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1 Introduction
The prescribed mean curvature problems like

{
–div( Du√

+κ(Du)
) = f (x,u), x ∈ �,

u = , x ∈ ∂�

have attracted much attention in recent years, see [–] and the references therein. Since
the problem is quasilinear non-uniformly elliptic, it is more difficult to study the exis-
tence of classical solutions. The greatest obstacle is the lack of gradient estimate, such
kind of estimate does not hold in general and boundary gradient blow-upmay occur. This
leads to some new phenomena very different from those in semilinear problems. Many
well-known results of semilinear problems have to be reconsidered for this quasilinear
problem. Motivated by the search for solutions of the above problem, many authors (see
[–]) studied the existence of (positive) solutions for one-dimensional prescribed mean
curvature equations with Dirichlet boundary conditions

{
–( u′√

+κ(u′)
)′ = λf (u), x ∈ (, ),

u() = u() = ,
(.)

where κ >  is a constant, f ∈ C([,∞), [,∞)) and f (u) >  for u >  and x ∈ [, ].
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Note that if κ = , problem (.) is degenerate to the second-order ordinary differential
equation boundary value problems

{
–u′′ = λf (u), x ∈ (, ),
u() = u() = .

(.)

The existence of (positive) solutions of (.) has been well known with various qualitative
assumptions of the nonlinearity f , see [, ] and the references therein.
If κ = , Bonheure et al. [], Habets and Omari [], Kusahara and Usami [], Pan and

Xing [, ] studied the existence of (positive) solutions of (.) by using the variational
method, lower and upper solutions method and time mapping method, respectively.
However, to the best of our knowledge, the existence and multiplicity of positive solu-

tions for (.) are relatively few by the fixed point index theory. In this paper, based on
the fixed point index theory, we shall investigate the existence and multiplicity of positive
solution of (.) when f is φ-superlinear and φ-sublinear at  and ∞, respectively, here
φ(s) = s√

+κs
.

Let φ(s) = s√
+κs

. Then (.) can be rewritten as

{
–(φ(u′))′ = λf (u(x)), x ∈ (, ),
u() = u() = .

(.)

Obviously, φ :R → (– √
κ
, √

κ
) is an odd, increasing homeomorphism with φ() = .

For convenience, we introduce some notations

f = lim
u→

f (u)
φ(u)

and f∞ = lim
u→∞

f (u)
φ(u)

.

Wewill also need the function f ∗(u) =max≤t≤u{f (t)}, and let f ∗
 = limu→

f ∗(u)
φ(u) . By a similar

method in [, Lemma .], it is not difficult to verify that f ∗
 = f.

In the rest of this paper, we shall study the existence of positive solutions of (.) by using
the fixed point index theory to give a brief and clear proof for the existence of positive
solutions of (.). More concretely, we shall prove the following.

Theorem . Assume that f ∈ C([,∞), [,∞)) and f (u) >  for u > .
(i) If f = , then there exists  < λ∗ < λ∗ such that (.) has a positive solution for

λ∗ < λ < λ∗.
(ii) If f =∞, then there exists λ >  such that (.) has a positive solution for  < λ < λ.
(iii) If f = f∞ = , then there exists  < λ∗ < λ∗ such that (.) has at least two positive

solutions for λ∗ < λ < λ∗.
(iv) If f = f∞ =∞, then there exists  < λ∗ < λ∗ such that (.) has at least two positive

solutions for λ∗ < λ < λ∗.

Corollary . Assume that f ∈ C([,∞), [,∞)) and f (u) >  for u > .
(a) If f =  and f∞ =∞, then there exists  < λ∗ < λ∗ such that (.) has a positive

solution for λ∗ < λ < λ∗.
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(b) If f =∞ and f∞ = , then there exists λ >  such that (.) has a positive solution for
 < λ < λ.

Remark . The results of Theorem . and Corollary . are different with the case κ = 
which is the classical Dirichlet boundary value problem (.). This phenomenon is a strik-
ing feature of problem (.), which is just the reason why we study the existence of positive
solutions of problem (.). It is pointed out that in equation of (.), having replaced f (u)
with f (x,u), Theorem . and Corollary . also hold as well as all of the proofs with obvi-
ous changes.

2 Preliminaries
Throughout the paper | · | will denote absolute value, and let

E =
{
u ∈ C[, ] | u() = u() = 

}
.

Then E is a Banach space endowed with the norm ‖u‖∞ =maxx∈[,] |u(x)|.
We first establish some preliminary results to prove our main result. An easy but useful

property of φ and φ– is the following one.

Lemma . Let φ(s) = s√
+κs

. Then φ : R → (– √
κ
, √

κ
) is an odd, increasing homeomor-

phism with φ() = .Moreover, φ has the following properties:
(i) φ is convex up on [,∞) and φ– is concave up on (, √

κ
).

(ii) For each c≥ , there exists Âc ≥ c such that φ(cs)≤ Âcφ(s), ∀s≥  with
limc→∞ Âc =∞ and for each  < c≤ , there exists  < B̂c ≤ c such that
φ(cs)≥ B̂cφ(s), ∀s≥  with limc→ B̂c = .

(iii) For each  < c ≤ , there exists Bc ≥ c such that φ–(cs)≤ Bcφ
–(s), ∀s ∈ (, √

κ
). For

each c≥  with – √
κ
< cs < √

κ
, there exists Ac ≤ c such that φ–(cs)≥ Acφ

–(s),
∀s ∈ (, √

κ
).

Proof By a simple computation, it follows that φ(–s) = –φ(s) and φ′(s) = √
(+κs)

> . So

φ is an odd, increasing homeomorphism with φ() = . Moreover, from φ′′(s) = –κs√
(+κs)

,

we get that φ is convex up on [,∞). Notice that φ–(s) = s√
–κs

is also an odd, increasing
homeomorphism with φ() = . It is easy to verify that φ– is concave up on (, √

κ
).

(ii) For each  < c≤ , there exists B̂c ≤ c such that

φ(cs) =
cs√

 + κcs
≥ B̂c

s√
 + κs

, ∀s≥ ;

and for each c≥ , there exists Âc ≥ c such that

φ(cs) =
cs√

 + κcs
≤ Âc

s√
 + κs

, ∀s≥ .

(iii) By a similar argument, it is not difficult to compute that for each  < c ≤ , there
exists Bc ≥ c such that φ–(cs) ≤ Bcφ

–(s), ∀s ∈ (, √
κ
). For each c ≥  with – √

κ
< cs < √

κ
,

there exists Ac ≤ c such that φ–(cs)≥ Acφ
–(s), ∀s ∈ (, √

κ
). �
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Lemma . Let h ∈ C([, ], [,∞)) with h �≡ . Assume that w is the solution of

{
–(φ(u′))′ = h(x), x ∈ (, ),
u() = u() = .

(.)

Then w >  on (, ) and ‖w′‖∞ ≤ φ–(M), where M =min{ √
κ
, supx∈[,] |h(x)|}.

Proof By integrating, it follows that (.) has the unique solution given by

w(x) =
∫ x


φ–

(
C –

∫ s


h(t)dt

)
ds,

whereC is such thatw() = . Hence wemust have  < C <
∫ 
 h(t)dt. Further, since φ(u′) ∈

(– √
κ
, √

κ
), by using φ(w′(x)) = C–

∫ x
 h(t)dt, we obtain –M ≤ φ(w′(x))≤M, ∀ x ∈ [, ] and

‖w′‖∞ ≤ φ–(M) follows, hereM =min{ √
κ
, supx∈[,] |h(x)|}.

Since w() = w() = , there exists x ∈ (, ) such that w′(x) =  and it follows from
–(φ(w′))′ ≥  that φ(w′) is decreasing on (, ). Then w′(x) >  for x < x and w′(x) <  for
x > x. Hence, w >  on (, ). �

Note that from Lemma ., there exists τi ∈ (,  ), i = , , such that minx∈[τ,–τ]w(x) ≥
σ‖w‖∞ with  < σ <  depending on τi. Define the cone P in E by

P =
{
u ∈ E

∣∣ u(x) ≥  on [, ] and min
x∈[τ,–τ]

u(x)≥ σ‖u‖∞
}
,

and for r > , let �r = {u ∈ P | ‖u‖∞ < r}.

Lemma . ([, Lemma . and Lemma .]) For each h ∈ C[, ], (.) has a unique
solution given by

u(x) =
∫ x


φ–

(
C –

∫ s


h(t)dt

)
ds =: Th(u)(x),

where C is such that u() =  with  < C <
∫ 
 h(t)dt. Moreover, the operator Th : E → E is

continuous and sends equicontinuous sets in C[, ] into a relatively compact set in E.

We next state the fixed point index theorem which will be used to prove our results.

Lemma . ([, Chapter ]) Let E be a Banach space and P be a cone in E.Assume that�
is a bounded open subset of E with  ∈ �, and let T : P∩ �̄ → P be a completely continuous
operator such that Tu �= u, u ∈ ∂� ∩ P.

(i) If ‖Tu‖ ≤ ‖u‖, u ∈ ∂� ∩ P, then i(A,� ∩ P,P) = .
(ii) If ‖Tu‖ ≥ ‖u‖, u ∈ ∂� ∩ P, then i(A,� ∩ P,P) = .

From Lemma ., problem (.) is equivalent to the fixed point problem

u(x) =
∫ x


φ–

(
C – λ

∫ s


f
(
u(t)

)
dt

)
ds := Tλ(u)(x)
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in the space E, where C is such that u() =  with  < C < λ
∫ 
 f (u(t))dt, since otherwise,

u() =
∫ 


φ–

(
C – λ

∫ s


f
(
u(t)

)
dt

)
ds≥

∫ 


φ–

(
λ

∫ 

s
f
(
u(t)

)
dt

)
ds > ,

which is a contradiction. This together with Lemma . implies that Tλ : E → E is a com-
pletely continuous mapping. Moreover, for any fixed u ∈ P, we have

Tλ(u)(x) =
∫ x


φ–

(
C – λ

∫ s


f
(
u(t)

)
dt

)
ds≥ , x ∈ [, ] (.)

and Tλ(u)() = Tλ(u)() = . In addition, from Lemma ., it follows that Tλ(u)(x) >  on
(, ) and there exist τi ∈ (,  ), i = , , such that minx∈[τ,–τ]Tλu ≥ σ‖Tλu‖∞. So Tλ :
P → P is a completely continuous operator.

Lemma . Let r >  be given. If there exists ε >  small enough with Bλε <  such that
f ∗(r) ≤ εφ(r), then

‖Tλu‖∞ ≤ Bλε‖u‖∞ for u ∈ ∂�r ,

where Bλε is defined as in Lemma .(iii).

Proof From the definition of Tλ, for any u ∈ ∂�r , we have

‖Tλu‖∞ = max
x∈[,]

∣∣∣∣
∫ x


φ–

(
C – λ

∫ s


f
(
u(t)

)
dt

)
ds

∣∣∣∣
≤

∫ 


φ–

(
λ

∫ 

s
f
(
u(t)

)
dt

)
ds≤

∫ 


φ–

(
λ

∫ 

s
f ∗(r)dt

)
ds

≤
∫ 


φ–(λεφ(r)

)
ds≤ Bλεr. �

Lemma . Let η >  be given. If u ∈ P and f (u(x))≥ ηφ(u(x)) for x ∈ [, ], then

‖Tλu‖∞ ≥ σx∗φ–(λ( – σ )x∗ηφ
(
σ‖u‖∞

))
,

where x∗ =min{x,  – x} and u(x) =maxx∈[,] u(x) = ‖u‖∞.

Proof From problem (.), since u() = u() = , it follows that there exists x ∈ (, ) such
that u′(x) = . Let ‖u‖∞ = u(x). Then u satisfies the following boundary value problem:

{
–(φ(u′(x)))′ = λf (u(x)), x ∈ (,x),
u() = , u(x) = ‖u‖∞.

(.)

Let v be the solution of the problem

{
–(φ(v′(x)))′ = , x ∈ (,x),
v() = , v(x) = ‖u‖∞.

(.)

http://www.boundaryvalueproblems.com/content/2014/1/120
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Then we have{
–(φ(u′(x)) – φ(v′(x)))′ = λf (u(x)), x ∈ (,x),
(u – v)() = , (u – v)(x) = ,

(.)

and by a comparison argument, we get that u > v on (,x). In fact, from (u – v)() = ,
(u – v)(x) = , there exists x̂ ∈ (,x) such that (u – v)′(x̂) = , i.e., u′(x̂) = v′(x̂). Thus, by a
simple computation, we have that

φ
(
u′(x)

)
= φ

(
v′(x)

)
+

∫ x̂

x
λf

(
u(t)

)
dt ≥ φ

(
v′(x)

)
for x ∈ (, x̂)

and

φ
(
v′(x)

)
= φ

(
u′(x)

)
+

∫ x

x̂
λf

(
u(t)

)
dt ≥ φ

(
u′(x)

)
for x ∈ (x̂,x).

This together with φ is an increasing homeomorphism implies that

u′(x)≥ v′(x) for x ∈ (, x̂), (.)

v′(x)≥ u′(x) for x ∈ (x̂,x). (.)

Integrating from  to x for (.) and integrating from x to x for (.), respectively, we have
that u(x)≥ v(x) for x ∈ [,x].
Note that

v(x) = ‖u‖∞ –
∫ x

x
φ–(C)ds,

where C is such that v() = , and hence ‖u‖∞ =
∫ x
 φ–(C)ds. If C > φ( ‖u‖∞

x
), then it

follows that

‖u‖∞ =
∫ x


φ–(C)ds >

∫ x


φ–

(
φ

(‖u‖∞
x

))
ds≥ ‖u‖∞,

which is a contradiction. Thus,  ≤ C ≤ φ( ‖u‖∞
x

). Moreover, we have

v(x) = ‖u‖∞ –
∫ x

x
φ–(C)ds ≥ ‖u‖∞ – (x – x)φ–

(
φ

(‖u‖∞
x

))

=
x
x

‖u‖∞, x ∈ [x,x],

where x = σx. Consequently, u(x)≥ v(x)≥ σ‖u‖∞ for x ∈ [x,x]. Obviously,

u(x) =
∫ x


φ–

(
C – λ

∫ s


f
(
u(t)

)
dt

)
ds,

where C satisfies u′(x) = . It follows from φ–(C – λ
∫ x
 f (u(t))dt) =  that C =

λ
∫ x
 f (u(t))dt. Therefore,

u(x) =
∫ x


φ–

(
λ

∫ x

s
f
(
u(t)

)
dt

)
ds = Tλu(x), x ∈ [,x]. (.)

http://www.boundaryvalueproblems.com/content/2014/1/120
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If x ≥ 
 , then

‖Tλu‖∞ ≥
∫ x


φ–

(
λ

∫ x

s
f
(
u(t)

)
dt

)
ds ≥

∫ x


φ–

(
λ

∫ x

x
ηφ

(
u(t)

)
dt

)
ds

≥
∫ x


φ–(λ(x – x)ηφ

(
σ‖u‖∞

))
ds≥ σxφ–(λ( – σ )xηφ

(
σ‖u‖∞

))
.

If x ≤ 
 , let w be the solution of

–
(
φ
(
w′(x)

))′ = , x ∈ (x, ),

w(x) = ‖u‖∞, w() = .
(.)

Then

w(x) = ‖u‖∞ +
∫ x

x
φ–(C)ds,

where C <  satisfies w() = , i.e., ‖u‖∞ = –
∫ 
x

φ–(C)ds. If C < –φ( ‖u‖∞
–x

), then

‖u‖∞ = –
∫ 

x
φ–(C)ds > –

∫ 

x
φ–

(
–φ

(‖u‖∞
 – x

))
ds≥ ‖u‖∞,

which is contradiction. Hence –φ( ‖u‖∞
–x

) ≤ C ≤ .
By a similar argument as before, it follows that u≥ w on (x, ). Moreover,

w(x) = ‖u‖∞ +
∫ x

x
φ–(C)ds≥ ‖u‖∞ + (x – x)φ–

(
–φ

(‖u‖∞
 – x

))

=
 – x
 – x

‖u‖∞, x ∈ [x,x],

where x =  – σ ( – x). So u(x) ≥ w(x)≥ σ‖u‖∞, x ∈ [x,x]. Therefore, we have

u(x) =
∫ 

x
φ–

(
λ

∫ s

x
f
(
u(t)

)
dt

)
ds = Tλu(x), x ∈ [x, ], (.)

and subsequently,

‖Tλu‖∞ ≥
∫ 

x
φ–

(
λ

∫ s

x
f
(
u(t)

)
dt

)
ds≥

∫ 

x
φ–

(
λ

∫ x

x
ηφ

(
u(t)

)
dt

)
ds

≥
∫ 

x
φ–(λ(x – x)ηφ

(
σ‖u‖∞

))
ds

≥ σ ( – x)φ–(λ( – σ )( – x)ηφ
(
σ‖u‖∞

))
.

Let x∗ =min{x,  – x}. Then

‖Tλu‖∞ ≥ σx∗φ–(λ( – σ )x∗ηφ
(
σ‖u‖∞

))
. �
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Lemma . Let r >  be given. If u ∈ ∂�r , then

‖Tλu‖∞ ≤ φ–(λMr),

where Mr =  +max≤u≤r{f (u)} > .

Proof Obviously, for any u ∈ ∂�r , it follows that f (u(x))≤Mr for x ∈ [, ]. So we have

‖Tλu‖∞ ≤
∫ 


φ–

(
λ

∫ 

s
f
(
u(t)

)
dt

)
ds≤ φ–(λMr). �

Lemma . Let r >  be given. If u ∈ ∂�r , then

‖Tλu‖∞ ≥ σx∗φ–(λ( – σ )x∗mr
)
,

where mr =minσ r≤u≤r{f (u)} >  and x∗ =min{x,  – x}.

Proof By using a similar argument of the proof of Lemma ., we have that u(x) ≥ σ‖u‖∞
for x ∈ [x,x]. Meanwhile, (.) is true. If x ≥ 

 , then we can get that

‖Tλu‖∞ ≥
∫ x


φ–

(
λ

∫ x

s
f
(
u(t)

)
dt

)
ds ≥

∫ x


φ–

(
λ

∫ x

x
mr dt

)
ds

≥
∫ x


φ–(λ(x – x)mr

)
ds≥ xφ–(λ(x – x)mr

)
= σxφ–(λ( – σ )xmr

)
.

If x ≤ 
 , then (.) holds and it follows that

‖Tλu‖∞ ≥
∫ 

x
φ–

(
λ

∫ s

x
f
(
u(t)

)
dt

)
ds≥

∫ 

x
φ–

(
λ

∫ x

x
mr dt

)
ds

≥
∫ 

x
φ–(λ(x – x)mr

)
ds≥ ( – x)φ–(λ(x – x)mr

)
= σ ( – x)φ–(λ( – σ )( – x)mr

)
.

Let x∗ =min{x, ( – x)}, then

‖Tλu‖∞ ≥ σx∗φ–(λ( – σ )x∗mr
)
. �

3 Proof of themain results

Proof of Theorem . (i) Choose a suitable number r > . By Lemma ., we have

‖Tλu‖∞ > ‖u‖∞ for u ∈ ∂�r and λ∗ < λ < λ∗,

where

λ∗ ≤ √
κ( – σ )x∗mr

and λ∗ ≥ 
( – σ )x∗mr

φ

(
r

σx∗

)
.

http://www.boundaryvalueproblems.com/content/2014/1/120
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If f = , then f ∗
 = , and so we can choose r ∈ (, r) such that f ∗(r) ≤ εφ(r), where

ε >  small enough satisfies

Bλε < . (.)

Then Lemma . implies that

‖Tλu‖∞ < ‖u‖∞ for u ∈ ∂�r .

From Lemma ., it follows that i(Tλ,�r ,P) =  and i(Tλ,�r ,P) = . By using the
additivity-excision property of the fixed point index [], we have that

i(Tλ,�r\�̄r ,P) = i(Tλ,�r ,P) – i(Tλ,�r ,P) = –.

Therefore, Tλ has a fixed point in �̄r\�r . Consequently, (.) has a positive solution
for λ∗ < λ < λ∗.
(ii) Choose a suitable number r > . By Lemma ., there exists

 < λ ≤min

{
√

κMr
,
φ(r)
Mr

}
=

φ(r)
Mr

such that ‖Tλu‖∞ < ‖u‖∞ for u ∈ ∂�r and  < λ < λ. That is, i(Tλ,�r ,P) = .
If f =∞, then there exists r ∈ (, r) such that f (u) ≥ ηφ(u) for ≤ u ≤ r, where η > 

is chosen large enough so that

λ( – σ )x∗ηφ(σ r) <
√
κ

and σ λ( – σ )x∗η > . (.)

Clearly, f (u) ≥ ηφ(u(x)) for u ∈ ∂�r , x ∈ [, ]. From Lemma ., we get that

‖Tλu‖∞ ≥ σx∗φ–(λ( – σ )x∗ηφ
(
σ‖u‖∞

)) ≥ σ λ( – σ )x∗η‖u‖∞ > ‖u‖∞

for u ∈ ∂�r .

This together with Lemma . implies i(Tλ,�r ,P) = . By using the additivity-excision
property of the fixed point index [], we have

i(Tλ,�r\�̄r ,P) = i(Tλ,�r ,P) – i(Tλ,�r ,P) = .

Therefore, Tλ has a fixed point in �̄r\�r . Consequently, (.) has a positive solution
for  < λ < λ.
(iii) Since φ is a bounded operator, multiplying (.) by u′ and integrating from  to x,

we get that

λ

∫ u(x)


f (u)du =


κ

[
 –

√
 + κ(u′())

]
→ 

κ
as u′() → ∞.

http://www.boundaryvalueproblems.com/content/2014/1/120
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Let λ∗ >  be the solution of λ
∫ r∗
 f (u)du = 

κ
. Then there exists r̄ := r∗ – ε >  such that

λ

∫ r̄


f (u)du <


κ

(.)

with r̄ = u(x) = ‖u‖∞.
Choose two numbers  < r < r < r̄ satisfying

φ

(
r

σx∗

)
<
( – σ )x∗mr

Mr̄
φ(r̄) and φ

(
r

σx∗

)
<
( – σ )x∗mr

Mr̄
φ(r̄).

By Lemma ., there exist

λ∗ =max

{
φ( r

σx∗ )
( – σ )x∗mr

,
φ( r

σx∗ )
( – σ )x∗mr

}

and

λ∗ =min

{
√
κMr̄

,
φ(r̄)
Mr̄

,


( – σ )x∗mr
√

κ
,


( – σ )x∗mr

√
κ

}
=

φ(r̄)
Mr̄

such that for λ∗ < λ < λ∗, we have

‖Tλu‖∞ > ‖u‖∞ for u ∈ ∂�ri , i = ,.

This together with Lemma . implies i(Tλ,�ri ,P) = , i = ,.
Since f = , from the proof of the case (i), it follows that we can choose r ∈ (, r ) such

that i(Tλ,�r ,P) = . Subsequently,

i(Tλ,�r\�̄r ,P) = i(Tλ,�r ,P) – i(Tλ,�r ,P) = –.

On the other hand, f∞ = , λ < λ∗ and (.) together with Lemma . implies

‖Tλu‖∞ ≤ φ–(λMr̄) < ‖u‖∞ for any u ∈ ∂�r̄ .

That is, i(Tλ,�r̄ ,P) = . Subsequently,

i(Tλ,�r̄\�̄r ,P) = i(Tλ,�r̄ ,P) – i(Tλ,�r ,P) = .

Therefore, Tλ has two fixed points u and u such that u ∈ �̄r\�r and u ∈ �̄r̄\�r .
These are the desired distinct positive solutions of (.) for λ∗ < λ < λ∗ satisfying

r ≤ ‖u‖∞ ≤ r < r ≤ ‖u‖∞ ≤ r. (.)

(iv) Choose two numbers  < r < r < r̄ satisfying

φ(r) >
Mr

( – σ )x∗mr̄
φ

(
r̄

σx∗

)
and φ(r) >

Mr
( – σ )x∗mr̄

φ

(
r̄

σx∗

)
.
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By Lemma ., there exists  < λ ≤min{ φ(r)
Mr

, φ(r)
Mr

} such that for  < λ < λ, we have

‖Tλu‖∞ < ‖u‖∞ for u ∈ ∂�ri , i = ,.

That is, i(Tλ,�r ,P) =  and i(Tλ,�r ,P) = .
Since f =∞, from the proof of the case (ii), choose r ∈ (, r ) such that i(Tλ,�r ,P) = .

Consequently,

i(Tλ,�r\�̄r ,P) = i(Tλ,�r ,P) – i(Tλ,�r ,P) = .

On the other hand, f∞ =∞ and (.) together with Lemma . implies that

‖Tλu‖∞ ≥ σx∗φ–(λ( – σ )x∗mr̄
)
.

Let λ∗ =
φ( r̄

σx∗ )
(–σ )x∗mr̄

and λ∗ =min{λ, √
κ(–σ )x∗mr̄

}. Then, for any λ∗ < λ < λ∗, we have

‖Tλu‖∞ > ‖u‖∞ for any u ∈ u ∈ ∂�r̄ .

That is, i(Tλ,�r̄ ,P) = . Subsequently,

i(Tλ,�r̄\�̄r ,P) = i(Tλ,�r̄ ,P) – i(Tλ,�r ,P) = –.

Therefore, Tλ has two fixed points u and u such that u ∈ �̄r\�r and u ∈ �̄r̄\�r .
These are the desired distinct positive solutions of (.) for λ∗ < λ < λ∗ satisfying (.).

�

Proof of Corollary . It is easy to show by the result of Theorem .(i) and (ii). �

Example . Let us consider the following problem:

{
–( u′√

+κ(u′)
)′ = λeu, x ∈ (, ),

u() = u() = .
(.)

Obviously, f = limu→
eu

φ(u) = ∞ and f∞ = limu→∞ eu
φ(u) = ∞. From Theorem .(iv), there

exists  < λ∗ < λ∗ such that (.) has at least two positive solutions for λ∗ < λ < λ∗.

Example . Let us consider the following problem:

{
–( u′√

+κ(u′)
)′ = λup, x ∈ (, ),

u() = u() = .
(.)

Obviously, we divided the discussion into two cases as follows.
Case . p > 
In this case, f (u) = up is convex, and f = limu→

up
φ(u) =  and f∞ = limu→∞ up

φ(u) =∞. From
Corollary .(a), there exists  < λ∗ < λ∗ such that (.) has at least one positive solution
for λ∗ < λ < λ∗.
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Case . p < 
In this case, f (u) = up is concave, and f = limu→

up
φ(u) = ∞ and f∞ = limu→∞ up

φ(u) = ∞.
From Theorem .(iv), there exists  < λ∗ < λ∗ such that (.) has at least two positive
solutions for λ∗ < λ < λ∗.

Remark . It is worth to point out that our results only partly generalize the results of
Habet and Omari [] and Pan [], since f (u) is more general than eu, up and due to the
limitation of the fixed point index method.

Remark . Since f (u) in (.) is autonomous, it is not difficult to show that the solutions
of (.) are symmetric around 

 , see [, ]. It follows that x = 
 in the proof of Theo-

rem ., and we can set τi = 
 , i = ,  and σ = 

 .
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