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Abstract
We consider a semilinear fourth-order elliptic equation with a right-hand side
nonlinearity which exhibits an asymmetric growth at +∞ and at –∞. Namely, it is
linear at –∞ and superlinear at +∞. Combining variational methods with Morse
theory, we show that the problem has at least two nontrivial solutions, one of which
is negative.
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1 Introduction
Consider the following Navier boundary value problem:

⎧⎨
⎩�u(x) + c�u = f (x,u) in �,

u =�u =  on ∂�,
()

where � is the biharmonic operator, and � is a bounded smooth domain in R
N (N > ),

and c < λ∗
 the first eigenvalue of –� in H

(�).
The conditions imposed on f (x, t) are as follows:

(H) f ∈ C(�̄ ×R,R), f (x, ) =  for all x ∈ � and f (x, t) <  for all t <  and all x ∈ �;
(H) there exist r ∈ (,p∗) and A,B >  such that |f ′

t (x, t)| ≤ A + B|t|r– for all x ∈ �, and
t ∈R, where p∗ = N

N– , if N > ;
(H) limt→–∞ f (x,t)

t = l uniformly for x ∈ �, where l is a nonnegative constant;
(H) there exist β , ξ ∈R such that for F(x, t) =

∫ t
 f (x, s)ds, we have

lim
t→–∞ sup

(
F(x, t) – f (x, t)t

) ≤ β uniformly for all x ∈ �, ()

lim
t→+∞

F(x, t)
t

= +∞ uniformly for all x ∈ � ()

and

lim
t→+∞ inf

(
f (x, t)t – F(x, t)

) ≥ ξ uniformly for all x ∈ �; ()
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(H) there exist ϑ,ϑ ∈ L∞(�)+ and an integer k ≥  such that

λk ≤ ϑ(x)≤ ϑ(x) ≤ λk+ for all x ∈ �, ()

the first and the last inequality are strict on sets (not necessary the same) of positive
measure, and

ϑ(x) ≤ f ′
t (x, ) = lim

t→

f (x, t)
t

≤ ϑ(x) uniformly for all x ∈ �. ()

In view of the conditions (H) and equation () in (H), it is clear that for all x ∈ �, f (x, t)
is linear at –∞ and superlinear at +∞. Clearly, u =  is a trivial solution of problem (). It
follows from (H) and (H) that the functional

I(u) =



∫
�

(|�u| – c|∇u|)dx – ∫
�

F(x,u)dx ()

is C on the space H
(�)∩H(�) with the norm

‖u‖ :=
(∫

�

(|�u| – c|∇u|)dx) 

,

where F(x, t) =
∫ t
 f (x, s)ds. Under the condition (H), the critical points of I are solutions

of problem (). Let  < λ < λ < · · · < λk < · · · be the eigenvalues of (� + c�,H(�) ∩
H

(�)) and φ(x) >  be the eigenfunction corresponding to λ. In fact, λ = λ∗
 (λ∗

 – c). Let
Eλk denote the eigenspace associated with λk . Throughout this article, we denoted by | · |p
the Lp(�) norm and E = H(�) ∩ H

(�). The aim of this paper is to prove a multiplicity
theorem for problem () when the nonlinearity term f (x, t) exhibits an asymmetric be-
havior as t ∈ R approaches +∞ and –∞. In the past, some authors studied the following
elliptic problem:

–�u = f (x,u), u ∈H
(�) ()

with asymmetric nonlinearities by using the Fučík spectrum of the operator (–�,H
(�)).

This approach requires that f (x, t) exhibits linear growth at both +∞ and –∞ and that the
limits limt→±∞ f (x,t)

t exist and belong toR. See the works of Các [], Dancer and Zhang [],
Magalhães [], de Paiva [], Schechter [] and the references therein. Equations with non-
linearities which are superlinear in one direction and linear in the other were investigated
by Arcoya and Villegas [] and Perera []. They let the nonlinearity f (x, t) be line at –∞
and satisfy the Ambrosetti-Rabinowitz condition at +∞. Particularly, it is worth noticing
paper []. The authors relax several of the above restrictions on the nonlinearity f (x, t).
Their nonlinearity is only measurable in x ∈ �. The limit as t → –∞ of f (x,t)

t need not ex-
ist and the growth at –∞ can be linear or sublinear. Furthermore, their nonlinearity f (x, t)
does not satisfy the famous AR-condition. They use the truncated skill of first order weak
derivative to verify the (PS) condition and obtain multiple solutions for problem () by
combining variational methods and Morse theory.
To the authors’ knowledge, there seem to be few results on problem () when f (x, t)

is asymmetric nonlinearity at positive infinity and at negative infinity. However, the

http://www.boundaryvalueproblems.com/content/2014/1/12
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method in [] cannot be applied directly to the biharmonic problems. For example,
for the Laplacian problem, u ∈ H

(�) implies |u|,u+,u– ∈ H
(�), where u+ = max(u, ),

u– =max(–u, ). We can use u+ or u– as a test function, which is helpful in proving a so-
lution nonnegative. While for the biharmonic problems, this trick fails completely since
u ∈ H

(�) does not imply u+,u– ∈ H
(�) (see [, Remark ..] and [, ]). As far as

this point is concerned, we will make use of the new methods to overcome it.
This fourth-order semilinear elliptic problem can be considered as an analogue of a class

of second-order problems which have been studied by many authors. In [], there was a
survey of results obtained in this direction. In [], Micheletti and Pistoia showed that
(P) admits at least two solutions by a variation of linking if f (x,u) is sublinear. Chipot []
proved that the problem (P) has at least three solutions by a variational reductionmethod
and a degree argument. In [], Zhang and Li showed that (P) admits at least two nontriv-
ial solutions byMorse theory and local linking if f (x,u) is superlinear and subcritical on u.
In this article, under the guidance of [], we consider multiple solutions of problem ()

with the asymmetric nonlinearity by using variational methods and Morse theory.

2 Main result and auxiliary lemmas
Let us now state the main result.

Theorem. Assume conditions (H)-(H) hold. If l < λ, then problem () has at least two
nontrivial solutions.

Lemma . Under the assumptions of Theorem ., then I satisfies the (PS) condition.

Proof Let {un} ⊂ E be a sequence such that for every n ∈ N ,

∣∣∣∣ 
∫

�

(|�un| – c|∇un|
)
dx –

∫
�

F(x,un)dx
∣∣∣∣ ≤ c, ()

∣∣∣∣
∫

�

(�un�v – c∇un∇v)dx –
∫

�

f (x,un)vdx
∣∣∣∣ ≤ εn‖v‖, v ∈ E, ()

where c >  is a positive constant and {εn} ⊂R
+ is a sequence which converges to zero. By

a standard argument, in order to prove that {un} has a convergence subsequence, we have
to show that it is a bounded sequence. To do this, we argue by contradiction assuming that
for a subsequence, denoted by {un}, we have

‖un‖ → +∞ as n→ ∞.

Without loss of generality we can assume ‖un‖ >  for all n ∈ N and define zn = un
‖un‖ . Ob-

viously, ‖zn‖ =  ∀n ∈ N and then it is possible to extract a subsequence (denoted also by
{zn}) such that

zn ⇀ z in E, ()

zn → z in L(�), ()

zn(x)→ z(x), a.e. x ∈ �, ()∣∣zn(x)∣∣ ≤ q(x), a.e. x ∈ �, ()

http://www.boundaryvalueproblems.com/content/2014/1/12
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where z ∈ E and q ∈ L(�). Dividing both sides of inequality () by ‖un‖, we obtain
∣∣∣∣
∫

�

(�zn�v – c∇zn∇v)dx –
∫

�

f (x,un)
‖un‖ vdx

∣∣∣∣ ≤ εn

‖un‖‖v‖ for all v ∈ E.

Passing to the limit we deduce from equation () that

lim
n→∞

∫
�

f (x,un)
‖un‖ vdx =

∫
�

(�z�v – c∇z∇v)dx ()

for all v ∈ E.
Now we claim that z(x) ≤  a.e. x ∈ �. To verify this, let us observe that by choosing

v = z in equation () we have

lim
n→∞

∫
�+

f (x,un)
‖un‖ z dx < +∞, ()

where �+ = {x ∈ �|z(x) > }. But, on the other hand, from (H) and equation () in (H),
we have

f (x,un(x))
‖un‖ z(x)≥ lun(x) –K

‖un‖ z(x)≥
(
–lq(x) –K

)
z(x), a.e. x ∈ �

for some positive constant K > . Moreover, using limn→∞ un(x) = +∞ a.e. x ∈ �+, equa-
tion () and the superlinearity of f , we also deduce

lim
n→∞

f (x,un(x))
‖un‖ z(x) = lim

n→∞
f (x,un(x))

un
zn(x)z(x) = +∞, a.e. x ∈ �+.

Therefore, if |�+| >  we will obtain by Fatou’s lemma that

lim
n→∞

∫
�+

f (x,un(x))
‖un‖ z(x)dx = +∞

which contradicts inequality (). Thus |�+| =  and the claim is proved.
Clearly, z(x) �≡ , by (H), there exists C >  such that |f (x,un)|

|un| ≤ C for a.e. x ∈ �. By
using Lebesgue dominated convergence theorem in equation (), we have

∫
�

(�z�v – c∇z∇v)dx –
∫

�

lzvdx =  ()

for all v ∈ E. This contradicts l < λ. �

Lemma . Let E = V ⊕ W , where V = Eλ ⊕ Eλ ⊕ · · · ⊕ Eλk . If k ≥  is an integer, ϑ ∈
L∞(�)+, ϑ(x)≤ λk+ a.e. on � and the inequality is strict on a set of positive measure, then
there exists γ >  such that

‖u‖ –
∫

�

ϑu dx ≥ γ ‖u‖

for all u ∈W .

http://www.boundaryvalueproblems.com/content/2014/1/12
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Proof We claim that there exists a constant ϑ <  such that
∫

�

ϑ(x)u dx≤ ϑ‖u‖ ()

for all u ∈W . In fact, if not, there exists a sequence {un} such that

∫
�

ϑ(x)|un| dx >
(
 –


n

)
‖un‖

for all n ∈ N , which implies un �=  for all n. By the homogeneity of the above inequality,
we may assume that ‖un‖ =  and

∫
�

ϑ(x)|un| dx >  –

n

()

for all n. It follows from the weak compactness of the unit ball of W that there exists a
subsequence, say {un}, such that un weakly converges to u inW . NowSobolev’s embedding
theorem suggests that {un} converges to u in L(�). From inequality () we obtain

∫
�

ϑ(x)|u| dx≥ .

Moreover one has

≥ ‖u‖ ≥ λk+|u| ≥
∫

�

ϑ(x)|u| dx≥ .

Hence we have

‖u‖ = λk+|u|

and ∫
�

(
λk+ – ϑ(x)

)
u dx = 

which implies that u ∈ Eλk+ \ {} and u =  on a positive measure subset. It contradicts
the unique continuation property of the eigenfunction. �

3 Computation of the critical groups
It is well known that critical groups andMorse theory are the main tools in solving elliptic
partial differential equation. Let us recall some results which will be used later. We refer
the readers to the book [] for more information on Morse theory.
Let H be a Hilbert space and I ∈ C(H ,R) be a functional satisfying the (PS) condition

or (C) condition, and Hq(X,Y ) be the qth singular relative homology group with integer
coefficients. Let u be an isolated critical point of I with I(u) = c, c ∈R, andU be a neigh-
borhood of u. The group

Cq(I,u) :=Hq
(
Ic ∩U , Ic ∩U \ {u}

)
, q ∈ Z

is said to be the qth critical group of I at u, where Ic = {u ∈H : I(u) ≤ c}.

http://www.boundaryvalueproblems.com/content/2014/1/12
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Let K := {u ∈ H : I ′(u) = } be the set of critical points of I and a < inf I(K ), the critical
groups of I at infinity are formally defined by []

Cq(I,∞) :=Hq
(
H , Ia

)
, q ∈ Z.

From the deformation theorem, we see that the above definition is independent of the
particular choice of c < inf I(K ). If c < inf I(K ) then

Cq(I,∞) :=Hq
(
H , İa

)
, q ∈ Z. ()

For the convenience of our proof, we first recall two interesting results and prove two
important propositions.

Proposition . [] Under (H), if u ∈ E :=H(�)∩H
(�) is an isolated critical point of

I , then C∗(I,u) ∼= C∗(I|C
(�),u).

Proposition . [] If D ⊂ D ⊂ E ⊂ E ⊂ X and for some integer k ≥  we have
Hk(E,D) �=  and Hk(E,D) = , then either Hk+(E,E) �=  or Hk–(D,D) �= .

Proposition . If the assumptions of Theorem . hold, then

Ck(I,∞) =  for all integers k ≥ .

Proof Under the guidance of [] and [], we begin to prove this result. Let I = I|C
(�̄).

Indeed, it follows from above Proposition . that I and I have same critical set. Since
C
(�̄) is dense in E, invoking Proposition  of Palais [], we have

Hk
(
E, İa

)
=Hk

(
C
(�̄), İa

)
for all a ∈ R and all integers k ≥ . ()

From equations () and (), we see that in order to prove the proposition, it suffices to
show that

Hk
(
C
(�̄), Ia

)
=  for all a <  with |a| large and all integers k ≥ . ()

In order to prove equation (), we proceed as follows. We define the sets

∂Bc
 =

{
u ∈ C

(�̄) : ‖u‖C
(�̄) = 

}
and

∂Bc
,+ =

{
u ∈ ∂Bc

 : u(x) >  for some x ∈ �
}
.

Consider the map h+ : [, ]× ∂Bc
,+ → ∂Bc

,+ defined by

h+(t,u) =
( – t)u + tφ

‖( – t)u + tφ‖C
(�̄)

for all (t,u) ∈ [, ]× ∂Bc
,+.

Clearly, h+ is a continuous homotopy and h(,u) = φ for all x ∈ ∂Bc
,+. Therefore, ∂Bc

,+ is
contractible in itself.

http://www.boundaryvalueproblems.com/content/2014/1/12
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By equation () in (H), given any γ > , we can find C = C(γ ) >  such that

F(x, t)≥ γ


t for all x ∈ � and all t ≥ C. ()

Similarly, from condition (H), and by choosing C >  even bigger if necessary, we observe
that there is a number γ >  such that

F(x, t)≥ –
γ


t for all x ∈ � and all t ≤ –C(γ ). ()

Moreover, by condition (H), we have

∣∣F(x, t)∣∣ ≤ C for all x ∈ � and all |t| ≤ C(γ ) ()

for some C > .
Let u ∈ ∂Bc

,+. By inequalities (), (), and (), for all t >  we have

I(tu) =
t


‖u‖ –

∫
�

F(x, tu)dx

=
t


‖u‖ –

∫
tu≥C

F(x, tu)dx –
∫
tu≤–C

F(x, tu)dx –
∫

|tu|≤C
F(x, tu)dx

≤ t



[(
 +

γ

λ

)
‖u‖ – γ

∫
tu≥C

u dx
]
+C|�|. ()

Recalling that γ >  is arbitrary, from (), we have

I(tu) → –∞ as t → –∞. ()

Using formula () in condition (H), we see that there exist constants ξ and M >  such
that

f (x, t)t – F(x, t)≥ ξ for all x ∈ � and all t ≥M. ()

By (H) and formula () in condition (H), we have

F(x, t) – f (x, t)t ≤ C for all x ∈ � and all t <M ()

for some C > . By inequalities () and (), for any u ∈ E we have

∫
�

(
F(x, t) – f (x, t)t

)
dx ≤ C, ()

where C is a positive constant. Let i : C
(�̄) → E be the continuous embedding map. Let

〈·, ·〉 denote the duality brackets for the pair (C
(�̄)∗,C

(�̄)). We let I = I ◦ i, and so

I ′(u) = i∗I ′
(
i(u)

)
for all u ∈ C

(�̄),

d
dt

I(tu) =
〈
I ′(tu),u

〉
 = t‖u‖ –

∫
�

f (x, tu)udx ≤ 
t
(
I(tu) +C∗). ()

http://www.boundaryvalueproblems.com/content/2014/1/12
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Then, from equation (), we obtain

d
dt

I(tu) <  for all t >  large such that I(tu) < –
C∗


. ()

From conditions (H) and (H), we see that given ε > , we can findM >  such that

F(x, t)≤ 

(l + ε)t +M for all x ∈ � and all t ≤ . ()

Using inequality (), we have

I(u) ≥ 

(‖u‖ – l|u| – ε|u|

)
–M

≥ C‖u‖ –M

for u ∈ –C+, where C+ is defined as

{
u ∈ C

(�) : u(x) ≥  for all x ∈ �
}

and C >  is a positive constant. So I|–C+ is coercive, thus we find C∗∗ >  such that I|–C+ ≥
–C∗∗. We pick

a <min

{
–
C∗


,–C∗∗, inf

∂Bc
I

}
.

Then inequality () implies that we can find k(u) >  such that

⎧⎪⎪⎨
⎪⎪⎩
I(tu) > a if t ∈ [,k(u)),

I(tu) = a if t = k(u),

I(tu) < a if t > k(u).

Moreover, the implicit function theorem implies that k ∈ C(∂Bc
,+, [, +∞)).

By the choice of a, we have

Ia =
{
tu : u ∈ ∂Bc

,+, t ≥ k(u)
}
. ()

We define the set E+ = {tu : u ∈ ∂Bc
,+, t ≥ }. The map ĥ+ : [, ]× E+ → E+ defined by

ĥ+(s, tu) =

⎧⎨
⎩( – s)tu + sk(u)u if  ≤ t < k(u),

tu if t ≥ k(u),
s ∈ [, ], ()

is a continuous deformation of E+, ĥ+(,E+) ⊂ Ia and ĥ+(s, ·)|Ia = id|Ia for all s ∈ [, ] (see
equations () and ()). Therefore, Ia is a strong deformation retract of E+. Hence we
have

Hk
(
C
(�̄), Ia

)
=Hk

(
C
(�̄),E+

)
=Hk

(
C
(�̄), ∂Bc

,+
)

for all k ≥ . ()

http://www.boundaryvalueproblems.com/content/2014/1/12
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Recalling that in the first part of the proof, we established that ∂Bc
,+ is contractible. This

yields

Hk
(
C
(�̄), ∂Bc

,+
)
=  for all integers k ≥ .

Combining with equation () leads to equation (), which completes the proof. �

Proposition . If the assumptions of Theorem . hold, then

Cd(I, ) �= ,

where d = dimV (V being defined in Lemma .).

Proof By condition (H), given ε > , we can find δ∗ >  such that



(
ϑ(x) – ε

)
t ≤ F(x, t) for all x ∈ � and all |t| ≤ δ∗. ()

Since V is finite dimensional, all norms are equivalent. Thus we can find ρ >  small such
that

‖u‖ ≤ ρ ⇔ ‖u‖∞ ≤ δ∗ ()

for all u ∈ V . Taking inequalities () and () into account, for all u ∈ V with ‖u‖ ≤ ρ we
have

I(u) ≤ 


∫
�

(
λk – ϑ(x)

)
u dx +

ε


|u|. ()

Similar to the proof of Lemma ., there exists C >  such that

I(u) ≤ (–C + ε)‖u‖ ≤  ()

for all u ∈ V and ‖u‖ ≤ ρ .
On the other hand, for given ε > , it follows from (H) and (H) that

F(x, t)≤ ϑ(x) + ε


t +Cε |t|r ()

for all x ∈ � and t ∈ R. By () and Lemma ., we have

I(u) ≥ C‖u‖ –C‖u‖r ()

for all u ∈W . From inequality (), we infer that for ρ small enough we have

I(u) >  for all u ∈W with  < ‖u‖ ≤ ρ. ()

From inequalities () and (), we know that I has a local linking at . Then invoking
Proposition . of Bartsch and Li [], we obtain Cd(I, ) �= . �

http://www.boundaryvalueproblems.com/content/2014/1/12
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4 Proof of themain result
Proof of Theorem . We consider the following problem:

{
�u + c�u = f–(x,u), x ∈ �,
u|∂� =�u|∂� = ,

where

f–(x, t) =

{
f (x, t), t < ,
, t ≥ .

Define a functional I– : E =H(�)∩H
(�) →R by

I–(u) =



∫
�

(|�u| – c|∇u|)dx – ∫
�

F–(x,u)dx,

where F–(x, t) =
∫ t
 f–(x, s)ds, then I– ∈ C(E,R). Obviously, by conditions (H) and (H),

we know that I– is coercive and boundedness from below. Thus we can find v ∈ E such
that

I–(v) = inf I– =:m–. ()

Next, we claim that v �= . By condition (H), given ε ∈ (,λk – λ), there exists δ >  such
that



(
ϑ(x) – ε

)
t ≤ F–(x, t) for all x ∈ �, t ∈ [–δ, ]. ()

For s small enough, it follows from inequality () that

I–(–sφ) =
s


λ –

∫
�

F–(x, –sφ)dx

≤ s


(λ – λk + ε) < ,

and thus, by equation (), I–(v) ≤ I–(–sφ) < , so v �= . From condition (H) and strong
maximum principle, we have v <  and

Ck(I–, v) = δk,Z for all integers k ≥ .

Since v is an interior point of –C+, from Proposition ., we know

Ck(I, v) = Ck(I–, v) = δk,Z for all integers k ≥ . ()

Let θ ∈R, ε >  be such that θ <m– = I(v) < –ε. We consider the sublevel sets

Iθ ⊂ I–ε ⊂ Iε ⊂ E.

Suppose that  and v are the only critical points of I . Otherwise, we have a second non-
trivial smooth solution and so we are done. By Proposition ., we have

Hk
(
E, Iθ

)
= Ck(I,∞) =  for all integers k ≥ . ()

http://www.boundaryvalueproblems.com/content/2014/1/12
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We know that I satisfies the (PS) condition (see Lemma .). Hence choosing ε >  small
enough, we have

Hd
(
Iε , I–ε

)
= Cd(I, ) �=  ()

(see Proposition .). Because of equations () and (), using Proposition ., we obtain

Hd+
(
E, Iε

) �=  or Hd–
(
I–ε , Iθ

) �= .

If Hd+(E, Iε) �= , then there is a critical point v∗ ∈ E of I such that

I
(
v∗) > ε >  and v∗ �= , v.

If Hd–(I–ε , Iθ ) �= , then there is a critical point v∗ ∈ E of I such that

Cd–
(
I, v∗) �= . ()

Since d ≥ , from equations () and (), we see that v∗ �= v. It is obvious that v∗ �= .
Therefore v and v∗ are two solutions of problem (). �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the referees for valuable comments and suggestions in improving this article. This study
was supported by the National NSF (Grant No. 11101319) of China and Planned Projects for Postdoctoral Research Funds
of Jiangsu Province (Grant No. 1301038C).

Received: 14 August 2013 Accepted: 16 December 2013 Published: 10 Jan 2014

References
1. Các, NP: On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue.

J. Differ. Equ. 80, 379-404 (1989)
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