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Abstract
Consider the singular Dirichlet problem

u′′ = p(t)u + q(t); u(a) = 0, u(b) = 0,

where p,q : ]a,b[→ R are locally Lebesgue integrable functions. It is proved that if

∫ b

a
(s – a)(b – s)

[
p(s)

]
– ds < +∞,

then the Fredholm alternative remains true.
MSC: 34B05
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1 Introduction
Consider the boundary value problem

u′′ = p(t)u + q(t), ()

u(a) = , u(b) = , ()

where p,q ∈ Lloc(]a,b[). We are mainly interested in the case when the functions p and q
are not (in general) integrable on [a,b]. In this case, equation () as well as problem (), ()
are said to be singular. It is well known that for singular problem (), (), the condition

∫ b

a
(s – a)(b – s)

∣∣p(s)∣∣ds < +∞ ()

guarantees the validity of the Fredholm alternative.More precisely, if () holds, then prob-
lem (), () is uniquely solvable for any q satisfying

∫ b

a
(s – a)(b – s)

∣∣q(s)∣∣ds < +∞ ()

iff the corresponding homogeneous equation

u′′ = p(t)u ()
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has no nontrivial solution satisfying (). The above statement plays an important role
in the theory of singular problems; however, it does not cover many interesting, even
rather simple, equations. For example, consider the Dirichlet problem for the Euler equa-
tion

u′′ =
α

(t – a)
u + β ; u(a) = , u(b) = , ()

where α and β are real constants. By direct calculations, one can easily verify that if α > ,
then the homogeneous problem

u′′ =
α

(t – a)
u; u(a) = , u(b) = 

has only the trivial solution, while problem () is uniquely solvable. However, in this case
p(t) = α

(t–a) and therefore condition () is not satisfied.
The aim of this paper is to show that the Fredholm alternative remains true even in the

case when instead of () only the condition

∫ b

a
(s – a)(b – s)

[
p(s)

]
– ds < +∞ ()

holds. The paper is organized as follows. At the end of this section, we state our main
results, the proofs of which one can find in Section . In Section , we recall some known
results in a suitable for us form. Section  is devoted to a priori estimates and plays a
crucial role in the proofs of the main results.
Throughout the paper we use the following notation.
R is the set of real numbers.
For x ∈ R, we put [x]– = 

 (|x| – x).
C(I), where I ⊂R is the set of continuous functions u : I → R.
For u ∈ C([α,β]), we put ‖u‖[α,β] =max{|u(t)| : t ∈ [α,β]}.
AC′

loc(]α,β[) is the set of functions u : ]α,β[→ R, which are absolutely continuous to-
gether with their first derivative on every closed subinterval of ]α,β[.
Lloc(]α,β[) is the set of functions p : ]α,β[→R, which are Lebesgue integrable on every

closed subinterval of ]α,β[.
By f (a) (resp., f (b)) we denote the right (resp., left) limit of the function f : ]a,b[→R at

the point a (resp., b).
Under a solution of equation () we understand a function u ∈ AC′

loc(]a,b[) which satis-
fies it almost everywhere in ]a,b[. A solution of equation () satisfying () is said to be a
solution of problem (), ().
We say that a certain property holds in ]α,β[ if it takes place on every closed subinterval

of ]α,β[.
Recall that we consider problem (), (), where p,q ∈ Lloc(]a,b[). Our main results are

the following.

Theorem . Let condition () hold. Then problem (), () is uniquely solvable for any q
satisfying () iff homogeneous problem (), () has no nontrivial solution.
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Remark . In Theorem ., condition () is essential and cannot be omitted. Indeed, let
p≡ , q ∈ Lloc(]a,b[), q(t)≥  for t ∈ ]a,b[, and

∫ a+b


a
(s – a)q(s)ds = +∞. ()

Evidently, () holds and problem (), () has no nontrivial solution. On the other hand, a
general solution of () is of the form

u(t) = α + βt +
∫ a+b



t
(s – a)q(s)ds – (t – a)

∫ a+b


t
q(s)ds for t ∈ ]a,b[.

However, for a < t < x < a+b
 , we have

u(t) ≥
∫ a+b



x
(s – a)q(s)ds – (t – a)

∫ a+b


x
q(s)ds + α + βt.

Hence,

lim inf
t→a+

u(t) ≥ α + βa +
∫ a+b



x
(s – a)q(s)ds.

Therefore, in view of (), we get limt→a+ u(t) = +∞ and, consequently, problem (), () has
no solution.

Remark . Theorem . concerns half homogeneous problem (), () and does not re-
main true for the fully nonhomogeneous problem

u′′ = p(t)u + q(t); u(a) = c, u(b) = c. ()

Let, for example, p(t) = 
(t–a) , q ≡ , c 
= , and c = . It is clear that () holds and the

corresponding homogeneous problem (), () has no nontrivial solution. On the other
hand, a general solution of () is of the form u(t) = α

t–a +β(t–a) for t ∈ ]a,b[ and, therefore,
() has no solution.

Theorem . Let () hold and problem (), () have no nontrivial solution. Then there
exists r >  such that for any q satisfying (), the solution u of problem (), () admits the
estimate

∣∣u(t)∣∣ + (t – a)(b – t)
∣∣u′(t)

∣∣ ≤ r
∫ b

a
(s – a)(b – s)

∣∣q(s)∣∣ds for t ∈ ]a,b[. ()

Consider now a sequence of equations

u′′ = p(t)u + qn(t), (n)

where qn ∈ Lloc(]a,b[) are such that

∫ b

a
(s – a)(b – s)

∣∣qn(s)∣∣ds < +∞ for n = , , . . . . ()

http://www.boundaryvalueproblems.com/content/2014/1/13
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Let, moreover, q ∈ Lloc(]a,b[) satisfy () and

lim
n→+∞

∫ b

a
(s – a)(b – s)

∣∣qn(s) – q(s)
∣∣ds = . ()

Corollary . Let (), () hold and problem (), () have no nontrivial solution. Let,more-
over, () and () be fulfilled.Then the problems (), () and (n), () have unique solutions
u and un, respectively,

lim
n→+∞un(t) = u(t) uniformly on [a,b] ()

and

lim
n→+∞u′

n(t) = u′(t) uniformly in ]a,b[. ()

2 Auxiliary statements
In this section, we consider the equation

v′′ = h(t)v + q(t),

where h,q ∈ Lloc(]a,b[), q satisfies (), and

∫ b

a
(s – a)(b – s)

∣∣h(s)∣∣ds < +∞. ()

Below we state some known results in a suitable for us form.

Proposition . Let () hold. Then the problem

v′′ = h(t)v + q(t); v(a) = c, v(b) = c

is uniquely solvable for any c, c ∈ R and q satisfying () iff the homogeneous problem

v′′ = h(t)v; v(a) = , v(b) = 

has no nontrivial solution.

Proof See, e.g., [, Theorem .] or [, Theorem .]. �

Proposition . Let () hold. Then there exist a ∈ ]a,b[ and b ∈ ]a,b[ such that, for
any t < t satisfying either t, t ∈ [a,a] or t, t ∈ [b,b], the homogeneous problem

v′′ = h(t)v; v(t) = , v(t) =  ()

has no nontrivial solution.Moreover, for any w ∈ C′
loc(]t, t[) (where t < t are the same as

above) satisfying

w′′(t) ≥ h(t)w(t) for t ∈ ]t, t[; w(t) = , w(t) = ,

http://www.boundaryvalueproblems.com/content/2014/1/13
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the inequality

w(t) ≤  for t ∈ [t, t]

holds.

Proof In view of (), there exist a ∈ ]a,b[ and b ∈ ]a,b[ such that

∫ a

a
(s – a)

∣∣h(s)∣∣ds < ,
∫ b

b
(b – s)

∣∣h(s)∣∣ds < .

Hence, the inequalities

∫ a

a
(s – a)(a – s)

∣∣h(s)∣∣ds < a – a,
∫ b

b
(s – b)(b – s)

∣∣h(s)∣∣ds < b – b

hold as well. The latter inequalities, by virtue of [, Lemma .], imply that for any t < t
satisfying either t, t ∈ [a,a] or t, t ∈ [b,b], homogeneous problem () has no non-
trivial solution.
The second part of the proposition follows easily from the above-proved part and [,

Lemma .]. �

Proposition . Let () hold. Let,moreover, a ∈ ]a,b[ and b ∈ ]a,b[ be from the asser-
tion of Proposition .. Then there exists � >  such that for any c ∈R and any q satisfying
(), the solution v of the problem

v′′ = h(t)v + q(t); v(a) = , v(a) = c ()

admits the estimate

∣∣v(t)∣∣ ≤ �

(
|c|(t – a) +

∫ t

a
(s – a)

∣∣q(s)∣∣ds + (t – a)
∫ a

t

∣∣q(s)∣∣ds
)

()

for t ∈ ]a,a], while the solution v of the problem

v′′ = h(t)v + q(t); v(b) = c, v(b) =  ()

admits the estimate

∣∣v(t)∣∣ ≤ �

(
|c|(b – t) +

∫ b

t
(b – s)

∣∣q(s)∣∣ds + (b – t)
∫ t

b

∣∣q(s)∣∣ds
)

()

for t ∈ [b,b[.

Proof By virtue of () and [, Lemma .], the initial value problems

v′′
 = h(t)v; v(a) = , v′

(a) = 

http://www.boundaryvalueproblems.com/content/2014/1/13
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and

v′′
 = h(t)v; v(a) = , v′

(a) = –

have unique solutions v and v, respectively, and the estimates

∣∣v(t)∣∣ ≤ �(t – a),
∣∣v(t)∣∣ ≤ �(a – t) for t ∈ [a,a] ()

are fulfilled, where

� = exp

(

∫ a

a
(s – a)

∣∣h(s)∣∣ds
)
.

On the other hand, by virtue of Proposition .,

v(a) 
=  and v(a) 
= .

In view of Propositions . and ., problem () has a unique solution v. By direct calcu-
lations, one can easily verify that

v(t) =
c

v(a)
v(t) –


v(a)

(
v(t)

∫ t

a
v(s)q(s)ds + v(t)

∫ a

t
v(s)q(s)ds

)
()

for t ∈ [a,a]. Analogously, the (unique) solution v of problem () is of the form

v(t) =
c

v(b)
v(t) –


v(b)

(
v(t)

∫ t

b
v(s)q(s)ds + v(t)

∫ b

t
v(s)q(s)ds

)
()

for t ∈ [b,b], where v and v are solutions of the problems

v′′
 = h(t)v; v(b) = , v′

(b) = 

and

v′′
 = h(t)v; v(b) = , v′

(b) = –,

respectively, v(b) 
= , v(b) 
= , and the estimates

∣∣v(t)∣∣ ≤ �(t – b),
∣∣v(t)∣∣ ≤ �(b – t) for t ∈ [b,b] ()

are fulfilled with

� = exp

(

∫ b

b
(b – s)

∣∣h(s)∣∣ds
)
.

Now, it follows from () and (), in view of () and (), that the estimates () and ()
hold with

� =
ρ

|v(a)| +
ρ

|v(b)| +
a – a
|v(a)|�


 +

b – b
|v(b)|�


 . �

http://www.boundaryvalueproblems.com/content/2014/1/13
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3 Lemmas on a priori estimates
Lemma . Let () and () hold. Then, for any α ∈ [a,b[ and β ∈ ]α,b], every solution u of
equation () satisfying

u(α) = , u(β) =  ()

admits the estimate

(t – a)(b – t)
∣∣u′(t)

∣∣ ≤ ‖u‖[α,β]
(
b – a +

∫ b

a
(s – a)(b – s)

[
p(s)

]
– ds

)

+
∫ b

a
(s – a)(b – s)

∣∣q(s)∣∣ds for t ∈ ]α,β[. ()

Proof Let t ∈ ]α,β[. Then it is clear that either

u(t)u′(t) > , ()

or

u(t)u′(t) < , ()

or

u(t)u′(t) = . ()

Assume that () (resp., ()) holds. Then, in view of (), there is t∗ ∈ ]t,β[ (resp.,
t∗ ∈ ]α, t[) such that

u(t) sgnu′(t) >  for t ∈ [
t, t∗

]
and u′(t∗) = 

(
resp., u(t) sgnu′(t) <  for t ∈ [t∗, t] and u′(t∗) = 

)
.

()

Multiplying both sides of () by b– t (resp., by t – a) and integrating it from t to t∗ (resp.,
from t∗ to t), we get

(b – t)u′(t) = u
(
t∗

)
– u(t) –

∫ t∗

t
(b – s)

(
p(s)u(s) + q(s)

)
ds

(
resp., (t – a)u′(t) = u(t) – u(t∗) +

∫ t

t∗
(s – a)

(
p(s)u(s) + q(s)

)
ds

)
.

Hence, in view of (), we obtain

(b – t)
∣∣u′(t)

∣∣ ≤ ‖u‖[α,β]
(
 +

∫ b

t
(b – s)

[
p(s)

]
– ds

)
+

∫ b

t
(b – s)

∣∣q(s)∣∣ds
(
(t – a)

∣∣u′(t)
∣∣ ≤ ‖u‖[α,β]

(
 +

∫ t

a
(s – a)

[
p(s)

]
– ds

)
+

∫ t

a
(s – a)

∣∣q(s)∣∣ds
)
.

http://www.boundaryvalueproblems.com/content/2014/1/13
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Multiplying both parts of the latter inequality by t – a (resp., by b – t), we get

(t – a)(b – t)
∣∣u′(t)

∣∣ ≤ ‖u‖[α,β]
(
b – a +

∫ b

a
(s – a)(b – s)

[
p(s)

]
– ds

)

+
∫ b

a
(s – a)(b – s)

∣∣q(s)∣∣ds. ()

Suppose now that () holds. Then either there is β ∈ ]t,β[ such that

u(t)u′(t) =  for t ∈ [t,β], ()

or there is a sequence {tn}+∞
n= ⊂ ]t,β[ such that

lim
n→+∞ tn = t, ()

u(tn)u′(tn) 
=  for n ∈N. ()

If () holds, then evidently u(t) = u(t) for t ∈ [t,β] and, consequently, () is fulfilled.
On the other hand, if () holds, then, by virtue of the above-proved, the inequalities

(tn – a)(b – tn)
∣∣u′(tn)

∣∣ ≤ ‖u‖[α,β]
(
b – a +

∫ b

a
(s – a)(b – s)

[
p(s)

]
– ds

)

+
∫ b

a
(s – a)(b – s)

∣∣q(s)∣∣ds for n = , , . . .

are fulfilled, and therefore, in view of (), inequality () holds as well. Thus, estimate
() is fulfilled. �

Lemma . Let () hold. Then there exist a ∈ ]a,b[, b ∈ ]a,b[, and � >  such that for
any α ∈ [a,a[, β ∈ ]b,b] and any q satisfying (), every solution u of equation () satisfying

u(α) =  ()

admits the estimate

∣∣u(t)∣∣ ≤ �

(
(t – a)‖u‖[α,a] +

∫ t

a
(s – a)

∣∣q(s)∣∣ds + (t – a)
∫ a

t

∣∣q(s)∣∣ds
)

for t ∈ ]α,a], ()

while every solution u of equation () satisfying

u(β) =  ()

admits the estimate

∣∣u(t)∣∣ ≤ �

(
(b – t)‖u‖[b,β] +

∫ b

t
(b – s)

∣∣q(s)∣∣ds + (b – t)
∫ t

b

∣∣q(s)∣∣ds
)

for t ∈ [b,β[. ()
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Proof Let a, b, and � be from the assertion of Propositions . and . with h(t) =
–[p(t)]– for t ∈ ]a,b[. Let, moreover, α ∈ [a,a[ (resp., β ∈ ]b,b]) and u be a solution of
problem (), () (resp., (), ()). By virtue of Propositions . and ., the problem

v′′ = –
[
p(t)

]
–v –

∣∣q(t)∣∣, ()

v(a) = , v(a) = ‖u‖[α,a]
(
resp., v(b) = ‖u‖[b,β], v(b) = 

)

has a unique solution v and, moreover, for any t ∈ ]a,a] (resp., t ∈ [b,b[), the estimate

 ≤ v(t)≤ �

(
(t – a)‖u‖[α,a] +

∫ t

a
(s – a)

∣∣q(s)∣∣ds + (t – a)
∫ a

t

∣∣q(s)∣∣ds
)

(
resp., ≤ v(t)≤ �

(
(b – t)‖u‖[b,β] +

∫ b

t
(b – s)

∣∣q(s)∣∣ds + (b – t)
∫ t

b

∣∣q(s)∣∣ds
)) ()

holds. Let us show that

∣∣u(t)∣∣ ≤ v(t) for t ∈ [α,a]
(
resp., for t ∈ [b,β]

)
. ()

Assume the contrary, let () be violated. Define

w(t) =
∣∣u(t)∣∣–v(t) for t ∈ [α,a]

(
resp., for t ∈ [b,β]

)
.

Then there exist t ∈ [α,a[ and t ∈ ]t,a] (resp., t ∈ [b,β[ and t ∈ ]t,β]) such that

w(t) >  for t ∈ ]t, t[, ()

w(t) = , w(t) = . ()

In view of (), (), and (), it is clear that w ∈ AC′
loc(]t, t[) and

w′′(t) = p(t)
∣∣u(t)∣∣ + q(t) sgnu(t) +

[
p(t)

]
–v(t) +

∣∣q(t)∣∣ ≥ –
[
p(t)

]
–w(t) for t ∈ ]t, t[.

Hence, by virtue of () and Proposition ., we get w(t) ≤  for t ∈ ]t, t[, which contra-
dicts (). Therefore, () is fulfilled. The estimate () (resp., ()) now follows from ()
and (). �

Lemma . Let () hold and problem (), () have no nontrivial solution.Then there exist
ā ∈ ]a,b[, b̄ ∈ ]ā,b[, and r >  such that for any α ∈ [a, ā] and β ∈ [b̄,b] and any q
satisfying (), every solution u of equation () satisfying

u(α) = , u(β) = 

admits the estimate

∣∣u(t)∣∣ ≤ r
∫ b

a
(s – a)(b – s)

∣∣q(s)∣∣ds for t ∈ [α,β].

http://www.boundaryvalueproblems.com/content/2014/1/13
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Proof Suppose to the contrary that the lemma is not true. Then there exist sequences
{an}+∞

n= ⊂ [a, a+b [, {bn}+∞
n= ⊂ ] a+b ,b], {qn}+∞

n= ⊂ Lloc(]a,b[), and {un}+∞
n= ⊂ AC′

loc(]a,b[) such
that () holds,

lim
n→+∞an = a, lim

n→+∞bn = b, ()

u′′
n(t) = p(t)un(t) + qn(t) for t ∈ ]a,b[, un(an) =  un(bn) = 

and

‖un‖[an ,bn] > n
∫ b

a
(s – a)(b – s)

∣∣qn(s)∣∣ds for n = , , . . . . ()

Introduce the notation

ũn(t) =


‖un‖[an ,bn]
un(t), q̃n(t) =


‖un‖[an ,bn]

qn(t).

Then it is clear that

‖ũn‖[an ,bn] =  ()

and

ũ′′
n(t) = p(t)ũn(t) + q̃n(t) for t ∈ ]an,bn[, ũn(an) = , ũn(bn) = . ()

Moreover, it follows from () that

lim
n→+∞

∫ b

a
(s – a)(b – s)

∣∣q̃n(s)∣∣ds =  ()

and, consequently,

lim
n→+∞

∫ t

a+b


(∫ s

a+b


q̃n(ξ )dξ

)
ds =  for t ∈ ]a,b[. ()

By virtue of Lemma ., (), and (),

(t – a)(b – t)
∣∣ũ′

n(t)
∣∣ ≤ b – a +

∫ b

a
(s – a)(b – s)

[
p(s)

]
– ds

+
∫ b

a
(s – a)(b – s)

∣∣q̃n(s)∣∣ds for t ∈ ]an,bn[.

Hence, in view of () and (), the sequence {ũ′
n}+∞

n= is uniformly bounded in ]a,b[ and,
therefore, the sequence {ũn}+∞

n= is equicontinuous in ]a,b[. Taking, moreover, into account
(), by virtue of the Arzelá-Ascoli lemma, we can assume, without loss of generality, that

lim
n→+∞ ũn(t) = u(t) uniformly in ]a,b[, ()

http://www.boundaryvalueproblems.com/content/2014/1/13
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where u ∈ C(]a,b[) and, moreover,

lim
n→+∞ ũ′

n

(
a + b


)
= c. ()

By a direct calculation, one can easily verify that

ũn(t) = ũn
(
a + b


)
+

(
t –

a + b


)
ũ′
n

(
a + b


)

+
∫ t

a+b


(∫ s

a+b


[
p(ξ )ũn(ξ ) + q̃n(ξ )

]
dξ

)
ds for t ∈ ]a,b[,

whence, in view of ()-(), we get

u(t) = u
(
a + b


)
+

(
t –

a + b


)
c +

∫ t

a+b


(∫ s

a+b


p(ξ )u(ξ )dξ

)
ds for t ∈ ]a,b[.

Thus u ∈ AC′
loc(]a,b[) and u is a solution of equation ().

Now let a ∈ ]a,b[, b ∈ ]a,b[, and � >  be from the assertion of Lemma .. Assume,
without loss of generality, that an < a and bn > b for any natural n. Then, by virtue of
Lemma ., (), and (), the estimates

∣∣ũn(t)∣∣ ≤ �

(
t – a +

∫ t

a
(s – a)

∣∣q̃n(s)∣∣ds + (t – a)
∫ a

t

∣∣q̃n(s)∣∣ds
)

for t ∈ ]an,a],

∣∣ũn(t)∣∣ ≤ �

(
b – t +

∫ b

t
(b – s)

∣∣q̃n(s)∣∣ds + (b – t)
∫ t

b

∣∣q̃n(s)∣∣ds
)

for t ∈ [b,bn[
()

are fulfilled. Moreover, in view of (), we have

lim
n→+∞

(∫ t

a
(s – a)

∣∣q̃n(s)∣∣ds + (t – a)
∫ a

t

∣∣q̃n(s)∣∣ds
)
=  for t ∈ ]a,a]

and

lim
n→+∞

(∫ b

t
(b – s)

∣∣q̃n(s)∣∣ds + (b – t)
∫ t

b

∣∣q̃n(s)∣∣ds
)
=  for t ∈ [b,b[.

Taking, moreover, into account (), we get from () that

∣∣u(t)∣∣ ≤ �(t – a) for t ∈ ]a,a] and
∣∣u(t)∣∣ ≤ �(b – t) for t ∈ [b,b[,

and thus u satisfies the conditions

u(a) = , u(b) = .

On account of () and (), there exist α ∈ ]a,a[, β ∈ ]b,b[, and n such that

an < α, �

(
α – a +

∫ a

a
(s – a)

∣∣q̃n(s)∣∣ds
)
<  for n > n
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and

bn > β, �

(
b – β +

∫ b

b
(b – s)

∣∣q̃n(s)∣∣ds
)
<  for n > n.

Then it follows from () that

∣∣ũn(t)∣∣ <  for t ∈ [an,α]∪ [β,bn],n > n.

Hence, in view of (), ‖ũn‖[α,β] =  for n > n. Taking now into account (), we get
‖u‖[α,β] = , and thus u is a nontrivial solution of problem (), (). However, this con-
tradicts an assumption of the lemma. �

4 Proofs of themain results
Proof of Theorem . To prove the theorem, it is sufficient to show that if problem (), ()
has no nontrivial solution, then problem (), () has at least one solution.
Let a, b, ā, b̄, �, and r be from the assertions of Lemmas . and .. Let, moreover,

the sequences {an}+∞
n= ⊂ ]a,min{a, ā}[ and {bn}+∞

n= ⊂ ]max{b, b̄},b[ be such that

lim
n→+∞an = a, lim

n→+∞bn = b. ()

By virtue of Lemma ., the problem

u′′ = p(t)u; u(an) = , u(bn) = 

has no nontrivial solution. Hence, by virtue of Proposition ., the problem

u′′
n = p(t)un + q(t), ()

un(an) = , un(bn) = 

has a unique solution un. Moreover, by virtue of Lemma ., the estimate

∣∣un(t)∣∣ ≤ r for t ∈ [an,bn] ()

holds, where

r = r
∫ b

a
(s – a)(b – s)

∣∣q(s)∣∣ds.

On the other hand, on account of Lemma . and (), we have

(t – a)(b – t)
∣∣u′

n(t)
∣∣ ≤ r for t ∈ [an,bn], ()

where

r = r
(
b – a +

∫ b

a
(s – a)(b – s)

[
p(s)

]
– ds

)
+

∫ b

a
(s – a)(b – s)

∣∣q(s)∣∣ds.

http://www.boundaryvalueproblems.com/content/2014/1/13


Lomtatidze and Opluštil Boundary Value Problems 2014, 2014:13 Page 13 of 15
http://www.boundaryvalueproblems.com/content/2014/1/13

In view of (), (), and (), the sequence {un}+∞
n= is uniformly bounded and equicontin-

uous in ]a,b[. Hence, by virtue of the Arzelá-Ascoli lemma, we can suppose, without loss
of generality, that

lim
n→+∞un(t) = u(t) uniformly in ]a,b[, ()

where u ∈ C(]a,b[) and, moreover,

lim
n→+∞u′

n

(
a + b


)
= c. ()

Taking into account (), one can easily verify, by a direct calculation, that

un(t) = un
(
a + b


)
+

(
t –

a + b


)
u′
n

(
a + b


)

+
∫ t

a+b


(∫ s

a+b


[
p(ξ )un(ξ ) + q(ξ )

]
dξ

)
ds for t ∈ [an,bn].

Hence, in view of () and (), we get

u(t) = u
(
a + b


)
+

(
t –

a + b


)
c

+
∫ t

a+b


(∫ s

a+b


[
p(ξ )u(ξ ) + q(ξ )

]
dξ

)
ds for t ∈ ]a,b[.

Thus u ∈ AC′
loc(]a,b[) and u is a solution of equation ().

Further, by virtue of Lemma . and (), the inequalities

∣∣un(t)∣∣ ≤ �

(
r(t – a) +

∫ t

a
(s – a)

∣∣q(s)∣∣ds + (t – a)
∫ a

t

∣∣q(s)∣∣ds
)

for t ∈ ]an,a]

and

∣∣un(t)∣∣ ≤ �

(
r(b – t) +

∫ b

t
(b – s)

∣∣q(s)∣∣ds + (b – t)
∫ t

b

∣∣q(s)∣∣ds
)

for t ∈ [b,bn[

are fulfilled. Hence, on account of (), we get

∣∣u(t)∣∣ ≤ �

(
r(t – a) +

∫ t

a
(s – a)

∣∣q(s)∣∣ds + (t – a)
∫ a

t

∣∣q(s)∣∣ds
)

for t ∈ ]a,a],

∣∣u(t)∣∣ ≤ �

(
r(b – t) +

∫ b

t
(b – s)

∣∣q(s)∣∣ds + (b – t)
∫ t

b

∣∣q(s)∣∣ds
)

for t ∈ [b,b[,

and thus u(a) =  and u(b) = . Consequently, u is a solution of problem (), (). �

Proof of Theorem . According to Theorem ., problem (), () has a unique solution u.
By virtue of Lemma ., the estimate

∣∣u(t)∣∣ ≤ r
∫ b

a
(s – a)(b – s)

∣∣q(s)∣∣ds for t ∈ [a,b]
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holds. On the other hand, it follows from Lemma . that

(t – a)(b – t)
∣∣u′(t)

∣∣ ≤ ‖u‖[a,b]
(
b – a +

∫ b

a
(s – a)(b – s)

[
p(s)

]
– ds

)

+
∫ b

a
(s – a)(b – s)

∣∣q(s)∣∣ds for t ∈ ]a,b[.

The latter two inequalities imply () with

r =  + r
(
b – a +

∫ b

a
(s – a)(b – s)

[
p(s)

]
– ds

)
. �

Proof of Corollary . By virtue of Theorem ., problems (), () and (n), () have unique
solutions u and un, respectively. Let

vn(t) = un(t) – u(t) for t ∈ [a,b]. ()

Then it is clear that

v′′
n(t) = p(t)vn(t) + q̃n(t) for t ∈ ]a,b[, vn(a) = , vn(b) = ,

where

q̃n(t) = qn(t) – q(t) for t ∈ ]a,b[. ()

Hence, by virtue of Theorem .,

∣∣vn(t)∣∣ + (t – a)(b – t)
∣∣v′

n(t)
∣∣ ≤ r

∫ b

a
(s – a)(b – s)

∣∣q̃n(s)∣∣ds for t ∈ ]a,b[.

Taking now into account (), (), and (), we get () and (). �
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