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Abstract
We prove existence, uniqueness, and stability of solutions of the prescribed curvature
problem (u′/

√
1 + u′2)′ = au – b/

√
1 + u′2 in [0, 1], u′(0) = u(1) = 0, for any given a > 0

and b > 0. We also develop a linear monotone iterative scheme for approximating the
solution. This equation has been proposed as a model of the corneal shape in the
recent paper (Okrasiński and Płociniczak in Nonlinear Anal., Real World Appl.
13:1498-1505, 2012), where a simplified version obtained by partial linearization has
been investigated.
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1 Introduction
In this paper we study existence, uniqueness, stability, and approximation of classical so-
lutions of the one-dimensional prescribed curvature problem

⎧⎨
⎩( u′√

+u′ )
′ = au – b√

+u′ in [, ],

u′() = u() = ,
()

where a >  and b >  are given constants. This problem, together with its N-dimensional
counterpart

⎧⎨
⎩
div( ∇u√

+|∇u| ) = au – b√
+|∇u| in �,

u =  on ∂�,
()

has been proposed in [–] as a mathematical model for the geometry of the human
cornea. However, in these papers a simplified version of () has been investigated, where
the mean curvature operator div(∇u/

√
 + |∇u|) has been replaced by its linearization

div(∇u) around . In particular, it has been proved in [] that, if b ∈ ], 
√




√
a

tanh
√
a [, then

the problem

⎧⎨
⎩u′′ = au – b√

+u′ in [, ],

u′() = u() = 
()
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has a unique solution which is the limit of a sequence of successive approximations. The
above limitations on the parameters have recently been removed in [].
Unlike all these works we tackle here the fully nonlinear problem () and we prove the

existence of a unique solution for the whole range of positive parameters a, b. The study
of problem () requires some care because, even if pairs of constant lower and upper so-
lutions can easily be exhibited, the presence of the curvature term rules out in general
the possibility of applying the standard existence results, due to the possible occurrence
of derivative blow-up phenomena (see, e.g., []). On the other hand, the non-variational
structure of () puts the problem, as it stands, out of the scope of the methods developed
in [–] for the curvature equation. Nevertheless, we show that an a priori bound in C

for all possible solutions can be obtained by an elementary, but delicate, argument which
exploits the qualitative properties - positivity, monotonicity, and concavity - of the solu-
tions themselves. These estimates eventually enable us to use a degree argument in order
to prove the existence of solutions. The proof of the uniqueness is then based on suitable
fixed point index calculations, which are performed via linearization. A similar approach,
applied to an associated evolutionary problem, is exploited for detecting the linear stability
of the solution.
Next, taking inspiration from [, ], we develop a linear iterative scheme for approxi-

mating the solution by twomonotone sequences of strict lower and upper solutions, start-
ing from an explicit pair of constant lower and upper solutions. These two sequences,
besides providing accurate two-sided bounds on the solution, yield the strict order stabil-
ity and hence, according to [], the (Lyapunov) asymptotic stability of the solution itself,
yielding as well an explicitly computable estimate of its basin of attractivity. We finally
illustrate the use of this approximation scheme in order to compute numerically the so-
lution u of () for the same choice of the parameters a and b as the one considered in
[].
We finally mention that part of our results extends to the general N-dimensional prob-

lem (); this topic will be discussed elsewhere.

2 Existence, qualitative properties and approximation
In this section we are concerned with the study of the existence, the qualitative properties
and the approximation of classical solutions, i.e., belonging to C([, ]), of problem (),
where a >  and b >  are fixed constants. Clearly, problem () can be written in the equiv-
alent form⎧⎨

⎩u′′ = au( + u′)/ – b( + u′) in [, ],

u′() = u() = .
()

Let us set for convenience, for all (s, ξ ) ∈ R
,

f (s, ξ ) = as
(
 + ξ )/ – b

(
 + ξ ). ()

It is obvious that, due to the symmetry properties of the function f , the mixed problem
() is equivalent to the Dirichlet problem

⎧⎨
⎩u′′ = f (u,u′) in [–, ],

u(–) = u() = .

http://www.boundaryvalueproblems.com/content/2014/1/127
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Notations As usual, for functions u, v ∈ C([c,d]), we write u≤ v in [c,d] if u(t)≤ v(t) for
all t ∈ [c,d] and u < v in [c,d] if u ≤ v and u �= v. We also write u � v in [c,d] if u(t) < v(t)
for all t ∈ [c,d[ and, if u(d) = v(d), D–u(d) > D–v(d), where D–, D– denote the left Dini
derivatives; this is equivalent to requiring that there exists δ >  such that v(t) – u(t) ≥
δ(d – t) for all t ∈ [c,d]. Whenever no confusion occurs, we omit the indication of the
interval.

Existence, uniqueness, and linear stability
We start with a preliminary result, where some properties of the possible solutions of
problem () are highlighted.

Lemma . The following assertions hold.
(i) Any solution u of () satisfies u(t) >  for all t ∈ [, [ and u(t) < b

a for all t ∈ [, ].
(ii) Any solution u of () is such that u′(t) <  and u′′(t)≤  for all t ∈ ], ].
(iii) Any solution u of () is such that u′(t) > –R for all t ∈ [, ], where R =

√
exp( ba ) – .

Proof In the following steps u denotes a solution of (), or equivalently of (). From the
equation in () it follows that, if t̂ ∈ [, ] is such that u′(t̂) =  and u(t̂) �= b

a , then

u′′(t̂)
(
u(t̂) –

b
a

)
> . ()

Step . Proof of (i). Let us first show that u ≥  in [, ]. Assume by contradiction that
min[,] u = u(t̂) < . The boundary condition u() =  implies that t̂ ∈ [, [. Suppose that
t̂ = . We have u() <  and u′() = . Condition () yields u′′() < . Hence there exists
δ >  such that u′(t) <  for all t ∈ ], δ[ and therefore u(t) < u() =min[,] u for all t ∈ ], δ[,
which is a contradiction. Now suppose that t̂ ∈ ], [. We have u(t̂) <  and u′(t̂) =  and
condition () yields again a contradiction. Hence we conclude that u ≥  in [, ]. In a
completely similar way we prove that u≤ b

a in [, ].
Next, in order to prove that

u(t) > , ()

for all t ∈ [, [, it is sufficient to note that, if u(t̂) = u′(t̂) =  for some t̂ ∈ [, [, then ()
would yield u′′(t̂) < , which is impossible. Moreover, as the constant function b

a is a solu-
tion of the equation in (), the uniqueness of solutions for any Cauchy problem associated
with this equation implies that

u(t) <
b
a
, ()

for all t ∈ [, ].
Step . Proof of (ii). As u′() = , assertion (i) implies that there exists δ >  such that

u′′(t) <  for all t ∈ [, δ[ and u′(t) <  for all t ∈ ], δ[. Let us show that

u′(t) < ,

http://www.boundaryvalueproblems.com/content/2014/1/127
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for all t ∈ ], ]. If this is not the case, set t̂ =min{t ∈ ], ] : u′(t) = }. Then, by (), we have
u′′(t̂) <  and hence there exists η >  such that u′(t) > u′(t̂) = , for all t ∈ ]t̂ – η, t̂[, which
contradicts the definition of t̂.
Let us now prove that

u′′ ≤ 

in [, ]. By contradiction, assume that there exists t̄ ∈ ], ] such that u′′(t̄) > . As
u′′() < , there exist t ∈ ], t̄[ and δ >  such that u′′(t) =  and u′′(t) >  for all t ∈
]t, t + δ[. Since we have u′(t)u′′(t) <  for all t ∈ ]t, t + δ[, the function –b( + u′)– 

 is
decreasing in ]t, t + δ[. We also know that the function au is decreasing in [, ]. Hence
the function au– b( + u′)– 

 is decreasing in ]t, t + δ[. On the other hand, as u′′(t) = ,
from the equation in () we get

au(t) – b
(
 +

(
u′(t)

))– 
 = ,

and therefore

au(t) – b
(
 +

(
u′(t)

))– 
 < ,

for all t ∈ ]t, t + δ[. Then the equation in () yields u′′(t) <  for all t ∈ ]t, t + δ[, which is
a contradiction.
Step . Proof of (iii). Since by assertion (i) u ≥  in [, ], we get f (u,u′) ≥ –b( + u′) in

[, ], and then, from the equation in (), we conclude that

u′′

 + u′ ≥ –b

in [, ]. Multiplying by u′, where u′ ≤  in [, ] by assertion (ii), and integrating between
 and , we obtain

∫ 



u′u′′

 + u′ dt ≤
∫ 


–bu′ dt. ()

On the one hand, using the boundary condition u′() =  we have

∫ 



u′u′′

 + u′ dt =


ln

(
 +

(
u′()

)).
On the other hand, the boundary condition u() =  and assertion (i) imply

∫ 


–bu′ dt <

b

a
.

In conclusion, setting

R =

√
exp

(
b

a

)
– , ()
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we get u′() > –R. Since u′ is non-increasing, we conclude

u′(t) > –R,

for all t ∈ [, ]. �

We are now in position to prove the existence of a unique solution of problem (), which
is linearly stable.

Theorem . Let a >  and b >  be given. Then there exists a unique solution u of () and
it satisfies the conditions (i), (ii), and (iii). Further, u is linearly stable as an equilibrium of
the parabolic problem

⎧⎨
⎩∂τu – ∂ttu + f (u, ∂tu) =  in ], [× ], +∞[,

∂tu(, τ ) = u(, τ ) =  in ], +∞[.
()

Proof The proof is divided into three steps.
Step . Existence. Let us prove that there exists at least one solution of (), or equiv-

alenty of (). Let K : C([, ]) → C([, ]) be the operator which associates with any
h ∈ C([, ]) the unique solution w of

⎧⎨
⎩w′′ = h in [, ],

w′() = w() = .

Clearly, K is completely continuous. Moreover, let F : C([, ]) → C([, ]) be the Ne-
mitski operator associated with f , i.e., F(w) = f (w,w′) for any w ∈ C([, ]). The operator
F is continuous and maps bounded sets into bounded sets. Introduce the open bounded
subset of C([, ])

Q =
{
u ∈ C([, ]) : ‖u‖∞ <

b
a
,
∥∥u′∥∥∞ < R

}
. ()

Finally, define a completely continuous operator T : Q̄→ C([, ]) by T = K◦F. The fixed
points of T are precisely the solutions of ().
An inspection of the assertions of Lemma . shows that, if u ∈ Q̄ satisfies, for some

λ ∈ [, ],

u = λT(u),

i.e.,
⎧⎨
⎩u′′ = λau( + u′)/ – λb( + u′) in [, ],

u′() = u() = ,

then u ∈Q. The invariance property of the degree under homotopy implies that

deg(I –T,Q, ) = deg(I,Q, ) = , ()

http://www.boundaryvalueproblems.com/content/2014/1/127
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where I stands for the identity operator. Therefore there exists a fixed point u ∈ Q of T,
which is a solution of ().
By Lemma ., u satisfies the conditions (i), (ii), and (iii).
Step . Uniqueness. Set 	 = I – T. As the function f : R → R is of class C, the oper-

ators F : C([, ]) → C([, ]) and, hence, 	 : C([, ]) → C([, ]) are of class C, with
Fréchet differentials

F
′(u)w =

∂f
∂s

(
u,u′)w +

∂f
∂ξ

(
u,u′)w′ and 	′(u)w =

(
I –K ◦ F′(u)

)
w,

for any given u ∈ C([, ]) and all w ∈ C([, ]).
Observe that, for any u ∈ C([, ]), 	′(u) is invertible. Indeed, let us fix u ∈ C([, ])

and assume that 	′(u)w =  for some w ∈ C([, ]). This means that w is the solution of

⎧⎨
⎩w′′ = ∂f

∂ξ
(u,u′)w′ + ∂f

∂s (u,u
′)w in [, ],

w′() = w() = .
()

Since

∂f
∂s

(s, ξ ) = a
(
 + ξ )/ > , ()

for all (s, ξ ) ∈ R
, the maximum principle [, Appendix, Theorem .] implies that w = .

Hence the local inversion theorem applies to 	 at every point u ∈ C([, ]) and thus any
fixed point of T is isolated. The compactness in C([, ]) of the set S of all fixed points of
T then implies that S is finite, i.e., S = {u, . . . ,uN } for some positive integer N .
Denote byB(u, r) the open ball inC([, ]) centered at u andhaving radius r. Pick r >  so

small that B(uk , r) ⊆Q for all k ∈ {, . . . ,N}, and B(ui, r)∩B(uj, r) = ∅ for all i, j ∈ {, . . . ,N},
with i �= j. The excision and the additivity properties of the degree yield

deg(	,Q, ) =
N∑
k=

deg
(
	,B(uk , r), 

)
=

N∑
k=

i(	,uk), ()

where, for each k ∈ {, . . . ,N},

i(	,uk) = deg
(
	,B(uk , r), 

)
denotes the fixed point index of uk . Using again (), we see as above that, for any given
u ∈ C([, ]) and all μ > , the problem

⎧⎨
⎩μw′′ = ∂f

∂ξ
(u,u′)w′ + ∂f

∂s (u,u
′)w in [, ],

w′() = w() = 

has no non-trivial solution w. Accordingly, for any given u ∈ C([, ]), the operator T′(u)
does not have any eigenvalue μ > . Therefore, we infer from [, Theorem .] that

i(	,uk) = , ()

http://www.boundaryvalueproblems.com/content/2014/1/127
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for all k ∈ {, . . . ,N}. Finally, by (), (), and () we conclude that N = , i.e., there is a
unique solution u of problem ().
Step . Linear stability. The solution u of () is an equilibrium of the parabolic problem

(), in particular, it is a -periodic solution of (). In order to show that u is linearly stable,
and hence locally exponentially asymptotically stable, it is enough, after a standard cut-off
argument, to show that the eigenvalue problem

⎧⎪⎪⎨
⎪⎪⎩

∂τw – ∂ttw + ∂f
∂ξ
(u, ∂tu)∂tw + ∂f

∂s (u, ∂tu)w = μw in ], [×R,

∂tw(, τ ) = w(, τ ) =  in R,

w(t, τ ) = w(t, τ + ) in ], [×R

()

does not have any eigenvalue μ ≤  (see, e.g., [, Chapter III.]), or [, Chapter V.]).
Indeed, if w is a solution of () for some μ ≤ , then using again condition (), together
with the interior form of the parabolic maximum principle and the Hopf boundary point
lemma (see, e.g., [, Chapter III.]), we conclude that w = . �

Monotone approximation and order stability
In this section we discuss approximation and stability of the solution of (), or equivalently
of (). To this end, we define a linear iterative scheme that allows one to construct an
increasing sequence of strict lower solutions and a decreasing sequence of strict upper
solutions of () which converge in C([, ]) to the unique solution u of (), that is, of ().
Then, according to [, ], we see that u is strictly order stable from above and from
below and hence it is (Lyapunov) asymptotically stable as an equilibrium of the parabolic
problem (). In addition, the converging sequences of lower and upper solutions provide
explicitly computable estimates of the basin of attractivity of the solution.

Lower and upper solutions Let us consider the problem

⎧⎨
⎩u′′ = g(t,u,u′) in [, ],

u′() = u() = ,
()

where g : [, ]×R×R → R is locally Lipschitz continuous. A lower solution of () is a
function α ∈ C([, ]) which satisfies

⎧⎨
⎩α′′ ≥ g(t,α,α′) in [, ],

α′() ≥  ≥ α().

Similarly an upper solution of () is a function β ∈ C([, ]) which satisfies

⎧⎨
⎩β ′′ ≤ g(t,β ,β ′) in [, ],

β ′()≤  ≤ β().

Remark . The Lipschitz character of g implies (see [, Chapter , Proposition .,
Proposition .]) that a lower solution α of (), which is not a solution, is a strict lower
solution, that is, any solution u of (), such that u ≥ α, satisfies u � α in [, ]. Similarly,

http://www.boundaryvalueproblems.com/content/2014/1/127
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an upper solution β of (), which is not a solution, is a strict upper solution, that is, any
solution u of (), such that u≤ β , satisfies u � β in [, ].

Remark . Any constant α ≤  is a strict lower solution of () and any constant β ≥ b
a

is a strict upper solution of (). In particular, one can choose α =  and β = b
a . We wish

to point out that, with this choice of lower and upper solutions, the existence of at least
one solution u of problem () between α and β can be alternatively achieved by applying
[, Chapter , Theorem .]; the relevant observations being here the facts that u′() = ,
u′()≤  and f satisfies the one-sided Nagumo condition

f (s, ξ )≥ –b
(
 + ξ ), ()

for all (s, ξ ) ∈ R
 such that  ≤ s ≤ b

a . We point out that one-sided Nagumo conditions
were introduced for the first time by Kiguradze in [].

Let us consider the following modified problem:

⎧⎨
⎩u′′ = f̂ (u,u′) in [, ],

u′() = u() = .
()

Here f̂ :R →R is defined as follows.We first introduce an auxiliary function f̃ by setting,
for all (s, ξ ) ∈ R

,

f̃ (s, ξ ) =

⎧⎨
⎩
f (s, ξ ) if |ξ | ≤ R,

(as – b√
+ξ

)( + R)/ if |ξ | > R,

where R is defined in (). Then we set, for all (s, ξ ) ∈R
,

f̂ (s, ξ ) =

⎧⎪⎪⎨
⎪⎪⎩
f̃ (, ξ ) if s < ,

f̃ (s, ξ ) if  ≤ s < b
a ,

f̃ ( ba , ξ ) if b
a ≤ s.

()

The function f̂ is locally Lipschitz continuous and satisfies the following conditions:

(h) there exists â >  such that

 ≤ f̂ (s, ξ ) – f̂ (s, ξ ) ≤ â(s – s)

holds for all (s, ξ ), (s, ξ ) ∈R
, with s ≤ s;

(h) there exists N >  such that

∣∣f̂ (s, ξ) – f̂ (s, ξ)
∣∣ ≤N |ξ – ξ|

holds for all (s, ξ), (s, ξ) ∈ R
.

We can choose â = a( + R)/ in (h) and N =max{b√ + R,bR( + 
√
 + R)} in (h).

http://www.boundaryvalueproblems.com/content/2014/1/127
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Remark . Any constant α ≤  and any constant β ≥ b
a are, respectively, a strict lower

and a strict upper solution of () too.

Lemma . A function u ∈ C([, ]) is a solution of () if and only if it is a solution of ().

Proof Let u be a solution of (). In order to prove that u is also a solution of (), or equiv-
alently of (), it is sufficient to show that u satisfies ≤ u ≤ b

a and –R≤ u′ ≤  in [, ].
The function f̂ satisfies the following conditions:

f̂ (s, ξ ) < , for all s≤  and all ξ ∈ R,

and

f̂ (s, ξ )≥ , for all s ≥ b
a
and all ξ ∈R.

It can be verified, proceeding as in the proof of Lemma . and using the maximum prin-
ciple, that  ≤ u≤ b

a and hence  � u � b
a in [, ].

Next we prove that –R ≤ u′ ≤  in [, ]. The proof of assertion (ii) in Lemma . can
be repeated verbatim in order to show that u′(t) <  for all t ∈ ], ] and u′′ ≤  in [, ].
Assume now that there exists t ∈ ], ] such that u′(t) = –R. In particular, we have –R ≤
u′ ≤  in [, t] and u′ ≤ –R in [t, ]. By definition of f̂ , u satisfies

u′′ =
(
au –

b√
 + u′

)(
 + u′)/ ()

in [, t] and

u′′ =
(
au –

b√
 + u′

)(
 + R)/ ()

in [t, ]. As u≥  and u′ ≤  in [, ], we easily get from ()

∫ t



u′u′′

 + u′ dt ≤
∫ t


–bu′ dt. ()

From (), using again u ≥  and u′ ≤  in [, ], we obtain

u′′ ≥ –b
( + R)/√

 + u′ ,

and hence

u′u′′
√
 + u′

( + R)/
≤ –bu′ ()

in [t, ]. Since


 + u′ =

√
 + u′

( + u′)/
≤

√
 + u′

( + R)/

http://www.boundaryvalueproblems.com/content/2014/1/127
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in [t, ] and u′u′′ ≥  in [, ], we finally get from ()

∫ 

t

u′u′′

 + u′ dt ≤
∫ 

t
–bu′ dt. ()

Combining () and () yields

∫ 



u′u′′

 + u′ dt ≤
∫ 


–bu′ dt,

which is precisely () in Step  of the proof of Lemma .. As there we conclude that
u′ ≥ –R in [, ]. Accordingly, u is a solution of ().
Conversely, the definition of f̂ implies that any solution of (), or equivalently of (), is

a solution of () as well. �

Let us consider the following auxiliary linear problem:

⎧⎪⎪⎨
⎪⎪⎩
w′′ +

√
Lw′ – Lw = h in [, ],

w′() = ,

w() =m.

()

Here, h : [, ]→R is a continuous function and L >  andm ∈R are given constants. No-
tice that problem () has a unique solution w ∈ C([, ]). The following result is inspired
from [] and [, Chapter ].

Lemma . There exists L >  such that for all L ≥ L, for all h ∈ C([, ]), with h≤  in
[, ], and for all m≥ , the solution w of () satisfies

(â – L)w +
(
N sgn

(
w′) +√

L
)
w′ ≤  in [, ]. ()

In addition, if h <  in [, ] or m > , then

(â – L)w(t) +
(
N sgn

(
w′(t)

)
+

√
L
)
w′(t) <  for all t ∈ [, ]. ()

Proof Let us denote by w and w the respective solutions of

⎧⎪⎪⎨
⎪⎪⎩
w′′
 +

√
Lw′

 – Lw =  in [, ],

w() = ,

w′
() = 

()

and

⎧⎪⎪⎨
⎪⎪⎩
w′′
 +

√
Lw′

 – Lw =  in [, ],

w() = ,

w′
() = –.

()

http://www.boundaryvalueproblems.com/content/2014/1/127
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Step . The functions w and w satisfy

w′
(t) >  for all t ∈ ], ], ()

w(t) >  for all t ∈ [, ] ()

and

w′
(t) <  for all t ∈ [, ], ()

w(t) >  for all t ∈ [, [. ()

A simple computation yields

w(t) = A exp(ct
√
L) + B exp(ct

√
L),

w(t) = C exp(ct
√
L) +D exp(ct

√
L),

where

c =
√
 – 


, c = –
√
 + 


,

A =
√
 + 

√


, B =
√
 – 

√


,

C = –
exp( –

√




√
L)√

L
, D =

exp(
√
+


√
L)√

L
.

The conclusion then easily follows by direct calculations.
Step . There exists L >  such that, for any L ≥ L, the following inequalities hold:

W(t) = (â – L)w(t) + (N +
√
L)w′

(t) <  for all t ∈ [, ] ()

and

W(t) = (â – L)w(t) + (–N +
√
L)w′

(t) <  for all t ∈ [, ]. ()

Let us first show that () holds. We have, for all t ∈ [, ],

W(t) = (â – L)w(t) + (N +
√
L)w′

(t)

=
(
(â – L) + c(N +

√
L)

√
L
)
A exp(ct

√
L)

+
(
(â – L) + c(N +

√
L)

√
L
)
B exp(ct

√
L)

=
(
–L( – c) + cN

√
L + â

)
A exp(ct

√
L)

+
(
–L( – c) + cN

√
L + â

)
B exp(ct

√
L).

Since c <  and c < , we can conclude that, for any L >  sufficiently large,W(t) <  for
all t ∈ [, ]. Namely, if we set

L =
(cN) + â( – c) + cN

√
(cN) + â( – c)

( – c)
()

http://www.boundaryvalueproblems.com/content/2014/1/127
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and we take L ≥ L, we have

–L( – c) + cN
√
L + â≤ .

Moreover, since L > â, the inequality

–L( – c) + cN
√
L + â < 

holds as well. This yields the validity of ().
As for (), by the sign properties of w and w′

, we see that W(t) <  for all t ∈ [, ]
provided that L >max{â,N}: this condition holds as L >max{â,N}.
Fix now L ≥ L, h ∈ C([, ]), with h ≤  in [, ], and m ≥ . Let w be the solution of

problem (). If h =  in [, ] and m = , then () trivially follows. Therefore suppose
that h <  in [, ] or m > . We can express w as

w(t) = w(t)
∫ t



wh
w′
w –ww′


ds +w(t)

[∫ 

t

wh
w′
w –ww′


ds +

m
w()

]
, ()

for all t ∈ [, ]. Inequality () now reads

(â – L)w(t) +
(
N sgn

(
w′(t)

)
+

√
L
)
w′(t)

=
(
(â – L)w(t) +

(
N sgn

(
w′(t)

)
+

√
L
)
w′
(t)

)∫ t



wh
w′
w –ww′


ds

+
[∫ 

t

wh
w′
w –ww′


ds +

m
w()

](
(â – L)w(t) +

(
N sgn

(
w′(t)

)
+

√
L
)
w′
(t)

)

≤W(t)
∫ t



wh
w′
w –ww′


ds +W(t)

[∫ 

t

wh
w′
w –ww′


ds +

m
w()

]
,

for t ∈ [, ]. The sign properties of w, w, W, W and the assumptions on h and m im-
mediately yield (). �

We introduce now a linear monotone iterative scheme for approximating the solution
of (); namely, we define by recurrence two sequences (αn)n, and (βn)n as follows:
• let α be any constant, with α ≤ , and, for n ∈N, let αn+ be the solution of

⎧⎨
⎩α′′

n+ +
√
Lα′

n+ – Lαn+ = f̂ (αn,α′
n) +

√
Lα′

n – Lαn in [, ],

α′
n+() = αn+() = ,

()

• let β be any constant, with β ≥ b
a , and, for n ∈ N, let βn+ be the solution of

⎧⎨
⎩β ′′

n+ +
√
Lβ ′

n+ – Lβn+ = f̂ (βn,β ′
n) +

√
Lβ ′

n – Lβn in [, ],

β ′
n+() = βn+() = .

()

Theorem. Let a >  and b >  be given.Then there exists L > , given by (), such that
for any L ≥ L the sequences (αn)n and (βn)n recursively defined in () and (), respec-
tively, converge in C([, ]) to the unique solution u of () and hence of (). In addition,
for each n ∈ N the following conditions hold:

http://www.boundaryvalueproblems.com/content/2014/1/127
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• αn is a strict lower solution and βn is a strict upper solution of (), and
• αn � αn+ � u� βn+ � βn in [, ].

Proof Let us fix L≥ L, where L is given by ().
Step . The sequence (αn)n is such that, for each n ∈ N, αn � αn+ in [, ] and αn is a

strict lower solution of ().
The proof is done by induction. Define, for each n ∈ N, un+ = αn+ –αn. The function u

satisfies
⎧⎪⎪⎨
⎪⎪⎩
u′′
 +

√
Lu′

 – Lu = f̂ (α,α′
) – α′′

 in [, ],

u′
() = ,

u()≥ .

()

Notice that f̂ (α,α′
) – α′′

 <  in [, ]. Hence the maximum principle implies that u � ,
that is, α � α, in [, ]. Now, let us show that α is a strict lower solution of (). Using
the definition of α, together with conditions (h) and (h), we get

f̂
(
α,α′


)
– α′′

 =
(
f̂
(
α,α′


)
– f̂

(
α,α′


))

+
√
Lu′

 – Lu

≤ (
N

∣∣u′

∣∣ + âu

)
+

√
Lu′

 – Lu

= (â – L)u +
(
N sgn

(
u′

)
+

√
L
)
u′
 ()

in [, ]. Since u is a solution of (), which is of the formof (), with h = f̂ (α,α′
)–α′′

 < 
in [, ] andm ≥ , Lemma . applies and yields

(â – L)u(t) +
(
N sgn

(
u′
(t)

)
+

√
L
)
u′
(t) < , ()

for all t ∈ [, ]. From (), () and from the boundary conditions α′
() = α() = , we

conclude that α is a strict lower solution of ().
Assume now that, for some integer n ≥ , αn is strict lower solution of () satisfying the

boundary conditions. The function un+ satisfies
⎧⎨
⎩u′′

n+ +
√
Lu′

n+ – Lun+ = f̂ (αn,α′
n) – α′′

n in [, ],

u′
n+() = un+() = .

()

As αn is strict and satisfies the boundary conditions, we have f̂ (αn,α′
n) – α′′

n <  in [, ].
Hence themaximumprinciple yields un+ � , i.e., αn � αn+ in [, ]. Finally, αn+ satisfies

f̂
(
αn+,α′

n+
)
– α′′

n+ =
(
f̂
(
αn+,α′

n+
)
– f̂

(
αn,α′

n
))

+
√
Lu′

n+ – Lun+

≤ (
N

∣∣u′
n+

∣∣ + âun+
)
+

√
Lu′

n+ – Lun+

= (â – L)un+ +
(
N sgn

(
u′
n+

)
+

√
L
)
u′
n+ ()

in [, ]. Since un+ is the solution of problem (), which is of the form of (), with
h = f̂ (αn,α′

n) – α′′
n <  in [, ] andm = , Lemma . applies and yields

(â – L)un+(t) +
(
N sgn

(
u′
n+(t)

)
+

√
L
)
u′
n+(t) < , ()

http://www.boundaryvalueproblems.com/content/2014/1/127
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for all t ∈ [, ]. From (), (), and from the boundary conditions α′
n+() = αn+() = ,

we conclude that αn+ is a strict lower solution of (), such that f̂ (αn+,α′
n+) – α′′

n+ <  in
[, ].
In a similar way, one can prove the following conclusion.
Step . The sequence (βn)n is such that, for each n ∈ N, βn+ � βn in [, ] and βn is a

strict upper solution of ().
Step . We have, for each n ∈N, αn � βn in [, ].
For each n ∈ N, let us set

zn = βn – αn and hn = f̂
(
βn,β ′

n
)
– f̂

(
αn,α′

n
)
+

√
Lz′

n – Lzn,

where, clearly, zn+ and hn satisfy

⎧⎨
⎩z′′

n+ +
√
Lz′

n+ – Lzn+ = hn in [, ],

z′
n+() = zn+() = .

()

By construction, we have z �  in [, ] and

h = f̂
(
β,β ′


)
– f̂

(
α,α′


)
+

√
Lz′

 – Lz = b
(
 –

L
a

)
.

As L ≥ L > â > a, we conclude that h(t) <  for all t ∈ [, ].
Take now any n ∈ N and suppose that zn �  and hn <  in [, ]. From () we infer,

using the maximum principle, that zn+ �  in [, ]. Let us prove that hn+ <  in [, ].
We easily see that

hn+ ≤ (â – L)zn+ +
(
N sgn

(
z′
n+

)
+

√
L
)
z′
n+ ()

in [, ]. As zn+ is the solution of problem (), which is of the form of (), with h = hn < 
in [, ] andm = , Lemma . applies and yields

(â – L)zn+(t) +
(
N sgn

(
z′
n+(t)

)
+

√
L
)
z′
n+(t) < 

and hence hn+(t) <  for all t ∈ [, ]. The conclusion zn � , i.e., αn � βn, in [, ] for all
n ∈N, then follows by induction.
Step . There exists C >  such that, for all n ∈N,

∥∥α′
n
∥∥∞ ≤ C and

∥∥β ′
n
∥∥∞ ≤ C. ()

We know that α ≤ αn ≤ βn ≤ β in [, ] for all n≥ , with α() =  = β(). Hence we get

–α′
()≤ –α′

n() ≤ –β ′
n()≤ –β ′

(), ()

for all n ≥ . Let us set B = |β ′
()|.

Suppose, by contradiction, that () does not hold, i.e., for every C > B there exists j =
j(C) ∈ N such that ‖α′

j‖∞ > C or ‖β ′
j‖∞ > C. Assume that the former eventuality occurs.

http://www.boundaryvalueproblems.com/content/2014/1/127
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By Step , using conditions (h) and (h), we get

α′′
j ≥ f̂

(
αj,α′

j
) ≥ –N

∣∣α′
j
∣∣ – b ()

in [, ]. Suppose that max[,] α′
j > C. Since α′

j() = , there exists tC ∈ ], [ such that
α′
j(tC) = C. Let tB ∈ ]tC , ] be such that α′

j(tB) = B and α′
j(t) ∈ ]B,C[ for all t ∈ ]tC , tB[. From

() we infer

≥ –
∫ tB

tC

α′′
j

N |α′
j | + b

dt =
∫ C

B

dξ

Nξ + b
=


N

[
ln(NC + b) – ln(NB + b)

]
. ()

The right-hand side of () diverges as C → +∞, then a contradiction follows.
In a completely similar way, we achieve the conclusion ifmin[,] α′

j < –C, or if ‖β ′
j‖∞ > C.

Step . The sequence (αn)n converges in C([, ]) to the solution u of ().
It follows from the previous steps that the sequence (αn)n is increasing and bounded

in C([, ]). Therefore there exists a function u : [, ] → R which is the pointwise limit
of (αn)n in [, ]; in particular, αn � u in [, ] for all n ∈ N. Moreover, by the Arzelà-
Ascoli theorem, any subsequence (αnl )l of (αn)n admits a subsequence which is convergent
in C([, ]) to u. Then the whole sequence (αn)n converges in C([, ]) to u. From the
equation in () we see that the convergence takes place in C([, ]). Hence u is a solution
of problem () and, by Lemma . and Theorem ., it is in fact the unique solution of
problem ().
In a similar way, one can prove the following conclusion.
Step . The sequence (βn)n converges in C([, ]) to the solution u of ().
Thus the proof is completed. �

Corollary . Let a >  and b >  be given. Then the unique solution u of () is (Lya-
punov) globally asymptotically stable as an equilibrium of the parabolic problem

⎧⎨
⎩∂τ v – ∂ttv + f̂ (v, vt) =  in ], [×R,

∂tv(, τ ) = v(, τ ) =  in R.
()

Proof Let us note that any lower, respectively upper, solution of () is a lower, respectively
upper, solution of the parabolic problem

⎧⎪⎪⎨
⎪⎪⎩

∂τ v – ∂ttv + f̂ (v, vt) =  in ], [×R,

∂tv(, τ ) = v(, τ ) =  in R,

v(t, τ ) = v(t, τ + ) in ], [×R.

()

Arguing as in the proof of Theorem . we see that u is the unique solution of (). Then
Theorem . implies that u is strictly order stable from below and from above. Actually,
since any constant α ≤  is a strict lower solution and any constant β ≥ b

a is a strict
upper solution of (), the results in [, Section .] imply that u is (Lyapunov) globally
asymptotically stable as a solution of () and hence as an equilibrium of (). �

http://www.boundaryvalueproblems.com/content/2014/1/127
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Table 1 Values of the approximations αnk , βnk , defined by (41), (42) with L = L0, such that
‖βnk – αnk‖∞ < 10–k for k ∈ {1, 2, 3}

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

βn1 (t) 0.436 0.421 0.373 0.290 0.167 0
βn2 (t) 0.377 0.364 0.323 0.253 0.146 0
βn3 (t) 0.371 0.358 0.319 0.249 0.144 0
αn3 (t) 0.370 0.357 0.318 0.249 0.144 0
αn2 (t) 0.367 0.354 0.315 0.247 0.143 0
αn1 (t) 0.336 0.325 0.289 0.227 0.132 0

Remark . The definition of f̂ implies that the solution u of () is strictly order stable
from below and from above and (Lyapunov) asymptotically stable as an equilibrium of the
parabolic problem ().

Numerical experiments
We present here some experiments concerning the numerical approximation of the solu-
tion of problem (), for the same choice a = b =  of the parameters as in [].

The iterative scheme in case L ≥ L We have computed various approximations, at dif-
ferent precision levels, of the unique solution u of problem () by implementing in Mat-

Lab the linear iterative scheme defined by () and (); at each step of the iteration the
resulting linear equations have been solved using the bvp4c routine with a -point
grid. We have chosen L = L, with L = ,. given by (), α =  and β = b

a = . The-
orem . guarantees that the approximating sequences (αn)n and (βn)n are constituted
by lower and upper solutions and monotonically converge to u, in an increasing or de-
creasing fashion, respectively; thus, for each n, the couple αn, βn brackets the solution u,
thus providing lower and upper estimates. In what follows the L∞-norm of a given func-
tion is intended to have been computed as the L∞-norm of its discretization on the given
grid. We have denoted by nk the minimum number of iterations needed in order that
‖βnk – αnk‖∞ < –k for k ∈ {, , }; the corresponding values are n = ,, n = ,
and n = ,. In Table  we have tabulated αnk , βnk , for k ∈ {, , }, at the mesh points
t ∈ {,., ., ., ., }; the graphs of αnk , βnk are displayed in Figure ; whereas Figure 
describes the rate of decay of ‖βn–αn‖∞, as well as of the errors ‖αn –u‖∞ and ‖βn –u‖∞,
plotted against the number n of iterations. Here u denotes a reference approximation of
the solution of (), calculated using the same scheme up to a precision of –. Although
the lower solutions αn converge slightly faster than the upper solutions βn, it is evident
that the monotone iterative scheme defined by () and () turns out to be extremely
slow.

The iterative scheme in case L ∈ [,L[ We start from the obvious observation that the
iterative scheme given by () and () is well defined for any fixed L ≥ ; hence it is clear
that, if the resulting sequences (αn)n and (βn)n are Cauchy sequences in C([, ]), then, by
the uniqueness of the solution of (), they converge in C([, ]) to u. Of course, if L < L
we cannot anymore guarantee that either αn is a lower solution, or βn is an upper solu-
tion, or the sequences (αn)n and (βn)n enjoy any monotonicity property. Let us take α = 
in () and let (αn)n be the sequence of iterates obtained for some given L ≥ . The nu-
merical experiments, we have performed for several different choices of L ∈ [,L[, show

http://www.boundaryvalueproblems.com/content/2014/1/127
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Figure 1 Graphs of the approximations αn1 , βn1 (in violet), αn2 , βn2 (in green) and αn3 , βn3 (in blue),
with αnk , βnk , defined by (41), (42) with L = L0, such that ‖βnk – αnk‖∞ < 10–k for k ∈ {1,2, 3}.

Figure 2 Graphs of ‖αn – u‖∞ (in blue), ‖βn – u‖∞ (in green) and ‖βn – αn‖∞ (in violet), for L = L0,
plotted against the number n of iterations.

that the sequence (αn)n converges to u, but the magnitude of L strongly affects the speed
of convergence; namely, as L decreases, the required number of iterations n in order that
‖αn –u‖∞ goes beneath a prescribed threshold, decreases. In particular, the speed of con-
vergence significantly increases as L approximates  and, for this choice of L, it becomes
comparable evenwith the speed ofNewton’smethod. Indeed, if we fix an error tolerance of
–, the iterative scheme defined by (), with L =  and α = , converges in  iterations,
whereas Newton’s method, starting from α =  too, converges in  iterations: these re-

http://www.boundaryvalueproblems.com/content/2014/1/127
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Table 2 Values of the approximations αn, defined by (41) with L = 1, for n ∈ {1, 2, 3, 4}
t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

α1(t) 0.284 0.271 0.233 0.175 0.097 0
α2(t) 0.355 0.342 0.303 0.234 0.135 0
α3(t) 0.370 0.357 0.318 0.250 0.149 0
α4(t) 0.371 0.358 0.319 0.249 0.144 0

Table 3 Values of the Newton approximations un for n ∈ {1, 2}
t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

u1(t) 0.352 0.339 0.298 0.229 0.129 0
u2(t) 0.370 0.358 0.318 0.249 0.144 0

Table 4 Values of u and ũ

t = 0 t = 0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

u(t) 0.370 0.358 0.318 0.249 0.144 0
ũ(t) 0.341 0.327 0.288 0.221 0.125 0

Figure 3 Graphs of u (in blue) and ũ (in green).

sults are displayed in Tables  and . This computational remark suggests the possibility of
using the iterative scheme also in case the condition L ≥ L fails; however, its convergence
properties should be theoretically analyzed.

A comparison between the solutions of () and () Here we present a numerical compari-
son between the solution u of the fully nonlinear problem () and the solution ũ of the par-
tially linearized problem () investigated in [].We have approximated u by the lower solu-
tion obtained by implementing the monotone iterative scheme given by (), with α = ,
L = L and stopping criterion ‖βn–αn‖∞ < –. An approximation of ũ, matching the one
obtained in [], has been calculated using the bvp4c routine of MatLabwith a -point

http://www.boundaryvalueproblems.com/content/2014/1/127
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grid. Table  reports the values of u and ũ at themesh points t ∈ {,., ., ., ., } and
Figure  displays the graphs of u and ũ.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the final manuscript.

Author details
1Area Departamental de Matemática, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1,
Lisboa, 1950-062, Portugal. 2Département de Mathématique, Université Libre de Bruxelles, CP 214 Boulevard du
Triomphe, Bruxelles, 1052, Belgium. 3Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via A.
Valerio 12/1, Trieste, 34127, Italy.

Acknowledgements
This paper was written under the auspices of INdAM-GNAMPA. The first named author has been supported by Fundação
para a Ciência e a Tecnologia (SFRH/BD/61484/2009). The last two named authors have been supported by Università di
Trieste, in the frame of the FRA projects ‘Equazioni differenziali ordinarie: aspetti qualitativi e numerici’ and ‘Nonlinear
Ordinary Differential Equations: Qualitative Theory, Numerics and Applications’. They also wish to thank Igor Moret for
some useful discussions.

Received: 17 December 2013 Accepted: 2 May 2014 Published: 20 May 2014

References
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