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Irena Rachůnková* and Jan Tomeček
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Abstract
The paper provides an existence principle for a general boundary value problem of
the form

∑n
j=0 aj(t)u

(j)(t) = h(t,u(t), . . . ,u(n–1)(t)), a.e. t ∈ [a,b] ⊂R, �k(u,u′, . . . ,u(n–1)) = ck ,
k = 1, . . . ,n, with the state-dependent impulses u(j)(t+) – u(j)(t–) = Jij(u(t–),u′(t–), . . . ,
u(n–1)(t–)), where the impulse points t are determined as solutions of the equations
t = γi(u(t–),u′(t–), . . . ,u(n–2)(t–)), i = 1, . . . ,p, j = 0, . . . ,n – 1. Here, n,p ∈N, c1, . . . , cn ∈ R,
the functions aj/an, j = 0, . . . ,n – 1, are Lebesgue integrable on [a,b] and h/an satisfies
the Carathéodory conditions on [a,b]×R

n. The impulse functions Jij , i = 1, . . . ,p,
j = 0, . . . ,n – 1, and the barrier functions γi , i = 1, . . . ,p, are continuous on R

n and R
n–1,

respectively. The functionals �k , k = 1, . . . ,n, are linear and bounded on the space of
left-continuous regulated (i.e. having finite one-sided limits at each point) on [a,b]
vector functions. Provided the data functions h and Jij are bounded, transversality
conditions which guarantee that each possible solution of the problem in a given
region crosses each barrier γi at the unique impulse point τi are presented, and
consequently the existence of a solution to the problem is proved.
MSC: Primary 34B37; secondary 34B10; 34B15
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1 Introduction
In this paper we are interested in the nonlinear ordinary differential equation of the nth-
order (n ≥ ) with state-dependent impulses and general linear boundary conditions on
the interval [a,b]⊂ R. Studies of real-life problems with state-dependent impulses can be
found e.g. in [–]. Here we consider the equation

n∑
j=

aj(t)u(j)(t) = h
(
t,u(t), . . . ,u(n–)(t)

)
, a.e. t ∈ [a,b], ()

subject to the impulse conditions

u(j)(t+) – u(j)(t–) = Jij(u(t–),u′(t–), . . . ,u(n–)(t–)),
where t = γi(u(t–),u′(t–), . . . ,u(n–)(t–))
for i = , . . . ,p, j = , . . . ,n – ,

⎫⎪⎪⎬
⎪⎪⎭ ()
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and the linear boundary conditions

�k
(
u,u′, . . . ,u(n–)

)
= ck , k = , . . . ,n. ()

In what follows we use this notation. Let k,m,n ∈ N. By Rm×n we denote the set of all
matrices of the type m × n with real valued coefficients. Let AT denote the transpose of
A ∈ R

m×n. Let Rn = R
n× be the set of all n-dimensional column vectors c = (c, . . . , cn)T ,

where ci ∈ R, i = , . . . ,n, and R = R
×. By C(Rn;Rm) we denote the set of all map-

pings x : Rn → R
m with continuous components. By L

∞([a,b];Rm×n), L([a,b];Rm×n),
GL([a,b];Rm×n),AC([a,b];Rm×n),BV([a,b];Rm×n),Ck([a,b];Rm×n), we denote the sets of
all mappings x : [a,b] → R

m×n whose components are, respectively, essentially bounded
functions, Lebesgue integrable functions, left-continuous regulated functions, absolutely
continuous functions, functions with bounded variation and functions with continuous
derivatives of the kth order on the interval [a,b]. By Car([a,b] × Rn;R) we denote the
set of all functions f : [a,b] × R

n → R satisfying the Carathéodory conditions on the set
[a,b]×R

n. Finally, by χM we denote the characteristic function of the setM ⊂R.
Note that a mapping u : [a,b] → R

n is left-continuous regulated on [a,b] if for each
t ∈ (a,b] and each s ∈ [a,b) there exist finite limits

u(t) = u(t–) = lim
τ→t–

u(τ ), u(s+) = lim
τ→s+

u(τ ).

GL([a,b];Rn) is a linear space, and equipped with the sup-norm ‖ · ‖∞ it is a Banach space
(see [, Theorem .]). In particular, we set

‖u‖∞ = max
i∈{,...,n}

(
sup
t∈[a,b]

∣∣ui(t)∣∣) for u = (u, . . . ,un)T ∈ GL
(
[a,b];Rn).

A function f : [a,b]×R
n →R satisfies the Carathéodory conditions on [a,b]×R

n if
• f (·,x) : [a,b]→R is measurable for all x ∈Rn,
• f (t, ·) :Rn →R is continuous for a.e. t ∈ [a,b],
• for each compact set K ⊂R

n there exists a functionmK ∈ L
([a,b];R) such that

|f (t,x)| ≤mK (t) for a.e. t ∈ [a,b] and each x ∈ K .
In this paper we provide sufficient conditions for the solvability of problem ()-(). This

problem is a generalization of problems studied in the papers [–] which are devoted to
the second-order differential equation. Other types of initial or boundary value problems
for the first- or second-order differential equations with state-dependent impulses can be
found in [–]. To get the existence results for problem ()-(), we exploit the paper []
with fixed-time impulsive problems.
Here we assume that

n≥ , aj
an ∈ L

([a,b];R), j = , . . . ,n – , h(t,x)an(t) ∈ Car([a,b]×R
n;R),

cj ∈R, Jij ∈C(Rn;R),γi ∈C(Rn–;R), i = , . . . ,p, j = , . . . ,n – ,
�k :GL([a,b];Rn) →R is a linear bounded functional, i.e.
�k(z) = Kkz(a) +

∫ b
a Vk(t) d[z(t)], z ∈GL([a,b];Rn×),

where Kk ∈R
×n,Vk ∈ BV([a,b];R×n),k = , . . . ,n,n,p ∈N.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

()
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Remark  The integral in formula () is the Kurzweil-Stieltjes integral, whose definition
and properties can be found in []. The fact that each linear bounded functional on
GL([a,b];Rn×) can be written uniquely in the form described in () is proved in [].
See also [].

Now let us define a solution of problem ()-().

Definition  A function u ∈ GL([a,b];Rn) is said to be a solution of problem ()-() if u
satisfies () for a.e. t ∈ [a,b] and fulfils conditions () and ().

2 Problemwith impulses at fixed times
In the paper [] we have found an operator representation to the special type of problem
()-() having impulses at fixed times. This is the case that the barrier functions γi in ()
are constant functions, i.e. there exist t, . . . , tp ∈R satisfying a < t < · · · < tp < b such that

γi(x,x, . . . ,xn–) = ti for i = , . . . ,p,x,x, . . . ,xn– ∈ R. ()

In this case, each solution of the problem crosses ith barrier at same time instant τi = ti
for i = , . . . ,p.
Note that boundary value problems for higher-order differential equations with im-

pulses at fixed times have been studied for example in [–] and for delay higher-order
impulsive equations in [, ].
Let us summarize the results of the paper [] according to our needs. Assume that the

linear homogeneous problem

n∑
j=

aj(t)u(j)(t) = , a.e. t ∈ [a,b],

�k
(
u,u′, . . . ,u(n–)

)
= , k = , . . . ,n,

⎫⎪⎪⎬
⎪⎪⎭ ()

has only the trivial solution. Let {ũ, . . . , ũn} be a fundamental system of solutions of the
differential equation from (),W be their Wronski matrix and w its first row, i.e.

W (t) =

⎛
⎜⎝

ũ(t) · · · ũn(t)
ũ′
(t) · · · ũ′

n(t)
ũ(n–) (t) · · · ũ(n–)n (t)

⎞
⎟⎠ , w(t) =

(
ũ(t), . . . , ũn(t)

)
, t ∈ [a,b]. ()

Denote

�(W ) =
(
�i

(
ũj, ũ′

j, . . . , ũ
(n–)
j

))n
i,j=. ()

From [, Lemma ] (see also Chapter  in []) it follows that the unique solvability of
() is equivalent to the condition

det�(W ) 
= . ()

http://www.boundaryvalueproblems.com/content/2014/1/118
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Further assume (), consider Vj, j = , . . . ,n, from (), and denote

V (t) =

⎛
⎜⎜⎜⎝
V(t)
V(t)
· · ·

Vn(t)

⎞
⎟⎟⎟⎠ , A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

   · · · 
   · · · 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
   · · · 

– a(t)
an(t) – a(t)

an(t) – a(t)
an(t) · · · – an–(t)

an(t)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

t ∈ [a,b] and

H(τ ) = –
[
�(W )

]–(∫ b

τ

V (s)A(s)W (s) ds ·W–(τ ) +V (τ )
)
, τ ∈ [a,b]. ()

If we denote by Hij and ωij elements of the matrices H andW–, respectively, that is,

H(τ ) =
(
Hij(τ )

)n
i,j=, W–(τ ) =

(
ωij(τ )

)n
i,j=, ()

we can define functions gj, j = , . . . ,n, as

gj(t, τ ) =
n∑
k=

ũk(t)
(
Hkj(τ ) + χ(τ ,b](t)ωkj(τ )

)
, t, τ ∈ [a,b]. ()

For each fixed τ ∈ [a,b] the functions ∂kgj(t,τ )
∂τk

, k = , , . . . ,n–, will be understood as right-
continuous extensions at t = a and left-continuous extensions at t = τ and t = b. In this way
the Green’s function of problem () is built (cf. Remark ).

Remark  In order to state one of themain results of [] we introduce the set of all func-
tions u continuous on the intervals [a, t], (t, t], . . . , (tp,b], with ti from (), having their
derivatives u′, . . . ,u(n–) continuously extendable onto these intervals. This set is denoted
by PCn–([a,b]). For u ∈ PC

n–([a,b]) we define

u(k)(a) = u(k)(a+), u(k)(ti) = u(k)(ti–) for k = , . . . ,n – , i = , . . . ,p.

Equipped with the standard addition, scalar multiplication, and with the norm

‖u‖ =
n–∑
k=

∥∥u(k)∥∥∞, u ∈ PC
n–([a,b]),

PC
n–([a,b]) forms a Banach space.

Now we are ready to state the operator representation theorem for the problem with
impulses at fixed times a < t < · · · < tp < b which has the form

n∑
j=

aj(t)u(j)(t) = h
(
t,u(t), . . . ,u(n–)(t)

)
, a.e. t ∈ [a,b], ()

u(j)(ti+) – u(j)(ti) = Jij
(
u(ti),u′(ti), . . . ,u(n–)(ti)

)
, i = , . . . ,p, j = , . . . ,n – , ()
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�k
(
u,u′, . . . ,u(n–)

)
= ck , k = , . . . ,n. ()

Theorem  [, Theorem ] Let (), () hold, and let W , w, �(W ) and gj, j = , . . . ,n
be defined in (), (), and (). Then u ∈ PC

n–([a,b]) is a fixed point of an operator H :
PC

n–([a,b])→ PC
n–([a,b]) defined by

(Hu)(t) =
∫ b

a

gn(t, s)
an(s)

h
(
s,u(s), . . . ,u(n–)(s)

)
ds

+
n∑
j=

p∑
i=

gj(t, ti)Ji,j–
(
u(ti), . . . ,u(n–)(ti)

)
+w(t)

[
�(W )

]–(c, . . . , cn)T ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

()

t ∈ [a,b], if and only if u is a solution of problem ()-(). Moreover, the operator H is
completely continuous.

Remark  Let us note that the row vector

w(t)
[
�(W )

]–
does not depend on the choice of a fundamental system of solutions ũ, . . . , ũn, but only
on the data of problem ().

Remark  Let us put

Jij = , i = , . . . ,p, j = , . . . ,n – , ck = , k = , . . . ,n

and

h(t,x) = h(t) ∈ L
([a,b];R)

for x ∈R
n.

Then the operatorH in Theorem  can be written as

(Hu)(t) =
∫ b

a

gn(t, s)
an(s)

h(s) ds.

Theorem  implies that u is a fixed point ofH if and only if u is a solution of the problem

n∑
j=

aj(t)u(j)(t) = h(t), �j
(
u,u′, . . . ,u(n–)

)
= , j = , . . . ,n. ()

Therefore a (unique) solution of problem () has the form

u(t) =
∫ b

a

gn(t, s)
an(s)

h(s) ds,

and consequently gn(t,s)
an(s) is the Green’s function of ().

http://www.boundaryvalueproblems.com/content/2014/1/118
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Remark  Under the assumption () we are allowed using () to define the functions

g[]j (t, τ ) =
n∑
k=

ũk(t)Hkj(τ ),

g[]j (t, τ ) =
n∑
k=

ũk(t)
(
Hkj(τ ) +ωkj(τ )

)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

()

for t, τ ∈ [a,b], j = , . . . ,n. Obviously, due to (),

gj(t, τ ) =

⎧⎨
⎩g[]j (t, τ ) for a ≤ t ≤ τ ≤ b,

g[]j (t, τ ) for a ≤ τ < t ≤ b,
()

for j = , . . . ,n. Let us stress that g[ν]j , as well as gj, do not depend on the choice of funda-
mental system ũ, . . . , ũn, but only on the data of problem (). The functions g[ν]j possess
crucial properties for our approach. From their definition it follows that for each τ ∈ [a,b]

∂kg[ν]j

∂tk
(·, τ ) ∈AC

(
[a,b];R

)
()

for ν = , , j = , . . . ,n, k = , . . . ,n–.Moreover, for each ν = , , j = , . . . ,n, k = , . . . ,n–,
there exists a constant Cνjk >  such that

∣∣∣∣∂
kg[ν]j

∂tk
(t, τ )

∣∣∣∣ ≤ Cνjk and
∣∣∣∣∂kgj
∂tk

(t, τ )
∣∣∣∣ ≤max

ν=,
Cνjk t, τ ∈ [a,b]. ()

This follows from the definition of g[ν]j (ν = , ), from the fact w ∈ C
n–([a,b];R×n) and

from the boundedness of the matricesW– and H (cf. (), () and ()).

3 Transversality conditions
The most results for differential equations with state-dependent impulses concern initial
value problems. Theorems about the existence, uniqueness or extension of solutions of
initial value problems, and about intersections of such solutions with barriers γi can be
found for example in [, Chapter ].
A different approach has to be used when boundary value problems with state-

dependent impulses are discussed and boundary conditions are imposed on a solution
anywhere in the interval [a,b] including unknown points of impulses. This is the case of
problem ()-().
Our approach is based on the existence of a fixed point of an operator F in some set

	̄ = B̄p+ (cf. Lemma ), where B̄ ⊂ C
n–([a,b];R) is a ball defined in (). In order to

get a fixed point, we need to prove for functions of B̄ assertions about their transversality
through barriers. Such assertions are contained in Lemmas  and  and it is important
that they are valid for all functions in B̄ and not only for solutions of problem (), ().

http://www.boundaryvalueproblems.com/content/2014/1/118
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Remark  Having the lemmas about the transversality, we will prove in Section  the
existence of a solution u of problem ()-(), which has the following property:

for each i ∈ {, . . . ,p} there exists a unique τi ∈ (a,b) such that
τi = γi(u(τi–),u′(τi–), . . . ,u(n–)(τi–)),a < τ < · · · < τp < b,
and the restrictions u|[a,τ],u|(τ, τ], . . . ,u|(τp ,b] have absolutely
continuous derivatives of the (n – )th order.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

()

Consider real numbers Kj, j = , , . . . ,n – , and denote

An =
{
(x,x, . . . ,xn–) ∈R

n : |x| ≤ K, . . . , |xn–| ≤ Kn–
}
. ()

Now, we are ready to formulate the following transversality conditions:

a < min
An–

γ ≤max
An–

γi– < min
An–

γi ≤max
An–

γp < b, i = , . . . ,p, ()

for each i = , . . . ,p,k = , . . . ,n –  there exists Lik ∈ [,∞) such that
if (x,x, . . . ,xn–), (y, y, . . . , yn–) belong toAn–, then
|γi(x,x, . . . ,xn–) – γi(y, y, . . . , yn–)| ≤ ∑n–

j= Lij|xj – yj|,
i = , . . . ,p,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

()

n–∑
j=

LijKj+ <  for i = , . . . ,p, ()

γi
(
x + Ji(x, . . . ,xn–), . . . ,xn– + Ji,n–(x, . . . ,xn–)

)
≤ γi(x, . . . ,xn–), (x, . . . ,xn–) ∈An, i = , . . . ,p.

}
()

Let us define the set

B =
{
u ∈C

n–([a,b];R)
:
∥∥u(j)∥∥∞ < Kj for j = , . . . ,n – 

}
. ()

Our current goal is to find a continuous functional Pi for i = , . . . ,p, which maps each
function u from B to some time instant τi of ().

Lemma  Let Kj, j = , . . . ,n– , Lik , i = , . . . ,p, k = , . . . ,n– , be real numbers satisfying
(), and let An and B be given by () and (), respectively. Finally, assume that γi,
i = , . . . ,p, satisfy (), (), and choose u ∈ B. Then the function

σ (t) = γi
(
u(t),u′(t), . . . ,u(n–)(t)

)
– t, t ∈ [a,b], ()

is continuous and decreasing on [a,b] and it has a unique root in the interval (a,b), i.e.
there exists a unique solution of the equation

t = γi
(
u(t), . . . ,u(n–)(t)

)
. ()

Proof Let u ∈ B, i ∈ {, . . . ,p}. By (),

σ (a) = γi
(
u(a),u′(a), . . . ,u(n–)(a)

)
– a > ,

http://www.boundaryvalueproblems.com/content/2014/1/118


Rachůnková and Tomeček Boundary Value Problems 2014, 2014:118 Page 8 of 15
http://www.boundaryvalueproblems.com/content/2014/1/118

σ (b) = γi
(
u(b),u′(b), . . . ,u(n–)(b)

)
– b < 

is valid. This together with the fact that σ is continuous shows that σ has at least one
root in (a,b). Now, we will prove that σ is decreasing, by a contradiction. Let s, s ∈ (a,b),
s < s be such that

σ (s) = σ (s),

i.e.

γi
(
u(s), . . . ,u(n–)(s)

)
– γi

(
u(s), . . . ,u(n–)(s)

)
= s – s.

From (), (), (), and the Mean Value Theorem we obtain

 < |s – s| =
∣∣γi(u(s), . . . ,u(n–)(s)) – γi

(
u(s), . . . ,u(n–)(s)

)∣∣
≤

n–∑
j=

Lij
∣∣u(j)(s) – u(j)(s)

∣∣ ≤
n–∑
j=

LijKj+|s – s| < |s – s|,

which is a contradiction.
According to Lemma , we can define a functional Pi : B → (a,b) by

Piu = τi, u ∈ B, ()

where τi is a solution of (), i.e. a unique root of the function σ from Lemma , for
i = , . . . ,p. �

Lemma  Let the assumptions of Lemma  be satisfied. The functionals Pi, i = , . . . ,p,
are continuous.

Proof Let um,u ∈ B, form ∈N such that

um → u in C
n–([a,b];R)

asm → ∞. ()

Let us choose i ∈ {, . . . ,p} and prove that Pium →Piu asm→ ∞. We denote

τ =Piu, τm =Pium, m ∈N.

From Lemma  it follows that τ , τm ∈ (a,b) are the unique roots of the functions

σ (t) = γi
(
u(t), . . . ,u(n–)(t)

)
– t, σm(t) = γi

(
um(t), . . . ,u(n–)m (t)

)
– t, t ∈ [a,b],

and these functions are strictly decreasing. Let ε ∈R, ε >  be such that τ –ε, τ +ε ∈ (a,b).
Then σ (τ – ε) >  and σ (τ + ε) < . According to () we see that σm → σ uniformly on
[a,b], in particular σm(τ – ε) → σ (τ – ε) and σm(τ + ε)→ σ (τ + ε) asm → ∞. These facts
imply that

σm(τ – ε) >  and σm(τ + ε) <  for a.e.m ∈N.

http://www.boundaryvalueproblems.com/content/2014/1/118
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From the continuity of σm and the Intermediate Value Theorem it follows that

Pium = τm ∈ (τ – ε, τ + ε) = (Piu – ε,Piu + ε) for a.e.m ∈N,

which completes the proof. �

Our next step is to define an appropriate operator representation of the BVP with state-
dependent impulses. The first idea would be a direct exploitation of the operatorH from
Theorem , putting Piu in place of ti. This is not possible for many reasons. First, each
Pi acts on the space of functions having continuous derivatives - but we need functions
having p discontinuities. Even if we would overcome this difficulty we arrive at a prob-
lem of choosing an appropriate Banach space on whichH would be acting. According to
Remark , we search a solution u of problem ()-(), which has its jumps (together with
u,u′, . . . ,u(n–)) at the points τi =Piu ∈ (a,b), i = , . . . ,p (see ()). In general, these points
are different for different solutions. Consequently, such solutions have to be searched in
the Banach space GL([a,b];Rn). But then there is a difficulty with the continuity of such
operator. In fact the operator H from () having Piu in place of ti is not continuous in
the space GL([a,b];Rn) (cf. Remark . and Example . in []).
Therefore, we choose the way here, which we have developed in our joint papers [–].

The main idea of our approach lies in representing the solution u of problem ()-() by an
ordered (p + )-tuple (u, . . . ,up+) ∈ [Cn–([a,b];R)]p+ as follows:

u(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u(t), t ∈ [a,Pu],

u(t), t ∈ (Pu,Pu],

. . . . . .

up+(t), t ∈ (Ppup,b].

()

Consequently, we work with the space

X =
[
C

n–([a,b];R)]p+
equipped with the norm

∥∥(u, . . . ,up+)∥∥ =
p+∑
i=

n–∑
j=

∥∥u(j)i ∥∥∞ for (u, . . . ,up+) ∈ X.

It is well known that X is a Banach space.

4 Main results
Let us turn our attention to problem ()-() with state-dependent impulses under the as-
sumptions () and (). In our approach we will make use of the tools introduced in the
previous sections.
In addition we assume

there existsm ∈ L
([a,b];R),Aij ∈R such that

| h(t,x)an(t) | ≤m(t) for a.e. t ∈ [a,b] and all x ∈R
n,

|Jij(x)| ≤ Aij for each i = , . . . ,p, j = , . . . ,n – .

⎫⎪⎪⎬
⎪⎪⎭ ()

http://www.boundaryvalueproblems.com/content/2014/1/118
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Consider c, . . . , cn from (), w from () and �(W ) from (), and denote

M =
∫ b

a
m(t) dt, c = (c, . . . , cn)T , Dr = max

t∈[a,b]
w(r)(t)

[
�(W )

]–c, ()

and

Kr =Mmax
ν=,

{Cνnr} +
n∑
j=

p∑
k=

max
ν=,

{Cνjr}Ak,j– +Dr , ()

for r = , . . . ,n – , where Cνjr are constants from ().

Remark  Let us note that the constantsDr from () do not depend on the choice of the
fundamental systemof solutions ũ, . . . , ũn, but only on the coefficients ai of the differential
equation () and on the operators �j from () (and, of course, on the constants cj).

Now, we are ready to construct a convenient operator for a representation of problem
()-(). Let us choose its domain as the closure of the set

	 = Bp+ ⊂ X,

where B is defined in () with Kj from ().
Now, we have to modify the operator H from Theorem  using g[]j and g[]j instead of

the Green’s functions gj, that is, we define an operator F : 	 → X by F (u, . . . ,up+) =
(x, . . . ,xp+) with

xi(t) =
p+∑
k=

∫ τk

τk–

gn(t, s)
h(s,uk(s), . . . ,u(n–)k (s))

an(s)
ds

+
n∑
j=

( ∑
i≤k≤p

g[]j (t, τk)Jk,j–
(
uk(τk), . . . ,u(n–)k (τk)

)

+
∑
≤k<i

g[]j (t, τk)Jk,j–
(
uk(τk), . . . ,u(n–)k (τk)

))
+w(t)

[
�(W )

]–c

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

()

for i = , . . . ,p + , t ∈ [a,b], where

τk =Pkuk for k = , . . . ,p, τ = a, τp+ = b,

andW , w, gj, g[]j , g[]j , j = , . . . ,n, and c are from (), (), (), and (), respectively.
Let us compare () for the operator H with () for the operator F . The first term

in () expresses a solution of homogeneous boundary value problem without impulses.
This term is decomposed in () on subintervals which depend on the choice of (p + )-
tuple (u, . . . ,up+). The second term in () caused (according to the discontinuity of func-
tions gj) needed impulses of solutions of the fixed-time impulsive problem ()-(). We
significantly modify this term in () in such a way that, instead of discontinuous func-
tions gj which have jumps at the points τk = Pkuk , we use smooth functions g[]j , g[]j de-
fined in (). Due to this modification the operatorF maps one tuple of smooth functions

http://www.boundaryvalueproblems.com/content/2014/1/118
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u, . . . ,up+ onto another tuple of smooth functions x, . . . ,xp+, andwewill be able to prove
the compactness of F on 	.
In the next lemma we arrive at a justification of our definition.

Lemma  Let assumptions (), (), ()-(), ()-() be satisfied. If (u, . . . ,up+) is a
fixed point of the operator F , then the function u defined by () is a solution of problem
()-() satisfying ().

Proof Let B be defined by () and 	 = Bp+. Further, let (u, . . . ,up+) ∈ 	 be such
that F (u, . . . ,up+) = (u, . . . ,up+). For each i ∈ {, . . . ,p + }, we have ui ∈ B, and hence
by Lemma  and (), there exists a unique solution τi = Piui of the equation t =
γi(ui(t), . . . ,u(n–)i (t)). Due to (), the inequalities a < τ < · · · < τp < b are valid and u can
be defined by ().We will prove that u is a fixed point of the operatorH fromTheorem ,
taking the space PCn–([a,b]) from Remark  with

ti = τi, i = , . . . ,p.

Denote

τ = a, τp+ = b, I = [τ, τ], I = (τ, τ],

I = (τ, τ], . . . , Ip+ = (τp, τp+],

and choose i ∈ {, . . . ,p + }, t ∈ Ii. Then, according to (), we have

u(t) = ui(t) =
p+∑
k=

∫
Ik

gn(t, s)
an(s)

h
(
s,uk(s), . . . ,u(n–)k (s)

)
ds

+
n∑
j=

( ∑
i≤k≤p

g[]j (t, τk)Jk,j–
(
uk(τk), . . . ,u(n–)k (τk)

)

+
∑
≤k<i

g[]j (t, τk)Jk,j–
(
uk(τk), . . . ,u(n–)k (τk)

))
+w(t)

[
�(W )

]–c

=
p+∑
k=

∫
Ik

gn(t, s)
an(s)

h
(
s,u(s), . . . ,u(n–)(s)

)
ds

+
n∑
j=

( ∑
i≤k≤p

g[]j (t, τk)Jk,j–
(
u(τk), . . . ,u(n–)(τk–)

)

+
∑
≤k<i

g[]j (t, τk)Jk,j–
(
u(τk), . . . ,u(n–)(τk–)

))
+w(t)

[
�(W )

]–c.

Of course we have

p+∑
k=

∫
Ik

gn(t, s)
an(s)

h
(
s,u(s), . . . ,u(n–)(s)

)
ds =

∫ b

a

gn(t, s)
an(s)

h
(
s,u(s), . . . ,u(n–)(s)

)
ds.

http://www.boundaryvalueproblems.com/content/2014/1/118
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Let k ∈N be such that i≤ k ≤ p. Then t ≤ τi ≤ τk and therefore () gives

g[]j (t, τk) = gj(t, τk) for j = , . . . ,n.

Let k ∈N be such that ≤ k < i (such k exists only if i > ). Then t > τi– ≥ τk and therefore
we get by ()

g[]j (t, τk) = gj(t, τk) for j = , . . . ,n.

These facts imply that

∑
i≤k≤p

g[]j (t, τk)Jk,j–
(
u(τk), . . . ,u(n–)(τk–)

)

+
∑
≤k<i

g[]j (t, τk)Jk,j–
(
u(τk), . . . ,u(n–)(τk–)

)

=
∑
i≤k≤p

gj(t, τk)Jk,j–
(
u(τk), . . . ,u(n–)(τk–)

)

+
∑
≤k<i

gj(t, τk)Jk,j–
(
u(τk), . . . ,u(n–)(τk–)

)

=
p∑
k=

gj(t, τk)Jk,j–
(
u(τk), . . . ,u(n–)(τk–)

)
,

for j = , . . . ,n. Consequently, by virtue of () and Theorem , u is a solution of prob-
lem ()-(). Clearly u fulfils equation () a.e. on [a,b] and satisfies the boundary con-
ditions (). In addition, since u fulfils the impulse conditions () with ti = τi, where
τi = γi(ui(τi), . . . ,u(n–)i (τi)) = γi(u(τi), . . . ,u(n–)(τi–)), i = , . . . ,p, we see that u also fulfils
the state-dependent impulse conditions (). According to Remark , it remains to prove
that τ, . . . , τp are the only instants at which the function u crosses the barriers γ, . . . ,γp,
respectively. To this aim, due to () and (), it suffices to prove that

t 
= γi
(
ui+(t),u′

i+(t), . . . ,u
(n–)
i+ (t)

)
for t ∈ (τi,b], i = , . . . ,p. ()

Choose an arbitrary i ∈ {, . . . ,p} and consider σ from (). Since u fulfils (), we have

σ (τi–) = .

Let us denote

ψ(t) = γi
(
ui+(t),u′

i+(t), . . . ,u
(n–)
i+ (t)

)
– t, t ∈ [a,b].

From Lemma  it follows that ψ is decreasing. So, by virtue of (), it suffices to prove
that

ψ(τi) ≤ . ()

http://www.boundaryvalueproblems.com/content/2014/1/118
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Using (), (), and (), we have

ψ(τi) = γi
(
ui+(τi), . . . ,u(n–)i+ (τi)

)
– τi = γi

(
u(τi+), . . . ,u(n–)(τi+)

)
– τi

= γi
(
u(τi–) + Ji

(
u(τi–), . . . ,u(n–)(τi–)

)
, . . . ,u(n–)(τi–)

+ Ji,n–
(
u(τi–), . . . ,u(n–)(τi–)

))
– τi

≤ γi
(
u(τi–), . . . ,u(n–)(τi–)

)
– τi = ,

which yields (). This completes the proof. �

Lemma  Let assumptions (), (), ()-(), ()-() be satisfied. Then the operator F
from () has a fixed point in 	.

Proof The last term ω(t)[�(W )]–c in () is the same as in () for the compact opera-
torH. Therefore it suffices to prove the compactness of the operatorF on	 for c = . To
do it we can use the same arguments as in the proof of Lemma  in [], where the second-
order state-dependent impulsive problem is investigated. In particular, the compactness
of F on 	 is a consequence of the following properties of functions and functionals con-
tained in ():
• the first term in () can be written in the form

p+∑
k=

∫ τk

τk–

gn(t, s)
h(s,uk(s), . . . ,u(n–)k (s))

an(s)
ds

=
∫ b

a
gn(t, s)

p+∑
k=

h(s,uk(s), . . . ,u(n–)k (s))
an(s)

χ(τk–,τk )(s) ds,

where τk =Pkuk for k = , . . . ,p, τ = a, τp+ = b,
• Pk are continuous on B (due to Lemma ),
• h(t,x)

an(t) ∈ Car([a,b]×R
n;R),

• g[]j , g[]j satisfy (), gn satisfies (),
• Jkj are continuous on R

n.
For the application of the Schauder Fixed Point Theorem it remains to prove that

F (	)⊂ 	. ()

Let (x, . . . ,xp+) =F (u, . . . ,up+) for some (u, . . . ,up+) ∈ 	. Then, by (), (), (), and
(), we have

∣∣x(r)i (t)
∣∣ ≤Mmax

ν=,
{Cνnr} +

n∑
j=

p∑
k=

max
ν=,

{Cνjr}Ak,j– +Dr

for i = , . . . ,p + , r = , . . . ,n – , t ∈ [a,b]. From () we get

∥∥x(r)i ∥∥∞ ≤ Kr , i = , . . . ,p + , r = , . . . ,n – ,

and soF (u, . . . ,up+) ∈ 	.We have proved (), and consequently there exists at least one
fixed point of F in 	. �
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Theorem  Let assumptions (), (), ()-(), ()-() be satisfied. Then there exists
at least one solution to problem ()-() satisfying ().

Proof The assertion follows directly from Lemma  and Lemma . �

Remark  The existence result from Theorem  can be extended to unbounded func-
tions h and Jij by means of the method of a priori estimates. This can be found for the
special case n =  in [].
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10. Rachůnková, I, Tomeček, J: Existence principle for BVPs with state-dependent impulses. Topol. Methods Nonlinear
Anal. (to appear)

11. Bajo, I, Liz, E: Periodic boundary value problem for first order differential equations with impulses at variable times.
J. Math. Anal. Appl. 204(1), 65-73 (1996)

12. Belley, JM, Virgilio, M: Periodic Duffing delay equations with state dependent impulses. J. Math. Anal. Appl. 306(2),
646-662 (2005)

13. Belley, JM, Virgilio, M: Periodic Liénard-type delay equations with state-dependent impulses. Nonlinear Anal., Theory
Methods Appl. 64(3), 568-589 (2006)

14. Benchohra, M, Graef, JR, Ntouyas, SK, Ouahab, A: Upper and lower solutions method for impulsive differential
inclusions with nonlinear boundary conditions and variable times. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math.
Anal. 12(3-4), 383-396 (2005)

15. Frigon, M, O’Regan, D: First order impulsive initial and periodic problems with variable moments. J. Math. Anal. Appl.
233(2), 730-739 (1999)

16. Frigon, M, O’Regan, D: Second order Sturm-Liouville BVP’s with impulses at variable moments. Dyn. Contin. Discrete
Impuls. Syst. 8(2), 149-159 (2001)

17. Kaul, S, Lakshmikantham, V, Leela, S: Extremal solutions, comparison principle and stability criteria for impulsive
differential equations with variable times. Nonlinear Anal. 22(10), 1263-1270 (1994)

18. Kaul, SK: Monotone iterative technique for impulsive differential equations with variable times. Nonlinear World 2,
341-345 (1995)

19. Domoshnitsky, A, Drakhlin, M, Litsyn, E: Nonoscillation and positivity of solutions to first order state-dependent
differential equations with impulses in variable moments. J. Differ. Equ. 228(1), 39-48 (2006)
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30. Uğur, Ö, Akhmet, MU: Boundary value problems for higher order linear impulsive differential equations. J. Math. Anal.

Appl. 319(1), 139-156 (2006)
31. Zhang, X, Yang, X, Ge, W: Positive solutions of nth-order impulsive boundary value problems with integral boundary

conditions in Banach spaces. Nonlinear Anal., Theory Methods Appl. 71(12), 5930-5945 (2009)
32. Domoshnitsky, M, Drakhlin, M, Litsyn, E: On n-th order functional-differential equations with impulses. Mem. Differ.

Equ. Math. Phys. 12, 50-56 (1997)
33. Domoshnitsky, M, Drakhlin, M, Litsyn, E: On boundary value problems for n-th order functional differential equations

with impulses. Adv. Math. Sci. Appl. 8, 987-996 (1998)
34. Azbelev, NV, Maksimov, VP, Rakhmatullina, LF: Introduction to the Theory of Functional Differential Equations. Nauka,

Moscow (1991)
35. Akhmet, M: Principles of Discontinuous Dynamical Systems. Springer, New York (2010)
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