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Abstract

Not considering the Green’s function, the present study starts to construct a cone
formed by a nonlinear term in Banach spaces, and through the cone creates a convex
closed set. We obtain the existence of solutions for the boundary values problems of
nth-order impulsive singular nonlinear integro-differential equations in Banach
spaces by applying the Moénch fixed point theorem. An example is given to illustrate
the main results.

MSC: 45J05; 34G20; 47H10

Keywords: impulsive singular integro-differential equation; Banach spaces;
boundary value problem; Ménch fixed point theorem; measure of noncompactness

1 Introduction and preliminaries

By using the Schauder fixed point theorem, Guo [1] obtained the existence of solutions
of initial value problems for nth-order nonlinear impulsive integro-differential equations
of mixed type on an infinite interval with infinite number of impulsive times in a Banach
space. In [2], by using the fixed point theorem in a cone, Chen and Qin investigated the
existence of multiple solutions for a class of boundary value problems of singular nonlin-
ear integro-differential equations of mixed type in Banach spaces. For singular differen-
tial equations in Banach spaces please see [3—9]. Generally based on Green’s function to
construct a cone, but using the cone to study different nonlinear terms, we encountered
difficulties, especially in infinite dimensional Banach spaces. In this paper, informed by
the characteristics of the nonlinear term we construct a new cone, and through this cone
create a convex closed set. On the new convex closed set, we apply the Monch fixed point
theorem to investigate the existence of solutions for the boundary value problems of nth-
order impulsive singular nonlinear integro-differential equations in Banach spaces. Finally,
an example of scalar second-order impulsive integro-differential equations for an infinite
system is offered. Because of difficulties of compactness arising from impulsiveness and
the use of nth-order integro-differential equations, a space PC"*"1[J, E] is introduced. Let E
be a real Banach space and J := [0,1]. Let PC[J, E] := {u|u : ] — E u(t) continuous at ¢ # f,
left continuous at ¢ = &, and u(¢}) exists, k = 1,2,...,m}. Obviously PC[/,E] is a Banach
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space with norm
llell := sup | u(®)].
te]

Let PC"Y[],E] := {u € PC[J, E]|u”V(t) exists and let it be continuous at ¢ # #, let u" " (¢})
and u"V(¢7) exist, k =1,2,...,m}, where u"D(¢}) and u"D(£;) represent the right and
the left limits of u"~V(¢) at ¢ = t, respectively. For u € PC""![J, E], we have

ty—€
WDt — €)= u" D) + / u"V(s)ds,
t
Vi <t<ty—e<tr(€>0),k=1,2,...,m.

So observing the existence of #"~V(¢;) and taking limits as € — 0* in the above equality,
we see that u"-2(¢]) exists and

73

u" 2 (8) = u" 2 () + / u"V(s)ds, Vo <t<tk=1,2,...,m.
t

Similarly, we can show that u(”‘z)(t;) exists. In the same way, we get the existence
of u3(5), u"3N(&y), ..., u (), u (£f). Define u(ty) = u(5y) (i = L,2,...,n = 1, k =
1,2,...,m). Then u) € PC[J,E] (i =1,2,...,n — 1), and, as is natural, in the following,
u?(t;) is understood as ul(£). It is easy to see that PC"[J, E] is a Banach space with

norm
letll prt == izor,gl,.aj;fl{sgﬂ u0@)|}.

Let P be a cone in E which defines a partial ordering in Eby x < yifand onlyif y—x € P.
P is said to be normal if there exists a positive constant N such that 6 < x < y implies
llx]l < Nly|l, where the smallest N is called the normal constant of P. For convenience,
let N =1. Let Py = {u € P:u > ug|lu|}, in which uy € P and 0 < ||ug|| < 1. For r > 0, we
write Py, = {u € Py : ||u|| < r}. We consider the following singular boundary value problem
(SBVP for short) for an nth-order impulsive nonlinear integro-differential equation in E:

—u"(£) = f(t, u(®), u' (2), ..., u" D (0), (Tu)(2), (Sw)(2)),
O<t<Lt#ty (k=1,2,...,m),
Aoy = L(u(te), o (), ..., u" V(&) (i=0,1,...,n-2k=1,2,...,m), 1)
Au D)y = =L (t), w (&), ..., u" V() (k=1,2,...,m),
uP0)=6 (=0,1,...,n-2), u" V(1) =0,

where 0 <t <ty <---<t, <1,

f€C[0,1) x P\{0} x P\{0} x -+ x P\{0} x P x P1,Pi],

n+2

Iy eC[PpxPyx---xP,P](i=0,1,...,n-1;k=1,2,...,m),and
—

n

¢ 1
(Tu)(t):/(; k(z,s)u(s)ds, (Su)(t):/O h(t,s)u(s)ds, Vie], (2)
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with k € C[D,R,] (D={(t,s) €] x]J:t>s}),he C[] x J,R.]. Au(i)|t=tk denotes the jump
of ud(t) att =, ie.,

8 = (6) =0 (57),

and 0 denotes the zero element of E.
ft,vo, V1, Vi, Vis1) is singular at v; =0 (i =0,1,...,n—1), £ =0 and/or t = 1 if

V{LIrlg‘V(t,vo,...,vn+1)||=+oo (i=0,1,...,n-1),
Vte(0,1), vk e Py (k=n,n+1),v;e P\{6} (i,j=1,...,n—1),and
tlilg !Lf(t, vo,...,vn+1)|| =+00 and/or tlg}{ |[f(t, vo,...,vml)” = 400,

Vv, e PI\{0} (i=0,1,...,n—1),v;e P (j=nn+1).

Remark Obviously, P; C P, and P is a normal cone of E if P is a normal cone of E. P; and
P has the same normal constant N.

In the following, we assume that P is a normal cone. Let J' = J\{t;,%,...,,}. A map
u € PC™[J,E] N C"[J',E] is called a solution of SBVP (1) if it satisfies (1).

2 Several lemmas

To continue, let us formulate some lemmas.

Lemma 2.1 IfH C PC"\[],E) is bounded and the elements of H"™) are equicontinuous
oneachJiy (k=0,1,...,m), then

an1(H) = [nax 1{supcx(H(i)(t))],
=0L.an=1 1 ey

in which a denotes the Kuratowski measure of noncompactness, H D) = {x9(8) : x € H}
(i=0,1,...,n-1).

Proof Fori=0,1,...,n—1, it is easy to prove that

supa(H(i)(t)) < a(H(i)(])) < a(H(i)).

te]

Since [|u?|| < ||ullpcnt (i = 0,1,...,n — 1), we know a(H?) < a,,_1(H) (i = 0,1,...,n - 1).

Hence

x| supar(H(0) b= e, 3)

Next, we check that

max {supoz(H(i)(t))] > a,_1(H).

i=0,L,n-11 1ej


http://www.boundaryvalueproblems.com/content/2014/1/128

Chen et al. Boundary Value Problems 2014, 2014:128 Page 4 of 25
http://www.boundaryvalueproblems.com/content/2014/1/128
In fact, for any € > 0, there is a division H? = || Hl(i) (i=0,1,...,n—1) such that
diam(Hl(i)) <oz(H(")) +¢, i=0,1,...,n-1 (4)
By hypothesis, the elements of H"~Y are equicontinuous on each J; and there is a division:

O=ty<ty<- <t =<t <<t

J:
=t2<---<t;m=tm<t;m+1<---<t;m:=1,
such that
|u?@®) -u ()| <e, YueHte[tyt](i=0,1,....n-1) (5)
and
|6 - u(8) | <e, VueH,te(t ] (G=2,....jmn,i=0,1,...,n—1). (6)

Let J| = [0, t{],]j/ = (t;_l, t]f] (j=2,...,jms1)- By virtue of (5) and (6), we know that

||u(i)(t) —u(")(t]f)” <€, Vu eH,te]j’ G=L2,....jms1,i=0,1,...,m—1). 7)
Let B:=J/ ]':”1* "HY(t)). There is a division B = { J, B; such that

diamB;<a(B)+e¢ (I=1,...,p). (8)
Let F be the finite set of all maps {0,1,...,n -1} x {1,2,...,jua} into {1,2,...,p} (1 : (i,)) >
140, ). For ju € Flet H, := {u € H: u)(t)) € By, (i) € {0,1,...,n=1} X {1,2,... jomr}}. Tt

is clear that H = J
and so

perHy Foranyu,ve Hy,t €], we havete]j’ forsomej € {1,2,...,jm1}s

[47@ -] = [u@ - u® ()| + [4°() -0 )| + (&) - @

<a(B)+3¢ (i=0,1,...,n-1). 9)
Consequently,
diamH, <a(B)+3¢, VueF,
which implies «,_1 (H) < a(B) + 3¢. Since € > 0 is arbitrary, we get

au1(H) < a(B) =max{a(H(£)) :j=1,2,....jm,i = 0,1,...,n -1}

< max {supa(H(i)(t))}. (10)

i=0,1,.n-10 o)

Finally, the conclusion follows from (3) and (10). For details of the Kuratowski measure of
noncompactness, please see [10]. O
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Lemma 2.2 (see [11]) Let us take a countable set D = {u,} C L[J,E] (n € N). For all u,, € D,
there is g € L[], R,] such that ||u,(¢)|| <g(¢), a.e, t € ]. Then a(D(t)) € L[J,R,], and

a({/otu,,(s)ds:neN}) 52/:05(D(s))ds.

Lemma 2.3 Suppose H C PC[],E] is bounded and equicontinuous on each Ji (k =
0,1,...,m). Then a(H(t)) € PC[J,R,], and

a({/}u(t)dt:ueH}) gf[a(H(t)) dt.

Proof By Theorem 1.2.2 of [10], the conclusion is obvious. d

Lemma 2.4 Let B;,B, C PC"1[],E] be two countable sets. Suppose uy € PC"'[J,E| and
By =co({ug} U By). Then

B0 =wo([ul ) UBY(®), te)(i=0,1,...,n-1).
Proof The conclusion is obvious by Lemma 6 of [12]. O

Lemma 2.5 (see [13]) (The Monch fixed point theorem) Let E be a Banach space. Assume
that D C E is close and convex. Assume also that A : D — D is continuous with the further
property that for some uy € D, we have C C D countable, C = co({uy} U A(C)) implies that
C is relatively compact. Then A has a fixed-point in D.

3 Main theorem and example
For convenience, we list the following conditions:

(H;) There exist b € C[J,R,], a; € C[J,R,] (i=0,1,...,n + 1), gi € C[(0, +00), (0, +00)]
(i=0,1,...,n-1) and k; € C[[0, +00), [0, +00)] (i =0,1,...,n + 1) such that

Hf(tx Vo, V1o o3 V-1,V Vn+1) ”

n-1

<b@&)+ Y ai®(g(lvill) + hi(1vill)) + an@ha(lvall)

i=0
+ an+1(t)hn+l(”Vn+1”): vt € (O,l), Vv € Plr\{@} (l = 0,1, e — 1)7 Vs Vnal € Plr:

where g; is nonincreasing, % (i=0,1,...,n—-1) and Ay, h,,; are nondecreasing. And there
exist dy >0, ¢ >0 (i,j=0,1,...,n -1,k =1,2,...,m) such that

n-1
HIik(VO;Vlync;Vn—l)H < dik + Zcikj”‘/jll (l =0,1,...,n _lrk = 172""’;71)7
j=0
Vj €P1r (j= 0,1,...,1’1—1).
(Hz) There exists a ¢ € Pf (P} denotes the dual cone of P;) such that |l¢|| = 1. And for
any r > 0, there exists a /,(¢) € L[(0,1), (0, +00)] such that

(ﬂ(f(tr VorV1ree s V-1V, VVI+1))

> hy(t), Vt e (0, 1), Vv € Plr\{e} (l =0,1,...,n—- 1), Vi Vpsl € Py,
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(H3) There exists a Ry > fol hg, (s) ds such that

n-2

n—l—i 1 hz(RO)
/ (b(s Za (s)g; <g0(u0)( Y / thO(r)dt) (l + gi(RO)) + ady_1(8)

X Zn-1 (‘P(uo) / Iy (T) d‘L’>

h,_
X (1 + gn_j((llj(())))) +a,(s)hy, (k*RO) + “n+1(5)hn+1(h*Ro)> ds

m n-2

*D

k=1 i=0

a _tk) ( k+Zc,k;Ro>+Z< n— 1k+ZC" 1k1R0> =Ro,

where b,a; (i=0,1,...,n+1),g:(i=0,1,...,n-1),9,h; (i=0,1,...,n+1),dy (i = 0,1,..

-

1), ¢y (i,j=0,1,...,m—1,k =0,1,...,m) and hp, are defined as in conditions (H;) and (Hy),

and k* := max,5epl{k(t,$)}, B := max( g7 {h(t, s)}.
(H4) There exist L;(t) € L[(0,1),R,] (i =0,1,...,n +1), Yb > a > 0 such that

n+l

a(f(t,Bo,By,....,Bun)) < Y Li()a(Bi), Vte(0,1),

B; C Pyy\Py, (i =0,1,...,n = 1), By, Byy1 C Pyp,. There exist My; >0 (5,j = 0,1,...,n— 1,

k=1,2,...,m) such that

(Ik(B() B,...,B, 1))

._.

Z we(B)), B;CPy(j=0,1,...,n-1)(i=0,1,...,n-Lk=12,...,m).

j=0

Remark Obviously, condition (H,) is satisfied automatically when E is finite dimensional.

Lemma 3.1 Suppose conditions (Hy), (Hy) and (Hs) are satisfied. Then Q defined by
Q= {u e PC" Y1, P] : u®(t) > uo Hu(i)(t)H (i=0,1,...,m— 1),Au(i)|t:tk >0
1
(i=0,1,...,n-2),0(u" ) > w(uo)/ Iy (s)ds, l|ull pon1 < Ro, ¢ e]}
t

is a nonempty, convex and closed subset of PC" (], E].

Proof Let

. -1 t . tn—l 1
u(t) = uo((n ) /0 (t-s) 1hRO(s) ds + m/o hg,(s)ds

n-2 i
(-t ! (t—t)""
DID> i +m(n—1)!_2 (1—1)! ) veel.

O<tg<t i=0 O<ty<t

Page 6 of 25
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Forj=0,1,...,n-1,

n-1-j 1
ﬁ(i)(t)=uo<( —-1-))! f(t_s)nllhRO(s)d“( t_1_11) / hry(s) ds
(t tk)‘f -1 (t - )1

It is clear that #(t) € PC"![J, P]. Since O < ||ug|| <1, for j = 0,1,...,n — 1, by (11), one can

see that
|0l = ol ~——; / (t — " Thgy (5)ds
- f (- tk)”
hp,(s)ds + Z Z
(I’l 1- ]) O<ty<t i=j l_

tVl—l—j t—t n-1-j

M 2 %

(n-1-pt o=, (n-1-))

1 t i g1 !
< (m/o ) ]hRo(S)dS‘*m/(; hgy(s)ds

(t- tk)” ¢ (t—u) "7
ZZ T (n—l—j)!>’

O<ty<t i=j O<ty<t

which implies 2% (£) > uo||#®(t)|| (i =0,1,...,n—1) fort €.
By conditions (H;), (Hz), (Hs), and (11), we have

Ay >0 (i=0,1,...,n-2), |32l pen1t < Ro
and ¢(@"71(t)) > ¢(ug) ftl hg,(s) ds. Therefore, 7z € Q and Q is a nonempty set.
Now, we check that Q is a convex subset of PC""![J, E]. In fact, forany u,v € Q,0 < A <1,
we write ¥ = Au + (1 — A)v, which means ¥ € PC*1[J, P]. It is clear that
Ay = AAUD |y + (L= AV Ly > 20+ (1-2)0 =6 (i=0,1,...,n-2). (12)

By virtue of the characters of elements of Q and the characters of ¢, we have

70(8) = 2@ + @ = VOO = Ao [ @ || + @ = Vuo |V ()|

> uo (| 2u®@) + A =2 O ) = uo [#(8)| (=0,1,...,n-1). (13)

In the same way,

(p(;(n-l)) — (p(ku(n—l) +(1- A)V(n-l))

1 1 1
> rp(ito) f iy (s) ds + (1 - W) (u0) / iy () ds = @ (ut0) / heg(s)ds  (14)


http://www.boundaryvalueproblems.com/content/2014/1/128

Chen et al. Boundary Value Problems 2014, 2014:128 Page 8 of 25
http://www.boundaryvalueproblems.com/content/2014/1/128

and
[Vl pen-1 = || A2 + (L= 2)v|| s < ARo + (1= A)Ro = Ry.

Therefore, 7 € Q. Thus, Q is a convex subset of PC"![], E]. It is clear that Q is a closed
subset of PC"*"1[], E]. So the conclusion holds. O

Lemma 3.2 Assume that conditions (H;), (Hy) and (Hs) are satisfied. Then A : Q — Q,
where the operator A is defined by

-1

) = 75

/ t(t —8)" Y (s, u(8), 8/ (), ..., u"V(s), (Tu)(s), (Su)(s)) ds
0

tn—l 1
A /0 F(s,u(s), (), .., u"V(s), (Tu)(s), (Su)(s)) ds

S / (n-1)
IS T (st o (84), ., " (81))

i!

O<ty<t i=0
tn—l m
P Lo (ute), o (), ..., u" (&)
C k=1
(t-t)"" -
-y le,_lk(u(tk), u (te), ..., u" (&), Veel. (15)
O<ty<t !

Proof Forany u € Q, i.e.,
(@) > uo||u®@)| (=0,1,...,n-1) (16)
and
1 -
‘P(M("_l)(t)) = (P(uo)/ hey(s)ds, te], A"‘(l)|t=1fk >0 (=01,...,n-2),
t
leellpcrt < Ro.

For any u € Q and ¢ (fixed) €/,

(Tu)(t) :/(; k(t,s)u(s)dsg/0 k(t,s)uoHu(s)”ds

> uo = uo||(Tu)(®) 17)

/tk(t, s)u(s)ds
0

and

t 1
(Su)(®) =/0 h(t,s)u(s)dsz/0 h(t,s)uo”u(s)H ds

1
/ h(t,s)u(s)ds
0

= Up

= uo | (Sw)(@)]. (18)
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Because of ¢ € P*, ||¢|| =1 and ¢(u""V(£)) > ¢(uo) ftl gy (s)ds, t € (0,1), we know

1
[P @] = [u" D@ lell = 0 (" @) = g (o) / Ty (5) ds. 19)

Analogously, for i =0,1,...,n— 2, it is easy to see

t—t)
uP(0) = (ZZ (l_’,),

O<ty<t i=j

n-2—j_ (n-1)

/ (- 5V T (" (s)) ds

=tk

2
n-2—
_(n 2 ])vf(t_s) 190(“0)/ hgy(t)dr ds
e 7 n 1
= i1 ) f ) hg, (5) ds
tn—l—;
zm‘/’(”O)/o shpy(s)ds, Vee(0,1). (20)
Hence,
n-1-j 1
| t)!!_hw(uo)f shgy(s)ds, j=0,1,...,n=2,Vt € (0,1). (21)

Differentiating (15) n — 1 times, we get
1
(Au)" () = / F(su(s), d(s),...,u"(s), (Tu)(s), (Su)(s)) ds

+ Z Lok (u(ti), v/ (80), .., "D (1))

k=1

= > L), W @), ..., u" V() Vee]. (22)

O<ty<t

Obviously, (Au)"V(¢) (i = 1,2,...,m) exist and
1
(Auw)" D (t7) = / (s uls), d(s),...,u"1(s), (Tu)(s), (Su)(s)) ds

+ Z In—lk(u(tk)r u’(tk),...,u(”’l)(tk)), Vvt G] (l = 1: 2,...,}7’!), (23)

k=i+1

where Z,y:;HlI,,_l/((u(tk),u/(tk),...,u(”’l)(tk)) is understood as 6 for i = m. Similarly,
(Auw)"V(£7) (i =1,2,...,m) exist. Hence,

Au e PC™1[J,P]. (24)
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Let
tn—l—l_(t_s)n—l—l o<
Gi(t,s) =: tn_l(_nl—lfl)! oY== (l=0,1,...,n—-1). (25)
[k <t<s<l
Since

£ €C[(0,1) x PI\{8} x PI\{6} x --- x P\\{8} x Py x Py, Py]

n+2

and [z € C[Py x Py x --- x P,P] (i=0,1,...,n—1; k=1,2,...,m), it follows from (15),
[ ——

(16), (17) and (18) that

1
(Au)D(t) = / Gilt,s)f (u(s), t/(s),...., "D (s), (Tu)(s), (Su)(s)) ds

* ZZ i l), Ly (e, (8), -, " (10))

O<tg<t i=l

tnll m

P Zln e (), ' (8, - u" D (81))

_ n-1-1
- wlmw (eltx), o (8), .., u" D (1))

O<ty<t (}’l -1- l)'

1
> / Gi(t, s)uo ||f (u(s), ' (s), ..., u" 1 (s), (Tu)(s), (Su)(s)) | ds

Z Z (t tk) o | ((tic)s o (&), ..., "D (&) |
O<tg<t i=l

o m (t—tk n 1-1
((n 1- l)'Z ng;t (n— 1—l)'>

X Ug Hln—lk (M(tk): u,(tk): e nil)(tk)) H

= Ug

1
/0 Gilt,s)f (u(s), t/(s),...., " D(s), (Tu)(s), (Su)(s)) ds

+ Y Z i l), T (st (81, ., u" D (1))

O<tg<t i=l

tnll m

(I’l 1— l Z I lk tk (tk); [ M(n_l)(tk))

_ n-1-1
Y e (1) 10)

It is clear that

AAw )y >0, 1=0,1,...,n-2. (27)


http://www.boundaryvalueproblems.com/content/2014/1/128

Chen et al. Boundary Value Problems 2014, 2014:128

Page 11 of 25
http://www.boundaryvalueproblems.com/content/2014/1/128

Since ¢(uo) < |l¢|l|l#oll <1, by (22), (26) and condition (H,), we have
o((Aw)" V() ( / f(5u(s),1/(s),..,u"(s), (Tu)(s), (Su)(s)) ds

Y i (i), o (), - "D (8))

k=1
= D Lk (i), W (@), U l(tk))>
O<ty<t
1 1
z/ hRO(s)dsz(p(uo)/ hpy(s)ds, Vte]. (28)
t t
Now, we show that
|Aullpcn1 < Ro, VueQ. (29)

By (15), (19), (21), conditions (H;) and (Hj3) imply

1
”(Au)(l)(t)” = H/O Gl(t,s)f(u(s), ©(s), ..., u"V(s), (Tu)(s), (Su)(s))ds

i~
i3 Z " tkl))v T (e, ' (@), -, u" D (1))

O<ty<t i=l

tnll m

1ol an 1 (2t u" ()

(t - )" / (n-1)
- Z mln—lk(u(tk)»u(tk),m,u (tk))

O<ty<t
1
< /O |Gut, ) (uls), ' (5), ..., u"D(s), (Tu)(s), (Su)(s)) | ds
< (t - tk)l’il / (n-1)
Z Z Wlﬂ((u(tk)» u(te),...,u (tk))
O<ty<t i=l :
P 1-1 m

+ m Z[n 1k M(tk) u' (), .. n—l)(tk))

n-1-1
_ Z ¥ _tkl) ke (), 1 (), "D (1)

O<ty<t

" gl 1 hi(Ro)
SA <b(5) + gai(s)gi(‘ﬂ(uo)m/(; ThRo(T)df) (1+ gi(Ro))

1 hy-1 (R
+ ap-1(8)gn1 (90(%)/ hiro (7) df) (1 * g 11((RZ))>

t+ay (S)hn (k*RO) t+ dpi1 (S)hn+1 (h*RO)) ds
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m n-2 i n-1 m n-1
1-t)
+ Z Z ” i+ Z CiiRo | + Z A1k + Z Cn-1kRo
k=1 i=0 L j=0 k=1 j=0
<Ry, 1=0,1,...,n-1Vte]J, (30)
which implies that (29) is true. By (24), (26) to (29), the conclusion holds. O

Lemma 3.3 Suppose conditions (Hy) to (Hy) are satisfied. Let
1
Dy(t) = { / Gi(t,s)f (s, u(s),...,u" D (s), (Tu)(s), (Su)(s)) ds: u € B}
0
({=0,1,...,n-2)
and
1
D,_1(t) = {/ f(s, u(s),..., u“"”(s), (Tu)(s), (Su)(s)) ds:ue B},

in which t € ], B (countable) C Q. Then

1 n-1
a(Dy(t)) < f 2s (Z‘ Li(s)a(BY(5)) + L ()k*t(B(5)) + Lys1 (s)*x (B(s))) ds
0 i=0
(1=0,1,...,n-2) (31)

and

n-1
a(Dya(2) < /0 1 2 (Z Li(s)a (BY(5)) + Lu(s)k*a (B(5)) + L1 ()it (B(S))> ds, (32)

i=0

in which BO(s) = {u(s):u € B} (i=0,1,...,n—1).

Proof In order to avoid the singularity, given % >8>0, let

1-5
Dys(8) = { / Gilt,s)f (s, u(s),...,u" (), (Tu)(s), (Su)(s)) ds : u € B}
B
1
(l=0,1,...,m-2),0<6< E,te].

By conditions (H;), (Hz) and (Hs), for any ¢ € J, u € B, we have

/1 Gi(t,s)f (s, uls),..., u"V(s), (Tu)(s), (Su)(s)) ds
0

1-6
- /5 Gilt,s)f (s, u(s),...,u" (), (Tu)(s), (Su)(s)) ds H

5 "2 gl 1 hi(Ro)
5/(; (b(s)+ ;ai(s)gi<§0(uo)m/o ThRo(f)dT> (1+ gi(Ro))

1
+a-1(5)gn1 <(0(u0)/ hRO(‘L')d‘L')
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By
x (1 + gll((gz; > + ()1, (K*Ro) + @1 (Vi (h*Ro)) ds

n-2

n—1-i 1 h;
+/16<b(s)+2a(s)gl<w(uo)( - ),/ tho(T)dT> (1+g;((11§:))))>

+ a,_1(8)gn1 <€0(uo)/ Ny (7) dr) <1 * %)

+ a,(s)h, (k*Ro) + a1 (8) (h*Ro)) ds. (33)

By virtue of absolute continuity of the Lebesgue integrable function, we have
Aups 0,00 —> 0, asé— 0,Vte], (34)
in which, dyp,(0),0,:) denotes the Hausdorff distance between Dys(f) and Dy(t). Therefore,
a(Di(t)) = ;i_r)%a(Dl,g(t)), Vie]. (35)

Now, we show

a(Dis(2)) f 25 (ZL ()t (BY(s)) + Lu(s)k* e (B(s)) + L,,+1(s)h*a(B(s))) ds
(=01,...,n—1).

In fact, by Lemma 2.2, we have

1-5
a(Dh;(t)) =« ({/s Gi(t, s)f(s, u(s), ..., " V(s), (Tu)(s), (Su)(s)) ds:ue B})

1-5
< / 2G(t,8)ee(f (5, B(s), ..., BV (s), (TB)(s), (SB)(5))) ds
s
({=0,1,...,n-2), (36)
where (TB) = {(Tu)(¢) : u € B}, (SB) = {(Su)(t) : u € B}.
On the other hand, for u € B C Q, it follows from (19) and (21) that

n—1-j

S ]
0l =

1
N )'go(uo)/ shgy(s)ds, j=0,1,...,n—2,Ys€(5,1-3) (37)
0

and

1
|4 6)] = (o) / rg(9)ds, s € (3,1-9). (38)
1-

Taking a = min{minj_oy,.»—2{ fl 11_1/ <p(u0)f0 hRO(s)ds} i 1_/ (p(uo)fo hg, (s) ds}, b = max{k*,

h*,1}Ry, by (16), (17) and (18), one can see that

BY(s)cPyp\P, (i=0,1,...,n-1), (TB)(s), (SB)(s) C Pyp. (39)
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Therefore, by condition (H4) and (36), for [ = 0,1,...,n — 2, it is easy to get

1 n-1
a(Dys(8) < / 2G)(t,5) (Z Li(s)ot(B'(5)) + Lu(s)er ((TB)(s)) + Ln+1(5)0l((53)(5))) ds,
0

i=0

te]. (40)

Since B is a bounded set of PC"1[], E] and B'(¢) is a bounded set, B(t) is equicontinuous
oneach Ji (k=1,2,...,m). By Lemma 2.3, it is easy to get

1

a((TB)(s)) <k* /Osoe(B(t)) dr, oz((SB)(s)) < h*/o Oé(B(‘L')) dr. (41)

Substituting (41) into (40), we get (31).
Similarly, we obtain (32) and our conclusion holds. a

Lemma 3.4 Let conditions (H;) to (Hs) be satisfied. u € PC"'[J,E)NC"[J', E] is a solution
of SBVP (1), if and only if u € Q is a fixed point of the operator A defined by (15).

Proof First of all, by mathematical induction, for u € PC""1[J, E] N C"[J', E], Taylor’s for-
mula with the integral remainder term holds,

n-1 ti ) n-1 (t—t )i ’ )
we)=y FW(O) N ; () - D8]
i=0 O<ty<t i=0 :
+ ﬁ /0 t(t—s)""lu(”)(s) ds. (42)

In fact, as n = 1, for u € PC[J,E] N CL[J',E], let ty < t < tyyy, it is easy to see that

u(ty) — u(0) = / 1 u'(s) ds, u(ty) —u(t) = / ’ u'(s)ds,
0

5]

vey

u(ty) —u(t,j_l) = / ‘ ' (s) ds, u(t) —u(t,?) =/ ' (s) ds.

k-1
Adding these together, we get

k ¢
u(t) — u(0) - Z[u(t:') —u(t)] = / u'(s)ds,
- 0

14

that is,

u(t) = u(0) + Z [u(t;) - u(tk)] + /Otu/(s) ds, Vte]. (43)

O<ty<t

This proves that (42) is true for n = 1.
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Suppose (42) is true for n—1, i.e., for u € PC"%[J,E|NC"}[J', E], the next formula holds:

-t (-t .
)= 3 a0+ Y0 3 I 0 ) w0

i=0 O<tg<t i=0

1 ! _ -2, (n-1)
+—(n—2)!/0 (t—8)""u""(s)ds. (44)

Now we check that (42) is also true for 7. In fact, suppose u € PC"'[J,E]|N C"[J, E]. Then
u"D e PC[J,E] N C'[J', E], by (43), one can see

u" V() = u D) + 3 [V () - u D (e)] + / W) ds, Ve, (45)
0

O<ty<t

Substituting the above equation into (44), we get

n— 2
u(t) = Z Do)+ Y Z u () - u (8]
i=0 O<ty<t i=0

2)‘/ (£ 52

> {u(n—l)(o) + Z [u(n—l) (tl:) _ M(n—l)(tk)] . /s M(Vl)(r) dl’} ds
0

O<ty<s

n-2 £ n-2 = tk)i ) ‘ (t _s)n_l 0

B ; i_!u(l)(o) * 0;:; T[M(l) (t;(r) - M(l)(tk)] + W tu(n—l)(o)
t n-2 ,
_ Z %[u("—l) (tl?) - u(n—l)(tk)] ds + P /0 (¢- S)”_lu(”)(s) ds
O<tr<t ¥ Tk it —1)!

n-1 ;
S50 3 5 S ) -t

=0 O<ty<t i=0

+ o 1 1)'/ (t_S)”‘lu(”)(S) ds, VteJ. )

- Jo

So, (42) is also true for n. By mathematical induction, (42) holds.
Suppose u € PC"1[J,E] N C"[J, E] is a solution of SBVP (1). By (42), we can see that

n-1

t o SN (E-t) .
7400+ 0% = [0 () - w0 @)
i=0 O<ty<t i=0

+ (nil)! fo t(t—s)”’lu(”)(s)ds. (47)

Substituting

u(,,_1)(0) _ u(n_l)(a) _ /“ u(n)(s) ds — Z[u(n—l) (t,j) _ u(n—l)(tk)]
0 k=1

Page 15 of 25
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into (47), by (15), we get u(t) = (Au)(t). So u is a fixed point of the operator A defined by

(15) in Q.

Conversely, if u € Q is a fixed point of the operator A4, i.e., u is a solution of the following

impulsive integro-differential equation:

u(t) = (Au)(2).

Then, by (15), similar to (26), from the derivative of both sides of the above equation one

can draw the following conclusions:
1
ul)() = / Gi(t, )f (u(s), t/(s), ..., u"V(s), (Tu)(s), (Su)(s)) ds
0

i~
ZZ“ ) )i

O<tp<t i=l

m

an e (), o (t), ..., u" D (&)

tnll
To1oi)y
(t—t) ! / n-
-2 P gy etk (00,0 (80, 00)
()<tk<t -

[=0,1,...,n-1Vte].

So, we have

1
u"(t) = / Gua(t,)f ((), t/(5), ..., "V (s), (Tu)(s), (Su)(s)) ds
0

+ Z In—2k (u(tk)) u/(tk)) cees M(nil)(tk))

O<ty<t

) Lo (wt), W (@), ., u" (1))

k=1
= > (= ) (), (), u" (@), VEET
O<tg<t
and
1
u" V() = / F(s,u(s), 4 (8), ..., u"V(s), (Tu)(s), (Su)(s)) ds
- Z In—lk (u(tk); M/(tk), ey u(nil)(tk))
O<tg<t
L (), o (80), .., u" (@), Vee].
k=1
Hence

u(t) = ~f (&, u(®), u (t), .., u" (@), (Tu)(2), Su))), Vte].

(48)

(50)

(51)
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It follows from (48) and (50) that u € PC"![J, E|NC"[J’, E]. By (48), (49) and (50), we have
AUy = I (ute), o/ (&), ..., u" V(&) (=0,1,...,n=2k=1,2,...,m) (52)
and
A"y = Lo (), o (&), ..., u" P &) (k=1,2,...,m). (53)
It is easy to see by (48) and (50)
u0)=6 (i=0,1,...,n-2), u" V(1) = 6. (54)
By (51) to (54), u is a solution of SBVP (1). O

Theorem 3.1 Let conditions (Hy) to (Ha) be satisfied. Assume that

1 n-1 m n-2 _ i n-1
B =: maxi / 2S<ZL1~(S) + Lu(s)k* + Lml(s)h*) ds+y Z tk Z i
0 i=0 k=1 i=0 j=0

m n-1
>
k=1 j=0

<1 (55)

1 /n-1 m n-1
M, 45,2 / (Z Li(s) + L(s)k* + Lml(s)h*) ds+> Y "M, lk,}
0

i=0 k=1 j=0

Then SBVP (1) has at least a solution u € PC"'[J,E] N C*[J',E].

Proof We will use Lemma 2.5 to prove our conclusion. By (H;)-(Hj3), from Lemma 3.2, we
know A(Q) C Q.

We affirm that A : Q — Q is continuous. In fact, let V{u;}}% C Q, up € Q, |luy -
U || pcn-1 = 0 (as [ — 00). From the continuity of f and I (i =0,1,...,n-1,k=1,2,...,m)
and the definition of A, by virtue of the Lebesgue dominated convergence theorem, we see
that

[(Au)?(8) - (Aue)?(8)| — 0, asi— o0,¥t€],i=0,1,...,n-1. (56)

For Vt € J (fixed), we have a({(Aul)(i)(t)}ffl) =0 (i=0,1,...,m — 1). We also see that
{Au}i?, CQC PC"[], E] is bounded and (Au;)""V is equicontinuous on each Ji. By Lem-
ma 2.1, it is easy to get

a1 ({Aug)io) = max._ {supa({(Aul) ')} 1)] 0, (57)

’’’’’ e

i.e., {Au;}7S, is arelatively compact set in PC"V[], E]. The reduction to absurdity is used to
prove that A is continuous. Suppose lim;_, oo [|Ast; — Aug || pcn-1 # 0. Then 3eg > 0, 3{[;} C {/}
such that

Ay, — Auollpen-1 = €o. (58)
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On the other hand, since {Au,}7?, is a relatively compact set in PC"D[], E], there exists a
subsequence of {Au;} which converges to y € PC"V[], E]. Without loss of generality,
we may assume {Auy; } 2, itself converges to y, that is,

lAwy = yllpcn1 = 0 (asj — 00). (59)
By virtue of (56), we see that y = Auy. Obviously, this is in contradiction to (58). Hence,
Az, — Aug || pcn1 — 0 (as I — o0). (60)

Consequently, A : Q — Q is continuous.
By Lemma 2.4, for any countable B C Q, which satisfies B = co({u} U A(B)), one can see

B =o({ul 0} U (a®)?0) (=0,1,...,n-1).

By virtue of the character of noncompactness, it is easy to get «,_1(B) = o,-1(A(B)),

o(B(0)) = «(BO() = (e0( {0} L (48) " 0))
ao(({ul®}u(a®)®) =e((Aa®)?®) @=0,1,...,n-1.  (61)

For any fixedt€/,/=0,1,...,n -2, by condition (H4) and Lemma 3.3, we have

,_.

1 n-
«((AB) ") < f 2s( Li(s) (B (i)(s))+Ln(s)k*oz(B(s))+Ln+1(s)h*oz(B(s))) ds
0

i

S} I
(=]

+in_ (1 tk)" ol

k=1 i

- 1-1 m
PR Zln w(B(t), B'(t), ..., B" V(1)

ik (B(t), B' (&), ..., B" V(%))

Il
~

_ (t_tk

N Z L (B(t), B' (&), .- "_D(tk))>

O<ty<t

IA
S~

n-1
ZS(ZLl s)ot(BY(s)) + Ly (s)k* e (B(s)) +Ln+1(s)h*a(B(s))> ds

4

m n-2 n-1 m n-1
1-¢ )‘
£y e > Mg (Bit)) + > Y My (Bj(te)).  (62)
k=1 i=0 j=0 k=1 j=0
Similarly, by Lemma 3.3, for / = n — 1, we have
A(B)) (t)
1 /n-1
/ ( Li(s)a L,,(s)k*a(B(s))+L,,+1(s)h*a(B(s))) ds
0 i=0
m n-1
+ Z M,,_ 16O B (l’k)). (63)
k=1 j=0
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Let m* = maxlzoyl,_,,,y,_l{suptejoz((A(B))(l)(t))}. It is clear that m* > 0. By (61) and (62), for
1=0,1,...,n—2,itis easy to see that

1 n-1
m" < (f 2S<ZLRl )+ Lpa($)k™ + Lpy1 ()i )ds
0

i=0
m n—2(1_tk -1 m n-1
+ Z Z il Z ikj + Z ZMH uj |m* < pm*. (64)
k=1 i=0 ' j=0 k=1 j=0

Similarly, for [ =n -1,

1 n-1 m n-1
m* < (f 2(2 Li(s) + L,(s)k* + Ln+1(s)h*> ds + Z ZM"‘W) m* < Bm*. (65)
0

i=0 k=1 j=0

Since B < 1, by (64) and (65), we know that m* = 0. It is easy to see that A(B) C PC""[],E]
is bounded and the elements of (A(B))"~V are equicontinuous on each J; (k =1,2,...,m).
It follows from (61) and Lemma 2.1 that

0a(B) = 0,1 (AB) = max fsupar((4(8) @)} =m* =o0. (66)

1=0,1,..,n-1 te]

Hence, Bis a relatively compact set. By Lemma 2.5 (the Monch fixed point theorem), A has
atleast a fixed point #* € Q, and by Lemma 3.4, u™* is the solution of SBVP (1) which means

conclusion holds. O
An application of Theorem 3.1 is as follows.

Example Consider the following infinite system of scalar nonlinear second order impul-

sive integro-differential equations:

D=

4 4 -
—up(t) = - ;H) + —— + T In(1 + u, (1)) + %
dnutz ()2 (141)(u, ()3

3 5 01

+ 5 fot(t —S)un(s)ds + £ [y (¢ +9un(s)ds, 0<t<lt#1, )
Aty = 5un(3),
Aun't—% = _%uw(%) - %u;(%)’
u,(0)=u,(1)=0 (n=12,...).

Conclusion. The infinite system (67) has at least a C? (¢ # %) solution, {u,(£)}, u,(t) — 0,

n— o0, t3.

Proof Let ] =[0,1], E =: Co = {u = (1, U2, ..., Uy,...) : 4, — 0} with norm ||u|| = sup,, |u,].
We have the cone P := {u = (uy,...,uy,...) € Co: u, > 0,n=1,2,3,...}. Obviously P is a
normal cone in E. Taking ug = (¢01, 402, - - -» Yons - - -) (Uon = (ln(2+1 )?), it is easy to see ug €
P, 0 < |lugl = (ln ) <1land Py = {u € P: u, > ug,||lu||}. The infinite system (67) can be

regarded as a SBVP of the form (1) in E. In this situation,

k(t,s) =t —se C[D,R,] (D = {(t,s) eJxJ:s< t}),
h(t,s)=t+seC[J] x],R,],
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u=(u1,u2,...,un,...), V:(VI)VZ)"')VVI!"'))

X = (X1,%2, .. s Xy -+ .), f=0Htor--sfre- )

in which

t4
fult, w,v,w,x) =

«/t(l—t 4;/1 M2n)2

4

t 1-t? £ £
+—In(l+u)+ ———— 5+ —wy + —
4 (m+ 1)(1/(;4+1))§ 4 6

and b = %) [ik = (Iikl’lier lkm ) (l 0)1), where

1 1 1
Torn(u,v) = = Inn(u,v) = Stn+ SV

Obviously, for (¢, u,v,w,x) € (0,1) x P1\{6} x P1\{0} x P; x P;, we have

NI—

4n(uzy)? > 21n(n + D(llul)? >0,

(n+1)(V(n+1))éZ\/Bn"'l(ln(n;l )) (IIVII)%

In(Z +1)\?2 In(Z +1)\2
Wy, > <7(2 )> lwll, X > (7(2 )> Ixl (n=1,2,3,...),
n n

which implies

th ¢t
nl = _1 1 n
ul = n/t(1 1) 21nn+1)(||u||) g )

4

D=

1-¢2 £
3 T + =W, + —Xy (}1:1,2,3,...).
C (n(z +D)3(ps 4~ 6

Since

u, — 0, v, — 0, w, — 0, %, — 0, In(n +1) » +00

and
2
3

J n+1<ln<n;1 +1>) — +00

as 1 — +00, we have

ful >0, n— +o0.

That is, f € E. Obviously, f € P. By (71), we can see

th tt
Ifl < + —In(1 + |||l
«/t(l D) 21n2 lul)z 4 ( )
1-¢2 3 5

t t
t o + Wil + —lxl.
J2(n2)3(v)z 4 6

W= (Wi, Wy, Wpy..
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On the other hand, from (68) and (70), we have

fult, u, v, w,x) >

1
nJt(l-t) "

1—¢3 £ (In(5 +1) 2 t°
) Wl + =
(m+D(Ivl)s 4 n 6

- In(3 +1) 2 n

- ( n ) <ln2(§ +1)/td - ¢t)
+ nt' _. ﬁln(1+ )
412 +)(ul)z 4

3 5

n2(1—1t3)
+ —lwll + —Ilx|l
4 6

(n+1) (% + 1)(Iv]))3

It is easy to get

n1n2221n2(g+1>, n2€/§1n%2z(n+1)1n2<g+1> n=1,23,..). (74)

It follows from (72), (73) and (74) that

In(% +1))2< 1 4
+
n VET=1)  2In2(|ul)?

fultu,v,w,x) > (
t3
Py |
J2(n2)3(vl)s 4

ST

4 —_—
+tzln(1+||u||)+ 1=t

n

In(Z +1)\2
. (M) Il = wonllfll (2=1,2,3,...

Hence, f € C[(0,1) x P1\{6} x P1\{6} x P; x Py, P;]. Similarly, we have Iy, ;; € C[P; X

t t In(5 +
-+ —In{1+| ———
dn(ul)2 4 n

In(5 +
n

1)>2IIUII>
1))lexll

) n=1,2,3,..). (73)

t5
wi| + gllxll>

). (75)

Py, Py].
Taking
1 t* 1 £ t°

b(t) = \/ﬁ, ao(t) = —, a(t)=1-1t2, ax(t) = 7 as(t) = rE
&) = 1n2y%, a) = \3/50112)%)/% ) 20)=x0)=y

and

1

ho(y) = 5 In(1 + y), m(y) =0,

by (69) and (72), condition (H;) holds.

For any u € Py, define ¢ by ¢() = u,. It is easy to see ¢ € P}, |¢| =1 and ¢(up) = In? %

Foranyr> 0, let

1
hr(t) = m
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Therefore, condition (H,) is satisfied. It follows from (68) that

1
<p(f(t, u,v, w,x)) =fi(t,u, v, w,x) > m =h,(¢),

t€(0,1),u,ve P, \{0}, w,x € Py,. (76)

Now, we check that condition (H3) is true. In fact, it is easy to get

V2

/ s 2 /1 ds
0 4ln— /fo th 18ln%ﬁ 0 +/s(1—3s)

1 1 2

e —— )
S— )

of/i(ln2ln§% Sldﬁdf)% In21n3

with k* =1 and #* = 2. Since

J2 01 01 1 1 1

———+t—+—+-+-+=-<]
18Ini/m 16 15 5 7 8

=T,

there exists a sufficient large Ry > 0 such that

fl( ! ¢ (1 02 4 (1 + R ))
+—RZ In(1+ Ry
0 VS(l—S) 2In21In 3 1/fl ‘({dr 2

1-s $ 8 1 1 1
+3 32 1 1 l+ZR()+g2R() ds + §+§+§ R0<R0, (77)
V2(In21n2)3(J, T dr)?

which implies that condition (Hj) is satisfied.
Let

f=fr+f2 4241

in which

= (fL Ao fh ), = (1S5 oS )s
f3: 13)23)“»;”31-”); f (fl’Z’ ) ),

where

t* 1-¢2

+ b
\/t(l——t 4n(uyy,) 3 (m+ 1)(V(n+1))%

fitu,v,w,x) =

t4-
f2(tu,v,w,x) = 5 I+ w,),

£ r°
£t uv,wx) = 7V frt,u,v,w,x) = o (78)
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For any

b>a>0, z=(z1,22,...,2n,...) €f(t, By, B1,Bs,B3)

(Vt € (0,1)130»31 C ZTb\leBZ:Bfi - ITb))
by (71) and (78), it is easy to get

t* 1-¢2
|z, <

1
< + + , n=12,.... (79)
nJtd=1)  4na®  (n+1)ad

Hence, the relative compactness of f1(¢, By, By, By, B3) in Cy follows directly from a known
result (see [14]): a bounded set X of Cj is relatively compact if and only if

lim {sup[max{|Zk| ck > n}]} =0.

n—00 zeX

That is,

a(f'(t,Bo, B1, By, B3)) =0, Vt € (0,1),Bo,B1 C Piy\Pis, B, By C Pyy. (80)
For any

b>a>0, (tuv,wx),(tudv,wx) c(0,1) x P\Pi, x Pi\P1, x Py x Prp,

by (78), one can get

*\u,-u,
N

4 1+&, ] (81)

4
2t u, v, w,x) = f2 (6, %, 9, W, %) | = %|ln(1 + ) = In(1 +72,)|

in which &, € (u,, u,). Since u,, > ug,a > 0 and u,, > up,a > 0, by (81), it is easy to see

t4
“,fz(t: M)V;ij) _fz(t!ﬁ)v;Wv%) ” =< Z”M _ﬁ”!

(t, u, v, w,x), (&, %,V, W, %) € (0,1) X Piy\Piz X Pip\P1z X Prp X Py, (82)

which implies

t — —
a(f2(t, Bo, B1, By, B3)) < Z(X(Bo% Vt € (0,1), Bo, B1 C P1y\Pi1g, By, B3 C Pyp. (83)

Similarly, by (78),

£ — —
a(fg(trBO’BerZ’Bfi)) < Za(BQ)! Vt e (Or 1)7BO!BI C Plb\Pla!BZIBB - Plb (84)

and

£ — —
a(f*(t,Bo, B1, By, B3)) < ga(BB), Vvt € (0,1), Bo, B1 C P1y\P14, B2, B3 C Py (85)
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By (80), (82), (83) and (84), it is easy to get

a(f(t,Bo, B1, B2, Bs)) < a(f*(t, Bo, B1, Ba, B3)) + o (f(¢, Bo, By, B2, B3))
+a(f*(£, B, By, By, Bs)) + a(f*(t, Bo, B1, B2, B3))

th £ t
=< ZW(BO) + ZW(BZ) + ga(33)7

Vi e (O’ 1)’BO’BI C P_lb\leBZ:BS C P_lb (86)
In the same way,
/ / 1 /
allon (B 7)) = Lo (),
1 1 (87)
o(lu(By, BY)) = Za(By) + ga(By),  VBy, B) C Puy.
Taking
4 3 5
Lo(t) = —, Li(t)=0, Ly(t) = —, L3(t) = —,
0(2) ) 1(2) 2(2) 1 3(¢) c
Moo = 1 My =0 My = 1 M = 1
010—5: 011 =Y, 110—7’ 111—8,

the condition (H,) follows from (86) and (87). We can calculate and get

1 1 2 1 1 11 1 1 1 1
P=max{ —+ —+ —+—-+-+—-,—+-+-—+-+-t<L (88)

12 10 21 5 7 810 8 9 7 8
Therefore, by Theorem 3.1, the conclusion holds. O
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