λ (�). In fact, if u+ ∈ M–

λ (�), by Lemma ., there exist unique
t+ and t– such that t+u+ ∈M+

λ (�) and t–u+ ∈ M–
λ (�), we get t+ < t– = . Since

dJλ(tu)
dt

=  if and only if t = t+ and t–

and

dJλ(tu)
dt

∣∣∣∣
t=t+

> ,
dJλ(tu)
dt

∣∣∣∣
t=t–

< ,

there exists t̃ ∈ (t+ , t– ] such that Jλ(t+u+) < Jλ(t̃u+). By Lemma .,

Jλ
(
t+u

+

)
< Jλ

(
t̃u+

) ≤ Jλ
(
t–u

+

)
= Jλ

(
u+

)
,

which is a contradiction. Since Jλ(u+) = Jλ(|u+|) and |u+| ∈ M+
λ (�), by Lemma . we may

assume that u+ is a nonnegative weak solution to problem (.). Applying the regularity
theory and strong maximum principle of elliptic equations, we find that u+ is one positive
solution of problem (.). In addition, by Lemma .,

 > Jλ
(
u+

) ≥ –λ


–q C(p,q)
(|f |p∗Sq+

) 
–q ,

which implies that Jλ(u+)→  as λ → . �
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Next, we establish the existence of a local minimum for Jλ onM–
λ (�).

Theorem . Let λ ∈ (,λ∗), then the functional Jλ has a minimizer u– in M–
λ (�) and it

satisfies
(i) Jλ(u–) = α–

λ (�);
(ii) u– is a positive solution of problem (.).

Proof By Proposition .(ii), there is a minimizing sequence {un} for Jλ on M–
λ (�) such

that

Jλ(un) = α–
λ (�) + o() and J ′λ(un) = o() in

[
H(�)

]∗.

Then by Lemma . and the compact imbedding theorem, there exist a subsequence {un}
and u– ∈H(�) such that

un ⇀ u– weakly in H(�),

un → u– strongly in Lp+(�)

and

un → u– strongly in Lq+(�).

Connecting with Lemma ., it is easy to see that u– ∈Mλ(�) is a nontrivial weak solution
of problem (.).
Next we prove that un → u– strongly in H(�). Supposing the contrary, then ‖u–‖ <

lim infn→∞ ‖un‖ and so

∥∥u–∥∥ – λ

∫
�

f (x)
∣∣u–∣∣q+ dx –

∫
�

h(x)
∣∣u–∣∣p+ dx

< lim inf
n→∞

(
‖un‖ – λ

∫
�

f (x)|un|q+ dx –
∫

�

h(x)|un|p+ dx
)
= ,

this contradicts u– ∈Mλ(�). Hence, un → u– strongly in H(�). This implies

Jλ(un) → Jλ
(
u–

)
= α–

λ (�) as n→ ∞.

In addition, from Lemma .(ii)-(iii), we have u– ∈ M–
λ (�). Since Jλ(u–) = Jλ(|u– |) and

|u– | ∈ M–
λ (�), by Lemma . we may assume that u– is a nonnegative weak solution to

problem (.). Applying the regularity theory and strong maximum principle of elliptic
equations, we see that u– is one positive solution of problem (.). �

Proof of Theorem . It is an immediate consequence of Theorems . and .. �
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