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1 Introduction
Periodic solutions of functional differential equations are important in different applica-
tions (see, for example, [–] and the references therein, and also works on the general
theory of boundary value problems for functional differential equations [–]). Condi-
tions for the solvability of first-order periodic problems are found in [–]. In [, ]
the linear case is considered, and unimprovable sufficient conditions for the solvability of
the periodic problem

ẋ(t) =
(
T+x

)
(t) –

(
T–x

)
(t) + f (t), t ∈ [a,b], ()

x(a) = x(b), ()

are found in terms of the norms T +, T – of linear positive functional operators T+,T– :
C → L:

T –

 – T – < T + < 
(
 +

√
 – T –

)
()

or

T +

 – T + < T – < 
(
 +

√
 – T +

)
. ()

If both of these conditions are not satisfied for some norms T +, T –, there exist linear pos-
itive operators T+, T– with these norms such that problem ()-() has no solution. As to
our knowledge, similar unimprovable estimates for solutions of ()-() in terms of norms
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T +, T – are yet unknown. Here we will fill this gap. Moreover, the estimates obtained here
(in Theorems , , ) can be expanded to some non-linear functional differential equations
(see Remark ). Theorem  gives the best possible estimates of the normof theGreen oper-
ator for the periodic boundary value problem. In Theorem , we obtain unimprovable es-
timates of the solutions of ()-() for non-negative f . In Theorem , unimprovable bounds
of the difference between the maximum and the minimum of a solution are established.
We use the following notation: R is the space of real numbers, C is the space of con-

tinuous functions x : [a,b] → R with the norm ‖x‖C = maxt∈[a,b] |x(t)|; L is the space of
integrable functions z : [a,b] → R with the norm ‖z‖L =

∫ b
a |z(t)|dt; a linear bounded op-

erator T : C → L is called positive if it maps non-negative functions from C into almost
everywhere non-negative functions from L.
Consider the periodic boundary value problem ()-(), where f ∈ L, T+,T– : C → L are

linear positive operators with norms T + ≡ ‖T+‖C→L =
∫ b
a (T

+)(t)dt, T – ≡ ‖T–‖C→L =∫ b
a (T

–)(t)dt,  is the unit function. An absolutely continuous function x : [a,b] → R is
called a solution of the problem if it satisfies the periodic boundary condition () and
equation () for almost all t ∈ [a,b]. We have to solve problem ()-() if, for example, we
search for periodic solutions of the equation with delay

ẋ(t) = p(t)x
(
t – τ (t)

)
+ f (t), t ∈R, ()

where p, f : R → R are (b – a)-periodic locally integrable functions, τ : R → R is a mea-
surable (b– a)-periodic non-negative delay. Indeed, suppose that linear operators T+ and
T– are defined by the equalities

(
T+x

)
(t) =

p(t) + |p(t)|


x
(̃
τ (t)

)
,

(
T–x

)
(t) =

|p(t)| – p(t)


x
(̃
τ (t)

)
, t ∈ [a,b],

where τ̃ (t) = t– τ (t)+k(t)(b–a) and the integer numbers k(t) are such that τ̃ (t) ∈ [a,b] for
almost all t ∈ R. It is easy to show that problem ()-() has a solution if and only if equation
() has a periodic solution with the period b – a.
The conditions (), () for the norms of the operators T+,T– : C → L are well known

[]. They guarantee the existence and uniqueness of solutions of problem ()-(). Note
that these conditions are unimprovable in the following sense: if non-negative numbers
T +, T – satisfy neither () nor (), then problem ()-() has no solution for some linear
positive operators T+,T– : C → L with norms ‖T+‖C→L = T +, ‖T–‖C→L = T – and for
some f ∈ L.

2 Themain results
In what follows, we suppose that one of conditions (), () is fulfilled. First, we formulate
the results only for the simplest problem ()-() with the null operator T+:

ẋ(t) = –
(
T–x

)
(t) + f (t), t ∈ [a,b],

x(a) = x(b),
()

where T– :C → L is a linear positive operator with norm T –, f ∈ L. The assertions of the
following Theorems , ,  for problem () are as follows.
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The solution x of () satisfies the estimates

max
t∈[a,b]

∣∣x(t)∣∣ ≤
{

+T –

T –
∫ b
a |f (t)|dt if  < T – ≤ ,


T –(–T –)

∫ b
a |f (t)|dt if  < T – < ,

()

max
t∈[a,b]

x(t) – min
t∈[a,b]

x(t)≤
{∫ b

a |f (t)|dt if  < T – ≤ ,



√
T ––T –

∫ b
a |f (t)|dt if  < T – < .

()

If a function f is non-negative, the solution x of () satisfies the estimates

 – T –

T –

∫ b

a
f (t)dt ≤ x(t)≤  + T –

T –

∫ b

a
f (t)dt if  < T – ≤ ,

–


 – T –

∫ b

a
f (t)dt ≤ x(t)≤  + T –

T –

∫ b

a
f (t)dt if  < T – ≤ ,

–


 – T –

∫ b

a
f (t)dt ≤ x(t)≤ 

T –( – T –)

∫ b

a
f (t)dt if  < T – < .

()

All estimates (), () and (), which are proved in Theorems , ,  in the general case,
are best possible (see Remarks , , ).

Remark  Consider also the non-linear periodic problem

ẋ(t) =
(
F+x

)
(t) –

(
F–x

)
(t) + f (t), t ∈ [a,b], ()

x(a) = x(b), ()

provided there exist non-negative functions p+,p– ∈ L with norms∥∥p+∥∥L = T +,
∥∥p–∥∥L = T – ()

such that the operators F+,F– :C → L satisfy the inequalities

p+(t) min
t∈[a,b]

x(t) ≤ (
F+x

)
(t)≤ p+(t) max

t∈[a,b]
x(t) for a.a. t ∈ [a,b], ()

p–(t) min
t∈[a,b]

x(t)≤ (
F–x

)
(t) ≤ p–(t) max

t∈[a,b]
x(t) for a.a. t ∈ [a,b] ()

for all x ∈C.
It follows from Lemma  and the proofs of Theorems , ,  that all statements of these

theorems are also valid for solutions of periodic problem ()-() (if the solutions exist).

Theorem  If the norms T + < T – of the linear positive operators T+,T– : C → L satisfy
the conditions

≤ T – < 
(
 +

√
 – T +

)
, T + < /, ()

and x is a solution of ()-(), then the inequality

max
t∈[a,b]

∣∣x(t)∣∣ ≤ 
T –( – T –/) – T +

∫ b

a

∣∣f (t)∣∣dt ()

holds.
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If the norms T + < T – of the operators T+,T– :C → L satisfy

T +

 – T + < T – ≤ , T + < /, ()

and x is a solution of problem ()-(), then the inequality

max
t∈[a,b]

∣∣x(t)∣∣ ≤  + T –

T –( – T +) – T +

∫ b

a

∣∣f (t)∣∣dt ()

holds.

Remark  ([]) If T – > T + ≥  and both of the conditions (), () are not fulfilled, then
there exist linear positive operators T–, T+ with norms T –, T + and a function f ∈ L such
that problem ()-() has no solution.

Remark  From the proof of Theorem  it follows that estimates (), () are best possi-
ble: if non-negative numbers T –, T + satisfy () (or ()), then equality holds in condition
() (or ()) for a unique solution x of problem ()-() for some linear positive operators
T–, T+ with norms T –, T + and for some function f ∈ L, f 	≡ .

The estimates of solutions ()-() for T – < T + can be obtained in the same way.

Theorem ∗ If the norms T + > T – of the linear positive operators T+,T– : C → L satisfy
the conditions

≤ T + < 
(
 +

√
 – T –

)
, T – < /, ()

and x is a solution of ()-(), then the inequality

max
t∈[a,b]

∣∣x(t)∣∣ ≤ 
T +( – T +/) – T –

∫ b

a

∣∣f (t)∣∣dt ()

holds.
If the norms T + > T – of the operators T+,T– :C → L satisfy

T –

 – T – < T + ≤ , T – < /, ()

and x is a solution of problem ()-(), then the inequality

max
t∈[a,b]

∣∣x(t)∣∣ ≤  + T +

T +( – T –) – T –

∫ b

a

∣∣f (t)∣∣dt ()

holds.

Remark ∗ ([]) If T – > T + ≥  and both of conditions (), () are not fulfilled, then
there exist linear positive operators T– and T+ with norms T –, T + and a function f ∈ L
such that problem ()-() has no solution.

http://www.boundaryvalueproblems.com/content/2014/1/119
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Remark ∗ From the proof of Theorem  it follows that estimates (), () are best possi-
ble: if non-negative numbers T –, T + satisfy () (or ()), then equality holds in condition
() (or ()) for a unique solution x of problem ()-() for some linear positive operators
T–, T+ with norms T –, T + and for some function f ∈ L, f 	≡ .

In the next statement we get the best possible lower bounds for solutions of problem
()-() for non-negative f .

Theorem  Let x be a solution of problem ()-() for some non-negative f .
If the norms T +, T – of the operators T+,T– :C→ L satisfy the conditions

max

{
 +

√
 – T +,

T +

 – T +

}
< T – < 

(
 +

√
 – T +

)
, T + < /, ()

then

min
t∈[a,b]

x(t)≥ –


( +
√
 – T +) – T –

∫ b

a
f (t)dt; ()

if the norms T +, T – of the operators T+,T– :C → L satisfy the conditions

max

{
,

T +

 – T +

}
< T – ≤  +

√
 – T +, ()

then

min
t∈[a,b]

x(t)≥ –
T – – 
T – – T +

∫ b

a
f (t)dt; ()

if the norms T +, T – of the operators T+,T– :C → L satisfy the conditions

T +

 – T + < T – ≤ , T + < /, ()

then

min
t∈[a,b]

x(t)≥  – T –

T –( + T +) – T +

∫ b

a
f (t)dt. ()

Remark  ([]) If T – > T + and all of conditions (), (), () are not fulfilled, then
there exist linear positive operators T– and T+ with norms T –, T + and a function f ∈ L
such that problem ()-() has no solution.

Remark  From the proof of Theorem  it follows that estimates (), (), () are best
possible: if non-negative numbers T +, T – satisfy () (() or ()), then equality holds
in condition () (() or ()) for a unique solution x of problem ()-() for some linear
positive operators T–, T+ with norms T –, T + and for some function f ∈ L, f 	≡ .

http://www.boundaryvalueproblems.com/content/2014/1/119
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Now we estimate the difference between the maximum and the minimum of solutions.

Theorem  Let the solvability conditions () be fulfilled and x be a unique solution of
()-(). If

T – > , T + < T –
(T – – 
T – + 

)

,

then

max
t∈[a,b]

x(t) – min
t∈[a,b]

x(t)≤ 

√
T – – T + – T –

∫ b

a

∣∣f (s)∣∣ds; ()

otherwise

max
t∈[a,b]

x(t) – min
t∈[a,b]

x(t)≤ T –

T – – T + – T –T +

∫ b

a

∣∣f (s)∣∣ds. ()

Remark  From the proof of Theorem  it follows that inequalities () and () are
unimprovable. It means that for every number T +, T – satisfying the conditions of the
theorem, equality holds in conditions () or () for the solution x of problem ()-() for
some positive operators T+,T– : C → L with norms T –, T +, and for some non-negative
function f ∈ L, f 	≡ .

Remark  Theorems , , as Theorem , can be easily reformulated for the case T + > T –

when the solvability condition () holds.

3 Proofs
We need three lemmas to prove the main theorems.

Lemma  Let T+,T– :C→ L be linear positive operators, p+ = T+, p– = T–, y ∈ C. Then
there exist points t, t ∈ [a,b] and a function p ∈ L satisfying

–p–(t) ≤ p(t)≤ p+(t) for a.a. t ∈ [a,b] ()

such that the equality

(
T+y

)
(t) –

(
T–y

)
(t) = p(t)y(t) +

(
p+(t) – p–(t) – p(t)

)
y(t) for a.a. t ∈ [a,b] ()

holds.

Proof Let y(t) =maxt∈[a,b] y(t), y(t) = mint∈[a,b] y(t). Since y ∈ C and the linear operators
T+,T– :C → L are positive, we have

p+(t)y(t)–p–(t)y(t) ≤
(
T+y

)
(t)–

(
T–y

)
(t)≤ p+(t)y(t)–p–(t)y(t) for a.a. t ∈ [a,b].

Therefore, for some function p ∈ L satisfying (), equality () holds. �

http://www.boundaryvalueproblems.com/content/2014/1/119
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Lemma  If y ∈ C, functions p+,p– ∈ L are non-negative, and p ∈ L satisfies (), then
there exist linear positive operators T+,T– :C → L with the norms

∥∥T+∥∥
C→L =

∥∥p+∥∥L,
∥∥T–∥∥

C→L =
∥∥p–∥∥L ()

such that equality () holds.

Proof Let p+ (t) = (|p(t)|+ p(t))/, p– (t) = (|p(t)|– p(t))/, t ∈ [a,b]. Then the operators
T+, T– defined by the equalities

(
T+x

)
(t) = p+ (t)x(t) +

(
p+(t) – p+ (t)

)
x(t), t ∈ [a,b],(

T–x
)
(t) = p– (t)x(t) +

(
p–(t) – p– (t)

)
x(t), t ∈ [a,b],

satisfy the conditions of the lemma. �

Lemma  Let F+,F– : C → L satisfy ()-(), y ∈ C. Then there exist a function p ∈ L
satisfying () and points t, t ∈ [a,b] such that the equality

(
F+y

)
(t) –

(
F–y

)
(t) = p(t)y(t) +

(
p+(t) – p–(t) – p(t)

)
y(t) for a.a. t ∈ [a,b] ()

holds.

Proof Let y(t) = maxt∈[a,b] y(t), y(t) = mint∈[a,b] y(t). Since y ∈ C and using (), (), we
get

p+(t)y(t) –p–(t)y(t) ≤
(
F+y

)
(t) –

(
F–y

)
(t)≤ p+(t)y(t) –p–(t)y(t) for a.a. t ∈ [a,b].

Therefore, for some function p ∈ L satisfying (), equality () holds. �

Remark  It is obvious that one can choose the points t and t in Lemmas  and  in such
a way that the solution y takes its maximum and minimum at these points.

Proofs of Theorems , ,  If x is a solution of problem ()-() (()-()), then by Lemma 
() this solution satisfies the boundary value problem

ẋ(t) = p(t)x(t) +
(
p+(t) – p–(t) – p(t)

)
x(t) + f (t), t ∈ [a,b], ()

x(a) = x(b), ()

where p ∈ L and non-negative p+,p– ∈ L satisfy (), (). If condition () or () holds,
then problem ()-() has a unique solution, which can be easily found explicitly. Since
we are only interested in the maximal and minimal values of the solutions, by Remark ,
we have to obtain only representations for values x(t) and x(t).
Let a ≤ t < t ≤ b, E ≡ [t, t], I ≡ [a, t]∪ [t,b],

� ≡
∫
I
p(s)ds

∫
E

(
p+(s) – p–(s)

)
ds –

∫
E
p(s)ds

∫
I

(
p+(s) – p–(s)

)
ds

–
∫ b

a

(
p+(s) – p–(s)

)
ds.

http://www.boundaryvalueproblems.com/content/2014/1/119
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For x(t), x(t) we have

x(t) =

�

(
–

∫
I
f (s)ds

∫
E

(
p+(s) – p–(s) – p(s)

)
ds

+
∫
E
f (s)ds

∫
I

(
p+(s) – p–(s) – p(s)

)
ds +

∫ b

a
f (s)ds

)
, ()

x(t) =

�

(∫
I
f (s)ds

∫
E
p(s)ds –

∫
E
f (s)ds

∫
I
p(s)ds +

∫ b

a
f (s)ds

)
()

and

x(t) – x(t) =

�

(
–

∫
I
f (s)ds

∫
E

(
p+(s) – p–(s)

)
ds

+
∫
E
f (s)ds

∫
I

(
p+(s) – p–(s)

)
ds

)
. ()

Suppose here that T – > T + and condition () is fulfilled.
Define by P the set of all solutions of problem ()-() for all a ≤ t < t ≤ b, for all

functions p ∈ L and non-negative p+,p– ∈ L such that conditions (), () hold, and for
all f ∈ L with ‖f ‖L = .
Let S be the subset of P corresponding to non-negative functions f .
From Lemmas  and , it follows that the set P coincides with the set of all solutions of

problem ()-() for all linear positive operatorsT–,T+ :C → Lwith norms ‖T+‖C→L = T +,
‖T–‖C→L = T – and for all f ∈ L with ‖f ‖L = . The subset S consists of all solutions of
corresponding problems ()-() with non-negative f .
Define the constants

M ≡ max
x∈P,t∈[a,b]

∣∣x(t)∣∣, M ≡max
x∈P

(
max
t∈[a,b]

x(t) – min
t∈[a,b]

x(t)
)
,

N ≡ max
x∈S,t∈[a,b]

x(t), N ≡max
x∈S

(
max
t∈[a,b]

x(t) – min
t∈[a,b]

x(t)
)
, N ≡ min

x∈S,t∈[a,b]
x(t).

From representations (), (), (), it easily follows that all the constants are defined
correctly and

M =max
{|N|, |N|

}
, M =N.

Moreover, for every solution x of ()-(), the following inequalities hold:

∣∣x(t)∣∣ ≤M

∫ b

a

∣∣f (s)∣∣ds, t ∈ [a,b],

max
t∈[a,b]

x(t) – min
t∈[a,b]

x(t)≤N

∫ b

a

∣∣f (s)∣∣ds.
If f ∈ L is non-negative, then

N

∫ b

a
f (s)ds≤ x(t)≤N

∫ b

a
f (s)ds, t ∈ [a,b],

where the constants N, N, N,M are best possible.

http://www.boundaryvalueproblems.com/content/2014/1/119
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It remains to find N, N, N.
The numerator and denominator of fractions in (), (), () are linear with respect to

variables
∫
E p(s)ds and

∫
I p(s)ds. Therefore x(t), x(t), and x(t)–x(t) take theirminimal

and maximal values at the bounds of restriction () with respect to variables p on each
of the sets E and I . Hence we have to consider only the following four different cases:

(i) p(t) =
{ p+(t) if t ∈ E,
–p–(t) if t ∈ I,

(ii) p(t) =
{–p–(t) if t ∈ E,
p+(t) if t ∈ I,

(iii) p = p+,
(iv) p = –p–.

In case (i) we have

x(t) =

�

(∫
I
f (s)ds

(∫
E
p–(s)ds + 

)
+

∫
E
f (s)ds

(∫
I
p+ ds + 

))
,

x(t) =

�

(∫
I
f (s)ds

(∫
E
p+(s)ds + 

)
+

∫
E
f (s)ds

(∫
I
p– ds + 

))
,

x(t) – x(t) =

�

(∫
I
f (s)ds

(∫
E

(
p–(s) – p+(s)

)
ds

)
–

∫
E
f (s)ds

(∫
I

(
p–(s) – p+(s)

)
ds

))
,

� =
∫
I
p–(s)ds

∫
E
p–(s)ds –

∫
I
p+(s)ds

∫
E
p+(s)ds + T – – T +.

In case (ii) we have

x(t) =

�

(∫
I
f (s)ds

(
–

∫
E
p+(s)ds + 

)
+

∫
E
f (s)ds

(
–

∫
I
p–(s)ds + 

))
,

x(t) =

�

(∫
I
f (s)ds

(
–

∫
E
p–(s)ds + 

)
+

∫
E
f (s)ds

(
–

∫
I
p+(s)ds + 

))
,

x(t) – x(t) =

�

(∫
I
f (s)ds

(∫
E

(
p–(s) – p+(s)

)
ds

)
–

∫
E
f (s)ds

(∫
I

(
p–(s) – p+(s)

)
ds

))
,

� =
∫
I
p+(s)ds

∫
E
p+(s)ds –

∫
I
p–(s)ds

∫
E
p–(s)ds + T – – T +.

In case (iii) we have

x(t) =

�

(∫
I
f (s)ds

(∫
E
p–(s)ds + 

)
+

∫
E
f (s)ds

(
–

∫
I
p–(s)ds + 

))
,

x(t) =

�

(∫
I
f (s)ds

(∫
E
p+(s)ds + 

)
+

∫
E
f (s)ds

(
–

∫
I
p+(s)ds + 

))
,

x(t) – x(t) =

�

(∫
I
f (s)ds

(∫
E

(
p–(s) – p+(s)

)
ds

)
–

∫
E
f (s)ds

(∫
I

(
p–(s) – p+(s)

)
ds

))
,

� = –
∫
I
p+(s)ds

∫
E
p–(s)ds +

∫
I
p–(s)ds

∫
E
p+(s)ds + T – – T +.

http://www.boundaryvalueproblems.com/content/2014/1/119
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In case (iv) we have

x(t) =

�

(∫
I
f (s)ds

(
–

∫
E
p+(s)ds + 

)
+

∫
E
f (s)ds

(∫
I
p+(s)ds + 

))
,

x(t) =

�

(∫
I
f (s)ds

(
–

∫
E
p–(s)ds + 

)
+

∫
E
f (s)ds

(∫
I
p–(s)ds + 

))
,

x(t) – x(t) =

�

(∫
I
f (s)ds

(∫
E

(
p–(s) – p+(s)

)
ds

)
–

∫
E
f (s)ds

(∫
I

(
p–(s) – p+(s)

)
ds

))
,

� =
∫
I
p+(s)ds

∫
E
p–(s)ds –

∫
I
p–(s)ds

∫
E
p+(s)ds + T – – T +.

Let S(i), S(ii), S(iii), S(iv) be the subsets of S for p corresponding to cases (i), (ii), (iii), (iv).
We can easily calculate the minimal and maximal values in every case.
In case (iv) we have

max
x∈S(iv)

{
x(t),x(t)

}
=

T – + 
T – – T + – T –T + ,

min
x∈S(iv)

{
x(t),x(t)

}
=

⎧⎨⎩ –T –

T ––T + if T – > ,
–T –

T ––T ++T –T + if T – ≤ ,

min
x∈S(iv)

(
x(t) – x(t)

)
=

–T –

T – – T + – T –T + ,

max
x∈S(iv)

(
x(t) – x(t)

)
=

⎧⎨⎩ T –

T ––T ++T –T + if T – < ,

 if T – ≥ .

In case (iii) we have

max
x∈S(iii)

{
x(t),x(t)

}
=

T – + 
T – – T + – T –T + ,

min
x∈S(iii)

{
x(t),x(t)

}
=

⎧⎨⎩ –T –

T ––T + if T – > ,
–T –

T ––T ++T –T + if T – ≤ ,

max
x∈S(iii)

(
x(t) – x(t)

)
=

T –

T – – T + – T –T + ,

min
x∈S(iii)

(
x(t) – x(t)

)
=

⎧⎨⎩ –T –

T ––T ++T –T + if T – < ,

– if T – ≥ .

Therefore, in cases (iii) and (iv) we have

max
x∈S(iii)∪S(iv)

{
x(t),x(t)

}
=

T – + 
T – – T + – T –T + ,

min
x∈S(iii)∪S(iv)

{
x(t),x(t)

}
=

⎧⎨⎩ –T –

T ––T + if T – > ,
–T –

T ––T ++T –T + if T – ≤ ,

max
x∈S(iii)∪S(iv)

∣∣x(t) – x(t)
∣∣ = T –

T – – T + – T –T + .

http://www.boundaryvalueproblems.com/content/2014/1/119
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In case (i) we have

max
x∈S(i)

{
x(t),x(t)

}
=

T – + 
T – – T + – (T +)/

,

min
x∈S(i)

{
x(t),x(t)

}
=


T – – T + + (T –)/

,

max
x∈S(i)

∣∣x(t) – x(t)
∣∣ = max

z∈[,T +]

{ T – – z
T – – T + – z(T + – z)

,
z

T – – T + – z(T + – z)

}
.

In case (ii) we have

max
x∈S(ii)

{
x(t),x(t)

}
=


T – – T + – (T –)/

,

min
x∈S(ii)

{
x(t),x(t)

}
=

⎧⎪⎪⎨⎪⎪⎩
min{K ,G} if T – ≤ ,
–T –

T ––T + if  < T – ≤  +
√
 – T +,

– 
(+

√
–T +)–T – if  +

√
 – T + < T –,

where K =minz∈[,T +]
–z

T ––T ++z(T +–z) , G =minz∈[,T –]
–z

T ––T ++(T +)/–z(T ––z) ,

max
x∈S(ii)

∣∣x(t) – x(t)
∣∣ = max

z∈[,T –]

{
z

T – – T + – z(T – – z)
,

T + – z
T – – T + – z(T – – z)

}
.

Considering extremal values in all cases (i), (ii), (iii) and (vi), by elementary calculation, we
obtain

N =

⎧⎨⎩ 
T ––T +–(T –)/ if T – > ,

T –+
T ––T +–T –T + if T – ≤ ,

N =

⎧⎪⎪⎨⎪⎪⎩
–T –

T ––T ++T –T + if T – ≤ ,
–T –

T ––T + if  < T – ≤  +
√
 – T +,

– 
(+

√
–T +)–T – if  +

√
 – T + < T –.

If  ≤ T + < T –( – T –/), ≤ T – or  ≤ T + ≤ T –(T ––)
(T –+) , ≤ T – ≤ , then

N =



√
T – – T + – T –

.

If  < T + < T –

+T – ,  < T – ≤  or T –(T ––)
(T –+) < T + < T –

+T – ,  < T – ≤ , then

N =
T –

T – – T + – T –T + .

This proves all Theorems , , . �

Competing interests
The author declares that he has no competing interests.

http://www.boundaryvalueproblems.com/content/2014/1/119


Bravyi Boundary Value Problems 2014, 2014:119 Page 12 of 12
http://www.boundaryvalueproblems.com/content/2014/1/119

Author’s contributions
The author read and approved the final manuscript.

Acknowledgements
Research was supported by the Russian Foundation for Basic Research (14-01-0033814). The author would like to thank
both reviewers for their careful reading of the manuscript and valuable remarks.

Received: 29 January 2014 Accepted: 6 May 2014 Published: 15 May 2014

References
1. Krawcewicz, W, Ma, S, Wu, J: Multiple slowly oscillating periodic solutions in coupled lossless transmission lines.

Nonlinear Anal., Real World Appl. 5(2), 309-354 (2004)
2. Kang, S, Zhang, G: Existence of nontrivial periodic solutions for first order functional differential equations. Appl.

Math. Lett. 18(1), 101-107 (2005)
3. Wu, J, Wang, Z: Periodic solutions of neutral functional differential systems with two parameters. Nonlinear Anal., Real

World Appl. 9(3), 1012-1023 (2008)
4. Padhi, S, Srivastava, S: Multiple periodic solutions for a nonlinear first order functional differential equations with

applications to population dynamics. Appl. Math. Comput. 203(1), 1-6 (2008)
5. Schwabik, S, Tvrdy, M, Vejvoda, O: Differential and Integral Equations. Boundary Value Problems and Adjoints.

Czechoslovak Academy of Sciences, Dordrecht (1979)
6. Hale, JK, Verduyn Lunel, SM: Introduction to Functional Differential Equations. Springer, New York (1993)
7. Kolmanovskii, V, Myshkis, A: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer

Academic, Dordrecht (1999)
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