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Abstract
This paper is devoted to the Cauchy problem for the higher-order dispersive equation
ut + ∂7

x u = ∂2
x (u

2), x, t ∈ R. The local well-posedness of the associated Cauchy problem
is established in Sobolev space Hs(R) with s > –7

4 with the aid of the Fourier restriction
norm method.
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1 Introduction
In this paper, we are concerned with the Cauchy problem for the following seventh-order
dispersive equation:

ut + ∂
x u = ∂

x
(
u

)
, x, t ∈ R, (.)

u(x, ) = u(x). (.)

Kenig et al. [] established that

ut + ∂j+
x u + P

(
u, ∂xu, . . . , ∂j

x u
)
= , j ∈N,x, t ∈ R, (.)

u(x, ) = u(x), (.)

is locally well-posed in some weighted Sobolev spaces for small initial data and for arbi-
trary initial data. Recently, Pilod [] studied the following higher-order nonlinear disper-
sive equation:

ut + ∂j+
x u =

∑
≤j+j≤j

aj,j∂
j
x u∂ j

x u, (.)

where x, t ∈ R and u is a real- (or complex-) valued function and proved it is locally well-
posed inweighted Besov and Sobolev spaces for small initial data and proved ill-posedness
results when a,k �=  for some k > j in the sense that (.) cannot have its flow map C at
the origin in Hs(R). Very recently, Guo et al. [] studied the Cauchy problem for

ut + ∂
x + c∂xu∂

x u + cu∂
x u = , (.)
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and he proved that it is locally well-posed in Hs(R) with s ≥ 
 with the aid of a short time

Bourgain space.
In this paper, inspired by [–], by using the Fourier restriction normmethod, we estab-

lish that (.)-(.) is locally well-posed in Sobolev space Hs with s > –
 .

Now we give some notations and definitions. Throughout this paper, we always assume
that ψ is a smooth function, ψδ(t) = ψ( t

δ
), satisfying  ≤ ψ ≤ , ψ =  when t ∈ [, ],

suppψ ⊂ [–, ] and σ = τ – ξ , σk = τk – ξ 
k (k = , ),

W (t)u =
∫
R
ei(xξ–tξ

)Fxu(ξ )dξ ,

‖f ‖Lqt Lpx =
(∫

R

(∫
R

∣∣f (x, t)∣∣p dx)
q
p
dt

) 
q
, ‖f ‖Lpt Lpx = ‖f ‖Lpxt .

〈ξ〉s = (+ξ ) s for any ξ ∈ R, andFu denotes the Fourier transformation of uwith respect
to its all variables. F –u denotes the Fourier inverse transformation of u with respect to
its all variables. Fxu denotes the Fourier transformation of u with respect to its space
variable. F –

x u denotes the Fourier inverse transformation of u with respect to its space
variable. S (Rn) is the Schwarz space and S ′(Rn) is its dual space. Hs(R) is the Sobolev
space with norm ‖f ‖Hs(R)

�= ‖〈ξ 〉sFxf ‖Lξ (R). For any s,b ∈ R, Xs,b(R) is the Bourgain space
with phase function φ(ξ ) = –ξ . That is, a function u(x, t) in S ′(R) belongs to Xs,b(R) iff

‖u‖Xs,b(R)
�=

∥∥〈ξ〉s〈σ 〉bFu(ξ , τ )
∥∥
Lτ (R)Lξ (R)

< ∞.

For any given interval L,Xs,b(R×L) is the space of the restriction of all functions inXs,b(R)
on R× L, and for u ∈ Xs,b(R× L) its norm is

‖u‖Xs,b(R×L) = inf
{‖U‖Xs,b(R);U|R×L = u

}
.

When L = [,T], Xs,b(R× L) is abbreviated as XT
s,b.

The main result of this paper is as follows.

Theorem . Assume that u(x) ∈ Hs(R) with s > –
 . Then the Cauchy problem for (.)

is locally well-posed.

The remainder of paper is arranged as follows. In Section , we make some prelimi-
naries. In Section , we give an important bilinear estimate. In Section , we establish
Theorem ..

2 Preliminaries
Lemma . Let b > 

 . Then

‖u‖Lxt ≤ C‖u‖X
, b

, (.)

∥∥D 

x u

∥∥
Lt L

∞
x

≤ C‖u‖X,b , (.)

‖u‖Lt Lx ≤ C‖u‖X,  b , (.)
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‖u‖X,– 
 b

≤ C‖u‖
L


t Lx

, (.)

∥∥D 

x u

∥∥
Lxt

≤ C‖u‖X,  b
. (.)

Proof For the proof of (.)-(.), we refer the readers to Lemma . of [].
We have completed the proof of Lemma .. �

Lemma . Assume that b = 
 + ε. Then

∥∥I 
 (u,u)

∥∥
Lxt

≤ C
∏

k=

‖uk‖X,b , (.)

where

F I

 (u,u)(ξ , τ ) =

∫
ξ=ξ+ξ
τ=τ+τ

∣∣ξ
 – ξ


∣∣ 
 Fu(ξ, τ)Fu(ξ, τ)dξ dτ.

Lemma . is the case of n =  of Lemma . of [].

Lemma . For any  < δ < 
 , and s ∈ R, for b > , we have

∥∥ψδ(t)W (t)u
∥∥
Xs,b

≤ Cδ

 –b‖u‖Hs . (.)

For – 
 < b′ ≤  ≤ b′ + , we have

∥∥∥∥ψδ(t)
∫ t


W (t – τ )udτ

∥∥∥∥
Xs,b

≤ Cδ+b
′–b‖u‖Xs,b′ . (.)

Lemma . can be found as Lemma . of [].

3 Bilinear estimates
In this section, we will give an important bilinear estimate.
We give an important relation before proving the bilinear estimate.

|σ – σ – σ| =
∣∣ξ  – ξ 

 – ξ 

∣∣ ∼ ξminξ


max,

where

ξmin =min
{|ξ |, |ξ|, |ξ|

}
,

ξmax =max
{|ξ |, |ξ|, |ξ|

}
.

(.)

Lemma . Let s ≥ –
 + ε, b = 

 + ε, where  � ε ≤ , b′ = – 
 + ε. Then

∥∥∥∥∥∂
x

∏
k=

(uk)

∥∥∥∥∥
Xs,b′

≤ C
∏

k=

‖uk‖Xs,b . (.)
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Proof Let

Fk(ξk , τk) = 〈ξk〉s〈σk〉bFuk(ξk , τk),

F(ξ , τ ) = 〈ξ〉–s〈σ 〉b′Fu(ξ , τ ),

σ = τ – ξ , σk = τk – ξ 
k , k = , .

To establish (.), it is sufficient to derive the following inequality:

∫
R

∫
ξ=ξ+ξ
τ=τ+τ

K(ξ, τ, ξ , τ )|F|
∏

k=

|Fk|dξ dτ dξ dτ ≤ C‖F‖Lξτ
‖F‖Lξτ

‖F‖Lξτ
, (.)

where

K(ξ, τ, ξ , τ ) =
|ξ |〈σ 〉b′ 〈ξ〉s∏
k=〈ξk〉s〈σk〉b

. (.)

Without loss of generality, we assume that F ≥ , Fk ≥  (k = , ). To derive (.), it suffices
to prove that

∫
R

∫
ξ=ξ+ξ
τ=τ+τ

K(ξ, τ, ξ , τ )F
∏

k=

Fk dξ dτ dξ dτ ≤ C‖F‖Lξτ
‖F‖Lξτ

‖F‖Lξτ
. (.)

By using the symmetry between |ξ| and ξ, without loss of generality, we can assume that
|ξ| ≤ |ξ|. Obviously,

{
ξ = ξ + ξ, τ = τ + τ, |ξ| ≥ |ξ|

} ⊂
⋃
k=


k ,

where


 =
{
(ξ, τ, ξ , τ ) ∈ R, ξ = ξ + ξ, τ = τ + τ, |ξ| ≤ |ξ| ≤ 

}
,


 =
{
(ξ, τ, ξ , τ ) ∈ R, ξ = ξ + ξ, τ = τ + τ, |ξ| ≥ , |ξ| ≥ |ξ|, |ξ| ≤ 

}
,


 =
{
(ξ, τ, ξ , τ ) ∈ R, ξ = ξ + ξ, τ = τ + τ, |ξ| ≥ , |ξ| ≥ |ξ|, |ξ| ≥ 

}
,


 =

{
(ξ, τ, ξ , τ ) ∈ R, ξ =

∑
k=

ξk , τ =
∑

k=

τk , |ξ| ≥ ,

|ξ| ≤ |ξ| ≤ |ξ|, |ξ | ≤ 

|ξ|, ξξ ≤ 

}
,


 =
{
(ξ, τ, ξ , τ ) ∈ R, ξ = ξ + ξ, τ = τ + τ, |ξ| ≥ , |ξ| ≤ |ξ| ≤ |ξ|, |ξ| ≥ |ξ |



}
,


 =
{
(ξ, τ, ξ , τ ) ∈ R, ξ = ξ + ξ, τ = τ + τ, |ξ| ≥ , |ξ| ≤ |ξ| ≤ |ξ|, ξξ ≥ 

}
.

We will denote the integrals in (.) corresponding to 
k ( ≤ k ≤ ) by Jk ( ≤ k ≤ ),
respectively. Let f =F – F

〈σ 〉–b′ , fk =F – Fk
〈σk〉b , k = , .
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() Subregion 
. Since |ξ| ≤ |ξ| ≤ , we have |ξ | ≤ , which yields

K(ξ, τ, ξ , τ )≤ C
〈σ 〉–b′ ∏

k=〈σk〉b
.

Then, by the Plancherel identity, the Hölder inequality, and 
b < b, we derive

J ≤ C
∫
R

∫
ξ=ξ+ξ
τ=τ+τ

K(ξ, τ, ξ , τ )F
∏

k=

Fk dξ dτ dξ dτ

≤ C
∫
R

∫
ξ=ξ+ξ
τ=τ+τ

F
∏

k= Fk
〈σ 〉–b′ ∏

k=〈σk〉b
dξ dτ dξ dτ ≤ C

∫
R

fff dxdt

≤ C‖f ‖Lxt
∏

k=

‖fk‖Lxt ≤ C‖F‖Lξτ

∏
k=

‖fk‖X,  b ≤ C‖F‖Lξτ

∏
k=

‖Fk‖Lξτ
.

() Subregion 
. In this subregion, obviously, |ξ| ∼ |ξ |.
It is easily checked that

K(ξ, τ, ξ , τ )≤ C
|ξ |〈σ 〉b′∏
k=〈σk〉b

≤ C
|ξ

 – ξ
 |/∏

k=〈σk〉b
.

Consequently, by the Cauchy-Schwarz inequality and Lemma ., we have

J ≤ C
∫
R

∫
ξ=ξ+ξ
τ=τ+τ

K(ξ, τ, ξ , τ )F
∏

k=

Fk dξ dτ dξ dτ

≤ C
∫
R

∫
ξ=ξ+ξ
τ=τ+τ

F
∏

k= Fk|ξ
 – ξ

 | ∏
k=〈σk〉b

dξ dτ dξ dτ

≤ C
∥∥∥∥
∫

ξ=ξ+ξ
τ=τ+τ

|ξ
 – ξ

 |  ∏
k= Fk∏

k=〈σk〉b
dξ dτ

∥∥∥∥
Lξτ

‖F‖Lξτ

≤ C‖F‖Lξτ

∏
k=

‖Fk‖Lξτ
.

() Subregion 
. In this subregion, we derive |ξ | ∼ |ξ|. Thus,

K(ξ, τ, ξ , τ )≤ C
|ξ ||ξ|–s〈σ 〉b′∏

k=〈σk〉b
.

(i) Case |σ | =max{|σ |, |σ|, |σ|}. By (.), we derive

K(ξ, τ, ξ , τ )≤ C
|ξ |+b′ |ξ|–s+b′∏

k=〈σk〉b
≤ C

|ξ
 – ξ

 |/∏
k=〈σk〉b

.

If –s + b′ ≤ , then

K(ξ, τ, ξ , τ )≤ C
|ξ |+b′ |ξ|–s+b′∏

k=〈σk〉b
≤ C

|ξ
 – ξ

 |/∏
k=〈σk〉b

.
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If –s + b′ ≥ , then

K(ξ, τ, ξ , τ )≤ C
|ξ |–s+b′∏
k=〈σk〉b

≤ C
|ξ

 – ξ
 |/∏

k=〈σk〉b
.

This case can be proved similarly to 
.
(ii) Case |σ| =max{|σ |, |σ|, |σ|}. Since 〈σ 〉b+b′ ≤ 〈σ〉b+b′ , we have

K(ξ, τ, ξ , τ )≤ C
|ξ ||ξ|–s〈σ〉b′

〈σ〉b〈σ 〉b ≤ C
|ξ |+b′ |ξ|–s+b′

〈σ〉b〈σ 〉b .

If –s + b′ ≤ , we have

K(ξ, τ, ξ , τ )≤ C
|ξ|/

〈σ〉b〈σ 〉b ,

consequently, by using the Cauchy-Schwarz inequality and (.) and (.), we have

∫
R

∫
ξ=ξ+ξ
τ=τ+τ

|ξ| n– F
∏

j= Fj
〈σ〉b〈σ 〉b dξ dτ dξ dτ

≤
∥∥∥∥∥〈σ 〉–b

∫
R

|ξ|  〈σ 〉–b
∏
j=

Fj dξ dτ

∥∥∥∥∥
Lξτ

‖F‖Lξτ

≤ C
∥∥F –(F)

(
D



x f

)∥∥
L


t Lx

‖F‖Lξτ

≤ C
∥∥F –(F)

∥∥
Lxt

∥∥D/
x f

∥∥
Lt L

∞
x

‖F‖Lξτ

≤ C‖F‖Lξτ
‖F‖Lξτ

‖f‖X,b

≤ C‖F‖Lξτ

∏
j=

‖Fj‖Lξτ
.

If –s + b′ ≥ , since s≥ –
 + ε, we have

K(ξ, τ, ξ , τ )≤ C
|ξ |–s+b′

〈σ〉b〈σ 〉b ≤ C
|ξ|/

〈σ〉b〈σ 〉b .

This case can be proved similarly to the above case.
(iii) Case |σ| = max{|σ |, |σ|, |σ|}. This case is similar to (ii) case |σ| = max{|σ |, |σ|,

|σ|}.
() Subregion 
. In this subregion, |ξ| ∼ |ξ|, and it is easy to obtain

∣∣ξ
 – ξ


∣∣ ≥ C|ξ ||ξ|,

∣∣ξ – ξ

∣∣ ≥ C|ξ|,

∣∣ξ – ξ

∣∣ ≥ C|ξ|.

(i) Case |σ | =max{|σ |, |σ|, |σ|}. By using, |ξ| ∼ |ξ|, when s ≥ , we have

K(ξ, τ, ξ , τ )≤ C
|ξ |〈σ 〉b′∏
k=〈σk〉b

≤ C
|ξ

 – ξ
 |/〈σ 〉b′∏

k=〈σk〉b
.

http://www.boundaryvalueproblems.com/content/2014/1/122


Wang and Zheng Boundary Value Problems 2014, 2014:122 Page 7 of 9
http://www.boundaryvalueproblems.com/content/2014/1/122

This case can be proved similarly to Subregion 
. When s≤ , we have

K(ξ, τ, ξ , τ )≤ C
|ξ ||ξ|–s

〈σ 〉–b′ ∏
j=〈σj〉b

.

If |σ | =max{|σ |, |σ|, |σ|}, since – 
 + ε ≤ s≤ , then

K(ξ, τ, ξ , τ ) ≤ C
|ξ |+b′ |ξ|–s+b′∏

k=〈σk〉b

≤ C
|ξ |/|ξ|/|ξ |  +b′ |ξ|–s+b′–/∏

k=〈σk〉b

≤ C
|ξ

 – ξ
 |/∏

k=〈σk〉b
.

By using the Cauchy-Schwarz inequality, we have

J ≤ C
∫
R

∫
ξ=ξ+ξ
τ=τ+τ

K(ξ, τ, ξ , τ )F
∏

k=

Fk dξ dτ dξ dτ

≤ C
∫
R

∫
ξ=ξ+ξ
τ=τ+τ

|ξ
 – ξ

 |/∏
k=〈σk〉b

F
∏

k=

Fk dξ dτ dξ dτ

≤ C

∥∥∥∥∥
∫

ξ=ξ+ξ
τ=τ+τ

|ξ
 – ξ

 |/∏
k=〈σk〉b

∏
k=

Fk dξ dτ

∥∥∥∥∥
Lξτ

‖F‖Lξτ

≤ C‖F‖Lξτ

∏
j=

‖Fj‖L .

(ii) Casemax{|σ |, |σ|, |σ|} = |σ|. Since 〈σ 〉b+b′ ≤ 〈σ〉b+b′ , by using – 
 + ε ≤ s≤ , we

have

K(ξ, τ, ξ , τ )≤ C
|ξ ||ξ|–s

〈σ 〉b〈σ〉b〈σ〉–b′ ≤ C
|ξ |+b′ |ξ|–s+b′

〈σ 〉b〈σ〉b ≤ C
|ξ – ξ

 |/
〈σ 〉b〈σ〉b .

This case can be proved similarly to max{|σ |, |σ|, |σ|} = |σ |.
(iii) Case max{|σ |, |σ|, |σ|} = |σ|.
This case can be proved similarly to max{|σ |, |σ|, |σ|} = |σ|.
() Subregion 
. In this region |ξ | ∼ |ξ| ∼ |ξ|, thus, we have

K(ξ, τ, ξ , τ )≤ C
|ξ |–s〈σ 〉b′∏

k=〈σk〉b
.

(i) If |σ | =max{|σ |, |σ|, |σ|}, by using (.) and s ≥ –
 +


 ε, we have

K(ξ, τ, ξ , τ )≤ C
|ξ |–s+b′∏
k=〈σk〉b

≤ C
∏

k= |ξk|

∏

k=〈σk〉b
.
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By using the Plancherel identity, the Hölder inequality, and 
b < b as well as (.), we have

J ≤ C
∫
R

∫
ξ=ξ+ξ
τ=τ+τ

K(ξ, τ, ξ , τ )F
∏

k=

Fk dξ dτ dξ dτ

≤ C
∫
R

∫
ξ=ξ+ξ
τ=τ+τ

∏
k= |ξk|


∏

k=〈σk〉b
dξ dτ dξ dτ

≤ C
∫
R

F –F
∏

k=

D


x fk dxdt

≤ C
∥∥F –F

∥∥
Lxt

∏
k=

∥∥D 

x fk

∥∥
Lxt

≤ C‖F‖Lξτ

∏
k=

‖fk‖X,  b
≤ C‖F‖Lξτ

∏
k=

‖Fk‖Lξτ
.

(ii) If |σ| =max{|σ |, |σ|, |σ|}, then 〈σ 〉b′ 〈σ〉–b ≤ 〈σ〉b′ 〈σ 〉–b. By using (.), we have

K(ξ, τ, ξ , τ ) ≤ C
|ξ |–s〈σ〉b′

〈σ〉b〈σ 〉b ≤ C
|ξ |–s+b′

〈σ〉b〈σ 〉b ≤ C
|ξ |  |ξ| 
〈σ 〉b〈σ〉b .

By using the Plancherel identity, the Hölder inequality, (.) and 
b < b, we have

J ≤ C
∫
R

∫
ξ=ξ+ξ
τ=τ+τ

K(ξ, τ, ξ , τ )F
∏

k=

Fk dξ dτ dξ dτ

≤ C
∫
R

∫
ξ=ξ+ξ
τ=τ+τ

|ξ |  |ξ| 
〈σ〉b〈σ〉b F

∏
k=

Fk dξ dτ dξ dτ

≤ C
∫
R

(
F –F

)(
D



x F –

(
F

〈σ 〉b
))

D


x f dxdt

≤ C
∥∥F –F

∥∥
Lxt

∥∥D 

x f

∥∥
Lxt

∥∥∥∥D 

x F –

(
F

〈σ 〉b
)∥∥∥∥

Lxt

≤ C‖F‖Lξτ
‖f‖X,  b

∥∥∥∥ F
〈σ 〉b

∥∥∥∥
X,  b

≤ C‖F‖Lξτ

∏
k=

‖Fk‖Lξτ
.

(iii) If |σ| =max{|σ |, |σ|, |σ|}.
This case can be proved similarly to the case |σ| =max{|σ |, |σ|, |σ|}.
() Subregion 
. In this region, we have |ξ | ∼ |ξ| ∼ |ξ|.
This case can be proved similarly to the Subregion 
.
We have completed the proof of Lemma .. �

4 Proof of Theorem 1.1
The system (.)-(.) is equivalent to the following integral equation:

u(t) =W (t)u +
∫ t


W (t – τ )∂

x
(
u

)
dτ . (.)

http://www.boundaryvalueproblems.com/content/2014/1/122
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We define

�(u) = �(t)W (t)u +�δ(t)
∫ t


W (t – τ )∂

x
(
u

)
dτ . (.)

Combining Lemmas . and . with the fixed point theorem, we easily obtain Theo-
rem ..
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