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Abstract
In the present paper, the well-posedness of the initial value problem for the delay
differential equation dv(t)

dt + Av(t) = B(t)v(t –ω) + f (t), t ≥ 0; v(t) = g(t) (–ω ≤ t ≤ 0) in an
arbitrary Banach space E with the unbounded linear operators A and B(t) in E with
dense domains D(A)⊆ D(B(t)) is studied. Two main theorems on well-posedness of
this problem in fractional spaces Eα are established. In practice, the coercive stability
estimates in Hölder norms for the solutions of the mixed problems for delay parabolic
equations are obtained.
MSC: 35G15
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1 Introduction
The stability of delay ordinary differential and difference equations and delay partial dif-
ferential and difference equations with bounded operators acting on delay terms has been
studied extensively in a large cycle of works (see [–] and the references therein) and in-
sight has developed over the last three decades. The theory of stability and coercive stabil-
ity of delay partial differential and difference equations with unbounded operators acting
on delay terms has received less attention than delay ordinary differential and difference
equations (see [–]). It is well known that various initial-boundary value problems for
linear evolutionary delay partial differential equations can be reduced to an initial value
problem of the form{

dv(t)
dt +Av(t) = B(t)v(t –ω) + f (t), t ≥ ,

v(t) = g(t) (–ω ≤ t ≤ )
()

in an arbitrary Banach space E with the unbounded linear operators A and B(t) in E with
dense domains D(A) ⊆ D(B(t)). Let A be a strongly positive operator, i.e. –A is the gen-
erator of the analytic semigroup exp{–tA} (t ≥ ) of the linear bounded operators with
exponentially decreasing norm when t → ∞. That means the following estimates hold:

∥∥exp{–tA}∥∥E �→E ≤Me–δt ,
∥∥tA exp{–tA}∥∥E �→E ≤M, t >  ()

for someM > , δ > . Let B(t) be closed operators.
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A function v(t) is called a solution of the problem () if the following conditions are
satisfied:

(i) v(t) is continuously differentiable on the interval [–ω,∞). The derivative at the
endpoint t = –ω is understood as the appropriate unilateral derivative.

(ii) The element v(t) belongs to D(A) for all t ∈ [–ω,∞), and the function Av(t) is
continuous on the interval [–ω,∞).

(iii) v(t) satisfies the equation and the initial condition ().
A solution v(t) of the initial value problem () is said to be coercive stable (well-posed)

if

∥∥Av(t)∥∥E ≤ max
–ω≤t≤

∥∥Ag(t)∥∥E + sup
≤s≤t

∥∥f (t)∥∥E ()

for every t, –ω ≤ t < ∞. We are interested in studying the coercive stability of solutions of
the initial value problem under the assumption that

∥∥B(t)A–∥∥
E �→E ≤  ()

holds for every t ≥ . We have not been able to obtain the estimate () in the arbitrary
Banach space E. Nevertheless, we can establish the analog of estimates () where the space
E is replaced by the fractional spaces Eα ( < α < ) under an assumption stronger than ().
The coercive stability estimates in Hölder norms for the solutions of the mixed problem
of the delay differential equations of the parabolic type are obtained.
The present paper is organized as follows. Section  is introduction. In Section , two

main theorems on well-posedness of the initial value problem () are established. In Sec-
tion , the coercive stability estimates in Hölder norms for the solutions of the initial-
boundary value problem for delay parabolic equations are obtained. Finally, Section  is
our conclusion.

2 Theorems on well-posedness
The strongly positive operator A defines the fractional spaces Eα = Eα(E,A) ( < α < )
consisting of all u ∈ E for which the following norms are finite:

‖u‖Eα = sup
λ>

∥∥λ–αA exp{–λA}u∥∥
E .

We consider the initial value problem () for delay differential equations of parabolic type
in the space C(Eα) of all continuous functions v(t) defined on the segment [,∞) with val-
ues in a Banach space Eα . First, we consider the problem () when A– and B(t) commute,
i.e.

A–B(t)u = B(t)A–u, u ∈D(A). ()

Theorem . Assume that the condition

∥∥B(t)A–∥∥
E �→E ≤ ( – α)

M–α
()
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holds for every t ≥ , where M is the constant from (). Then for every t, (n– )ω ≤ t ≤ nω,
n = , . . . , we have the following coercive stability estimate:

∥∥v′(t)
∥∥
Eα

+
∥∥Av(t)∥∥Eα

≤M(α)

[
max

–ω≤t≤

∥∥Ag(t)∥∥Eα
+

n–∑
k=

max
–(k–)ω≤s≤kω

∥∥f (s)∥∥Eα
+ max

(n–)ω≤s≤t

∥∥f (s)∥∥Eα

]
, ()

where M(α) does not depend on g(t) and f (t). Here, we put
∑m

k= ak =  when m < .

Proof It is clear that

v(t) = u(t) +w(t), ()

where u(t) is the solution of the problem

{
du(t)
dt +Au(t) = B(t)u(t –ω), t ≥ ,

u(t) = g(t) (–ω ≤ t ≤ ),
()

and w(t) is the solution of the problem

{
dw(t)
dt +Aw(t) = B(t)w(t –ω) + f (t), t ≥ ,

w(t) =  (–ω ≤ t ≤ ).
()

First, we consider the problem (). Using the formula

u(t) = exp{–tA}g() +
∫ t


exp

{
–(t – s)A

}
B(s)g(s –ω)ds, ()

the semigroup property, condition (), and the estimates (), (), we obtain

λ–α
∥∥A exp{–λA}Av(t)∥∥E

≤ λ–α
∥∥A exp

{
–(λ + t)A

}
Ag()

∥∥
E

+ λ–α

∫ t



∥∥∥∥A exp

{
–

λ + t – s


A
}∥∥∥∥

E→E

∥∥B(s)A–∥∥
E→E

×
∥∥∥∥A exp

{
–

λ + t – s


A
}
Ag(s –ω)

∥∥∥∥
E
ds

≤ λ–α

(λ + t)–α

∥∥Ag()∥∥Eα
+

 – α

M–α

∫ t



Mλ–α–α

(λ + t – s)–α
ds max

≤s≤ω

∥∥Ag(s –ω)
∥∥
Eα

≤ max
–ω≤t≤

∥∥Ag(t)∥∥Eα

for every t, ≤ t ≤ ω and λ, λ > . This shows that

∥∥Au(t)∥∥Eα
≤ max

–ω≤t≤

∥∥Ag(t)∥∥Eα
()
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for every t,  ≤ t ≤ ω. Applyingmathematical induction, one can easily show that it is true
for every t. Namely, assume that the inequality

∥∥Au(t)∥∥Eα
≤ max

–ω≤s≤

∥∥Ag(s)∥∥Eα

is true for t, (n – )ω ≤ t ≤ nω, n = , , , . . . for some n. Letting t = s + nω, we have

du(s + nω)
ds

+Au(s + nω) = B(s + nω)u
(
s + (n – )ω

)
,  ≤ s ≤ ω.

Using the estimate (), we obtain

max
nω≤s≤(n+)ω

∥∥Au(s –ω)
∥∥
Eα

≤ max
–(n–)ω≤t≤nω

∥∥Au(t)∥∥Eα

for every t, nω ≤ t ≤ (n + )ω, n = , , , . . . and λ, λ > . This shows that

∥∥Au(t)∥∥Eα
≤ max

–ω≤t≤

∥∥Ag(t)∥∥Eα

for every t, nω ≤ t ≤ (n + )ω, n = , , , . . . . Therefore

∥∥Au(t)∥∥Eα
≤ max

–ω≤t≤

∥∥Ag(t)∥∥Eα
()

is true for every t ≥ . Applying (), the triangle inequality, condition (), and the estimates
() and (), we get

∥∥u′(t)
∥∥
Eα

≤ ∥∥Au(t)∥∥Eα
+

∥∥B(t)A–∥∥
E �→E

∥∥Au(t –ω)
∥∥
Eα

≤
(
 +

 – α

M–α

)
max

–ω≤t≤

∥∥Ag(t)∥∥Eα
()

for every t ≥ . Second, we consider the problem (). To prove the theorem it suffices to
establish the following stability inequality:

∥∥Aw(t)∥∥Eα
≤ M–α

 – α

[ n–∑
k=

max
–(k–)ω≤s≤kω

∥∥f (s)∥∥Eα
+ max

(n–)ω≤s≤t

∥∥f (s)∥∥Eα

]
()

for the solution of the problem () for every t, (n – )ω ≤ t ≤ nω, n = , . . . . Using the
formula

w(t) =
∫ t


exp

{
–(t – s)A

}
f (s)ds, ()

the semigroup property, and the definition of the spaces Ea, we obtain

λ–α
∥∥A exp{–λA}Aw(t)∥∥E

≤ λ–α

∫ t



∥∥A exp
{
–(λ + t – s)A

}
f (s)

∥∥
E
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≤M–α

∫ t



λ–α

(λ + t – s)–α

∥∥f (s)∥∥Eα
ds

≤M–α

(∫ t



λ–α

(λ + t – s)–α
ds

)
max
≤s≤t

∥∥f (s)∥∥Eα

≤ M–α

 – α
max
≤s≤t

∥∥f (s)∥∥Eα

for every t, ≤ t ≤ ω and λ, λ > . This shows that

∥∥Aw(t)∥∥Eα
≤ M–α

 – α
max
≤s≤t

∥∥f (s)∥∥Eα
()

for every t,  ≤ t ≤ ω. Applying mathematical induction, one can easily show that it is
true for every t. Namely, assume that the inequality () is true for t, (n – )ω ≤ t ≤ nω,
n = , . . . , for some n. Using the formula

w(t) = exp
{
–(t – nω)A

}
w(nω) +

∫ t

nω

exp
{
–(t – s)A

}
B(s)w(s –ω)ds

+
∫ t

nω

exp
{
–(t – s)A

}
f (s)ds, ()

the semigroup property, the definition of the spaces Ea, the estimate (), and condition
(), we obtain

λ–α
∥∥A exp{–λA}Aw(t)∥∥E

≤ λ–α
∥∥A exp

{
–(λ + t – nω)A

}
Aw(nω)

∥∥
E

+ λ–α

∫ t

nω

∥∥∥∥A exp

{
–

λ + t – s


A
}∥∥∥∥

E→E

∥∥B(s)A–∥∥
E→E

×
∥∥∥∥A exp

{
–

λ + t – s


A
}
Aw(s –ω)

∥∥∥∥
E
ds

+ λ–α

∫ t

nω

∥∥A exp
{
–(λ + t – s)A

}
f (s)

∥∥
E ds

≤ λ–α

(λ + t – nω)–α

∥∥Aw(nω)
∥∥
Eα

+ λ–α( – α)
∫ t

nω


(λ + t – s)–α

∥∥Aw(s –ω)
∥∥
Eα

ds

+M–α

∫ t

nω

λ–α

(λ + t – s)–α

∥∥f (s)∥∥Eα
ds

≤
(

λ–α

(λ + t – nω)–α
+ λ–α( – α)

∫ t

nω


(λ + t – s)–α

ds
)

max
(n–)ω≤t≤nω

∥∥Aw(t)∥∥Eα

≤ M–α

 – α
max

(n–)ω≤t≤nω

[ n–∑
k=

max
–(k–)ω≤s≤kω

∥∥f (s)∥∥Eα
+ max

(n–)ω≤s≤t

∥∥f (s)∥∥Eα

]

+
M–α

 – α
sup

nω≤s≤t

∥∥f (s)∥∥Eα
=
M–α

 – α

[ n∑
k=

max
–(k–)ω≤s≤kω

∥∥f (s)∥∥Eα
+ max

nω≤s≤t

∥∥f (s)∥∥Eα

]
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for every t, nω ≤ t ≤ (n + )ω, n = , , , . . . and λ, λ > . This shows that

∥∥Aw(t)∥∥Eα
≤ M–α

 – α

[ n∑
k=

max
–(k–)ω≤s≤kω

∥∥f (s)∥∥Eα
+ max

nω≤s≤t

∥∥f (s)∥∥Eα

]
()

for every t, nω ≤ t ≤ (n+ )ω, n = , , , . . . . Applying equation (), the triangle inequality,
and condition () and estimates () and (), we get

∥∥w′(t)
∥∥
Eα

≤ ∥∥Aw(t)∥∥Eα
+

∥∥B(t)A–∥∥
E �→E

∥∥Aw(t –ω)
∥∥
Eα

+
∥∥f (t)∥∥Eα

≤
(
 +

M–α

 – α

)[ n∑
k=

max
–(k–)ω≤s≤kω

∥∥f (s)∥∥Eα
+ max

nω≤s≤t

∥∥f (s)∥∥Eα

]

for every t ≥ . This result completes the proof of Theorem .. �

Now, we consider the problem () when

A–B(t)x �= B(t)A–x, x ∈D(A)

for some t ≥ . Note that A is a strongly positive operator in a Banach spaces E iff its
spectrum σ (A) lies in the interior of the sector of angle ϕ,  < ϕ < π , symmetric with
respect to the real axis, and if on the edges of this sector, S = [z = ρ exp(iϕ) :  ≤ ρ < ∞]
and S = [z = ρ exp(–iϕ) :  ≤ ρ <∞] and outside it the resolvent (z–A)– is the subject to
the bound

∥∥(z –A)–
∥∥
E→E ≤ M

 + |z| ()

for some M > . First of all let us give lemmas from the paper [] that will be needed in
the sequel.

Lemma . For any z on the edges of the sector,

S =
[
z = ρ exp(iϕ) :  ≤ ρ < ∞]

and

S =
[
z = ρ exp(–iϕ) :  ≤ ρ <∞]

and outside it the estimate

∥∥A(z –A)–x
∥∥
E ≤ Mα

Mα( +M)–α(–α)α

α( – α)( + |z|)α ‖x‖Eα

holds for any x ∈ Eα . Here and in the future M and M are the same constants of the esti-
mates () and ().
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Lemma . Let for all s ≥  the operator B(s)A– – A–B(s) with domain which coincide
with D(A) admit a closure Q = B(s)A– –A–B(s) bounded in E. Then for all τ >  the fol-
lowing estimate holds:

∥∥A–[A exp{–τA}B(s) – B(s)A exp{–τA}]x∥∥E

≤ e(α + )MαM+α
 ( + M)( +M)–α(–α)α‖Q‖E �→E‖x‖Eα

τ –απα( – α)
.

Here Q = A–(AB(s) – B(s)A)A–.
Suppose that

∥∥A–
(
AB(t) – B(t)A

)
A–

∥∥
E �→E

≤ π ( – α)αε

eM+αM+α
 ( + M)( +M)–α+α–α ( + α)

()

holds for every t ≥ . Here and in the future ε is some constant, ≤ ε ≤ .

The application of Lemmas . and . enables us to establish the following fact.

Theorem . Assume that the condition

∥∥A–B(t)
∥∥
E �→E ≤ ( – α)( – ε)

M–α
()

holds for every t ≥ . Then for every t ≥  the coercive stability estimate () holds.

Proof In a similar manner as in the proof of Theorem . we establish estimates for the
solution of the problems () and (), separately. First, we consider the problem (). Let
 ≤ t ≤ ω and λ, λ > . Then using (), we have

λ–αA exp{–λA}Au(t)
= λ–αA exp

{
–(λ + t)A

}
Ag()

+ λ–α

∫ t


exp

{
–

λ + t – s


A
}
B(s)A exp

{
–

λ + t – s


A
}
Ag(s –ω)ds

+ λ–α

∫ t


exp

{
–

λ + t – s


A
}[

A exp

{
–

λ + t – s


A
}
B(s) – B(s)A

× exp

{
–

λ + t – s


A
}]

Ag(s –ω)ds

= I + I + I,

where

I = λ–αA exp
{
–(λ + t)A

}
Ag(),

I = λ–α

∫ t


exp

{
–

λ + t – s


A
}
B(s)A exp

{
–

λ + t – s


A
}
Ag(s –ω)ds,

http://www.boundaryvalueproblems.com/content/2014/1/126
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I = λ–α

∫ t


exp

{
–

λ + t – s


A
}[

A exp

{
–

λ + t – s


A
}
B(s) – B(s)A

× exp

{
–

λ + t – s


A
}]

Ag(s –ω)ds.

Using the estimates (), (), and condition (), we obtain

‖I‖E = λ–α
∥∥A exp

{
–(λ + t)A

}
Ag()

∥∥
E

≤ λ–α

(λ + t)–α

∥∥Ag()∥∥Eα
≤ λ–α

(λ + t)–α
max

–ω≤t≤

∥∥Ag(t)∥∥Eα
,

‖I‖E ≤ λ–α

∫ t



∥∥∥∥A exp

{
–

λ + t – s


A
}∥∥∥∥

E �→E

∥∥A–B(s)
∥∥
E �→E

×
∥∥∥∥A exp

{
–

λ + t – s


A
}
Ag(s –ω)

∥∥∥∥
E
ds

≤ max
≤t≤ω

∥∥A–B(t)
∥∥
E �→E

∫ t



Mλ–α–α

(λ + t – s)–α
ds max

≤s≤ω

∥∥Ag(s –ω)
∥∥
Eα

≤ max
–ω≤t≤

∥∥Ag(t)∥∥Eα

(
 –

λ–α

(λ + t)–α

)
( – ε)

for every t,  ≤ t ≤ ω and λ, λ > . Now let us estimate I. By Lemma . and using the
estimate (), we obtain

‖I‖E ≤ λ–α

∫ t



∥∥∥∥A exp

{
–

λ + t – s


A
}∥∥∥∥

E �→E

×
∥∥∥∥A–

[
A exp

{
–

λ + t – s


A
}
B(s) – B(s)A exp

{
–

λ + t – s


A
}]

Ag(s –ω)
∥∥∥∥
E
ds

≤ λ–αe( + α)M+αM+α
 ( + M)( +M)–α(–α)α

×
∫ t



‖A–(AB(s) – B(s)A)A–‖E �→E–α‖Ag(s –ω)‖Eα

(λ + t – s)–απα( – α)
ds

≤ max
≤s≤ω

∥∥A–
(
AB(s) – B(s)A

)
A–

∥∥
E �→E

×
∫ t



λ–αe( + α)M+αM+α
 ( + M)( +M)–α(–α)α–α

(λ + t – s)–απα( – α)
ds

× max
–ω≤t≤

∥∥Ag(t)∥∥Eα
≤ max

–ω≤t≤

∥∥Ag(t)∥∥Eα

(
 –

λ–α

(λ + t)–α

)
ε

for every t, ≤ t ≤ ω and λ, λ > . Using the triangle inequality, we obtain

λ–α
∥∥A exp{–λA}Au(t)∥∥E ≤ max

–ω≤t≤

∥∥Ag(t)∥∥Eα

for every t, ≤ t ≤ ω and λ, λ > . This shows that

∥∥Au(t)∥∥Eα
≤ max

–ω≤t≤

∥∥Ag(t)∥∥Eα

for every t,  ≤ t ≤ ω. In a similar manner as with Theorem . applying mathematical
induction, one can easily show that it is true for every t. Therefore, to prove the theorem

http://www.boundaryvalueproblems.com/content/2014/1/126
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it suffices to establish the coercive stability inequality () for the solution of the problem
(). Now, we consider the problem (). Exactly in the samemanner, using (), the semi-
group property, and the definition of the spaces Ea, we obtain () for every t,  ≤ t ≤ ω.
Applying mathematical induction, one can easily show that it is true for every t. Namely,
assume that the inequality () is true for t, (n – )ω ≤ t ≤ nω, n = , . . . for some n. Using
() and the semigroup property, we write

λ–αA exp{–λA}Aw(t)
= λ–αA exp

{
–(λ + t – nω)A

}
Aw(nω)

+ λ–α

∫ t

nω

exp

{
–

λ + t – s


A
}
B(s)A exp

{
–

λ + t – s


A
}
Aw(s –ω)ds

+ λ–α

∫ t

nω

exp

{
–

λ + t – s


A
}[

A exp

{
–

λ + t – s


A
}
B(s) – B(s)A

× exp

{
–

λ + t – s


A
}]

Aw(s –ω)ds + λ–α

∫ t

nω

A exp
{
–(λ + t – s)A

}
f (s)ds

= I + I + I + I,

where

I = λ–αA exp
{
–(λ + t – nω)A

}
Aw(nω),

I = λ–α

∫ t

nω

exp

{
–

λ + t – s


A
}
B(s)A exp

{
–

λ + t – s


A
}
Aw(s –ω)ds,

I = λ–α

∫ t

nω

exp

{
–

λ + t – s


A
}[

A exp

{
–

λ + t – s


A
}
B(s) – B(s)A

× exp

{
–

λ + t – s


A
}]

Aw(s –ω)ds,

I = λ–α

∫ t

nω

A exp
{
–(λ + t – s)A

}
f (s)ds.

Using the estimate () and condition (), we obtain

‖I‖E = λ–α
∥∥A exp

{
–(λ + t – nω)A

}
Aw(nω)

∥∥
E ≤ λ–α

(λ + t – nω)–α

∥∥Aw(nω)
∥∥
Eα
,

‖I‖E ≤ λ–α

∫ t

nω

∥∥∥∥A exp

{
–

λ + t – s


A
}∥∥∥∥

E �→E

∥∥A–B(s)
∥∥
E �→E

×
∥∥∥∥A exp

{
–

λ + t – s


A
}
Aw(s –ω)

∥∥∥∥
E
ds

≤ max
nω≤t≤(n+)ω

∥∥A–B(t)
∥∥
E �→E

∫ t

nω

Mλ–α–α

(λ + t – s)–α
ds max

nω≤s≤(n+)ω

∥∥Aw(s –ω)
∥∥
Eα

≤
(
 –

λ–α

(λ + t – nω)–α

)
( – ε) max

(n–)ω≤s≤nω

∥∥Aw(s)∥∥Eα
,

‖I‖E ≤M–α

∫ t

nω

λ–α

(λ + t – s)–α

∥∥f (s)∥∥Eα
ds ≤ M–α

 – α
sup

nω≤s≤t

∥∥f (s)∥∥Eα
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for every t, nω ≤ t ≤ (n + )ω, n = , , , . . . , and λ, λ > . Now let us estimate I. By
Lemma . and using the estimate () and condition (), we obtain

‖I‖E ≤ λ–α

∫ t

nω

∥∥∥∥A exp

{
–

λ + t – s


A
}∥∥∥∥

E �→E

×
∥∥∥∥A–

[
A exp

{
–

λ + t – s


A
}
B(s) – B(s)A exp

{
–

λ + t – s


A
}]

Aw(s –ω)
∥∥∥∥
E
ds

≤ λ–αe( + α)M+αM+α
 ( + M)( +M)–α(–α)α

×
∫ t

nω

‖A–(AB(s) – B(s)A)A–‖E �→E–α‖Aw(s –ω)‖Eα

(λ + t – s)–απα( – α)
ds

≤ max
≤s≤ω

∥∥A–
(
AB(s) – B(s)A

)
A–

∥∥
E �→E

×
∫ t

nω

λ–αe( + α)M+αM+α
 ( + M)( +M)–α(–α)α–α

(λ + t – s)–απα( – α)
ds

× max
(n–)ω≤s≤nω

∥∥Aw(s)∥∥Eα

≤
(
 –

λ–α

(λ + t – nω)–α

)
ε max
(n–)ω≤s≤nω

∥∥Aw(s)∥∥Eα

for every t, nω ≤ t ≤ (n + )ω, n = , , , . . . and λ, λ > . Using the triangle inequality and
estimates for all ‖Ik‖E , k = , , , , we obtain

λ–α
∥∥A exp{–λA}Aw(t)∥∥E ≤ M–α

 – α

[ n∑
k=

max
–(k–)ω≤s≤kω

∥∥f (s)∥∥Eα
+ max

nω≤s≤t

∥∥f (s)∥∥Eα

]

for every t, nω ≤ t ≤ (n + )ω, n = , , , . . . and λ, λ > . This shows that

∥∥Aw(t)∥∥Eα
≤ M–α

 – α

[ n∑
k=

max
–(k–)ω≤s≤kω

∥∥f (s)∥∥Eα
+ max

nω≤s≤t

∥∥f (s)∥∥Eα

]

for every t, nω ≤ t ≤ (n + )ω, n = , , , . . . . This result completes the proof of Theo-
rem .. �

Note that these abstract results are applicable to the study of stability of various de-
lay parabolic equations with local and nonlocal boundary conditions with respect to the
space variables. However, it is important to study the structure of Eα for space operators
in Banach spaces. The structure of Eα for some space differential and difference operators
in Banach spaces has been investigated (see [–]). In Section , applications of The-
orem . to the study of the coercive stability of initial-boundary value problem for delay
parabolic equations are given.
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3 Applications
First, we consider the initial-boundary value problem for one dimensional delay differen-
tial equations of parabolic type

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u(t,x)
∂t – a(x) ∂u(t,x)

∂x + δu(t,x)
= b(t)(–a(x) ∂u(t–ω,x)

∂x + δu(t –ω,x)) + f (t,x),  < t < ∞,x ∈ (, l),
u(t,x) = g(t,x), –ω ≤ t ≤ ,x ∈ [, l],
u(t, ) = u(t, l) = , –ω ≤ t < ∞,

()

where a(x), b(t), g(t,x), f (t,x) are given sufficiently smooth functions and δ >  is a suf-
ficiently large number. We will assume that a(x) ≥ a > . The problem () has a unique
smooth solution. This allows us to reduce the initial-boundary value problem () to the
initial value problem () in Banach space E = C[, l] with a differential operator Ax defined
by the formula

Axu = –a(x)
du
dx

+ δu ()

with domain D(Ax) = {u ∈ C()[, ] : u() = u() = }. Let us give a number of corollaries
of the abstract Theorem ..

Theorem . Assume that

sup
≤t<∞

∣∣b(t)∣∣ ≤  – α

M–α
. ()

Then for all t ≥  the solutions of the initial-boundary value problem () satisfy the fol-
lowing coercive stability estimates:

∥∥u′(t, ·)∥∥Cα [,l] +
∥∥u(t, ·)∥∥C+α [,l]

≤M(α)

[
max

–ω≤t≤

∥∥g(t, ·)∥∥C+α [,l]

+
n∑
k=

max
–(k–)ω≤s≤kω

∥∥f (s, ·)∥∥Cα [,l] + max
nω≤s≤t

∥∥f (s, ·)∥∥Cα [,l]

]
,  < α <



,

where M(α) is not dependent on g(t,x) and f (t,x). Here Cβ [, l] is the space of functions
satisfying a Hölder condition with the indicator β ∈ (, ).

The proof of Theorem . is based on the estimate

∥∥exp{–tAx}∥∥
C[,l]→C[,l] ≤M, t ≥ ,

and on the abstract Theorem ., on the strong positivity of the operator Ax in C[, l] (see
[, ]) and on Theorem . on the structure of the fractional space Eα = Eα(C[, l],Ax)
for  < α < 

 .

Theorem . For α ∈ (,  ), the norms of the space Eα(C[, l],Ax) and the Hölder space
Cα[, l] are equivalent [].

http://www.boundaryvalueproblems.com/content/2014/1/126
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Second, we consider the initial nonlocal boundary value problem for one dimensional
delay differential equations of parabolic type,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u(t,x)
∂t – a(x) ∂u(t,x)

∂x + δu(t,x)
= b(t)(–a(x) ∂u(t–ω,x)

∂x + δu(t –ω,x)) + f (t,x),  < t < ∞,x ∈ (, l),
u(t,x) = g(t,x), –ω ≤ t ≤ ,x ∈ [, l],
u(t, ) = u(t, l), ux(t, ) = ux(t, l), –ω ≤ t <∞,

()

where a(x), b(t), g(t,x), f (t,x) are given sufficiently smooth functions and δ >  is a suf-
ficiently large number. We will assume that a(x) ≥ a > . The problem () has a unique
smooth solution. This allows us to reduce the initial-boundary value problem () to the
initial value problem () in Banach space E = C[, l] with a differential operator Ax defined
by the formula

Axu = –a(x)
du
dx

+ δu ()

with domain D(Ax) = {u ∈ C()[, ] : u() = u(),u′() = u′()}. Let us give a number of
corollaries of the abstract Theorem ..

Theorem . Assume that condition () holds. Then for all t ≥  the solutions of the
initial-boundary value problem () satisfy the following coercive stability estimates:

∥∥u′(t, ·)∥∥Cα [,l] +
∥∥u(t, ·)∥∥C+α [,l]

≤M(α)

[
max

–ω≤t≤

∥∥g(t, ·)∥∥C+α [,l]

+
n∑
k=

max
–(k–)ω≤s≤kω

∥∥f (s, ·)∥∥Cα [,l] + max
nω≤s≤t

∥∥f (s, ·)∥∥Cα [,l]

]
,  < α <



,

where M(α) is not dependent on g(t,x) and f (t,x).

The proof of Theorem . is based on the estimate

∥∥exp{–tAx}∥∥
C[,l]→C[,l] ≤M, t ≥ ,

and on the abstract Theorem ., on the strong positivity of the operator Ax in C[, l]
(see []) and on Theorem . on the structure of the fractional space Eα = Eα(C[, l],Ax)
for  < α < 

 .

Theorem . For α ∈ (,  ), the norms of the space Eα(C[, l],Ax) and the Hölder space
Cα[, l] are equivalent [].

Third, we consider the initial value problem on the range

{
 ≤ t ≤ ,x = (x, . . . ,xn) ∈R

n, r = (r, . . . , rn)
}

http://www.boundaryvalueproblems.com/content/2014/1/126
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for mth order multidimensional delay differential equations of parabolic type,

⎧⎪⎪⎨
⎪⎪⎩

∂u(t,x)
∂t +

∑
|r|=m aτ (x) ∂ |r|u(t,x)

∂xr ···∂xrnn
+ δu(t,x)

= b(t)(
∑

|r|=m aτ (x) ∂ |r|u(t–ω,x)
∂xr ···∂xrnn

+ δu(t –ω,x)) + f (t,x),  < t < ∞,x ∈R
n,

u(t,x) = g(t,x), –ω ≤ t ≤ ,x ∈R
n, |r| = r + · · · + rn,

()

where ar(x), b(t), g(t,x), and f (t,x) are sufficiently smooth functions and δ >  is a suffi-
ciently large number. We will assume that the symbol [ξ = (ξ, . . . , ξn) ∈R

n]

Ax
 (ξ ) =

∑
|r|=m

ar(x)(iξ)r · · · (iξn)rn

of the differential operator of the form

Ax
 =

∑
|r|=m

ar(x)
∂ |r|

∂xr · · · ∂xrnn , ()

acting on functions defined on the space Rn, satisfies the inequalities

 <M|ξ |m ≤ (–)mAx
 (ξ )≤M|ξ |m <∞

for ξ �= , where |ξ | =√|ξ| + · · · + |ξn|. The problem () has a unique smooth solution.
This allows us to reduce the initial value problem () to the initial value problem () in
Banach space E with a strongly positive operator Ax = Ax

 + δI defined by (). Let us give
a number of corollaries of the abstract Theorem ..

Theorem . Assume that condition () holds. Then for all t ≥  the solutions of the
initial-boundary value problem () satisfy the following coercive stability estimates:

∥∥u′(t, ·)∥∥Cmα (Rn) +
∑

|r|=m

∥∥∥∥ ∂ |r|u(t, ·)
∂xr · · · ∂xrnn

∥∥∥∥
Cmα (Rn)

≤M(α)

[
max

–ω≤t≤

∑
|r|=m

∥∥∥∥ ∂ |r|g(t, ·)
∂xr · · · ∂xrnn

∥∥∥∥
Cmα (Rn)

+
n∑
k=

max
–(k–)ω≤s≤kω

∥∥f (s, ·)∥∥Cmα (Rn) + max
nω≤s≤t

∥∥f (s, ·)∥∥Cmα (Rn)

]
,  < α <


m

,

where M(α) does not depend on g(t,x) and f (t,x). Here Cε(Rn) is the space of functions
satisfying a Hölder condition with the indicator ε ∈ (, ).

The proof of Theorem . is based on the estimate

∥∥exp{–tAx}∥∥
C(Rn)→C(Rn) ≤M, t ≥ ,

and on the abstract Theorem ., on the strong positivity of the operator Ax in C(Rn),
and on the equivalence of the norms in the spaces Eα = Eα(A,C(Rn)) and Cmα(Rn) when
 < α < 

m [, ].
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4 Conclusion
In the present paper, two theorems on the well-posedness of the initial value problem
for the delay parabolic differential equations with unbounded operators acting on delay
terms in fractional spaces Eα are established. In practice, the coercive stability estimates
in Hölder norms for the solutions of the mixed problems for delay parabolic equations are
obtained.
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