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Abstract
In this paper the operator-theoretical method to investigate a new type boundary
value problems consisting of a two-interval Sturm-Liouville equation together with
boundary and transmission conditions dependent on eigenparameter is developed.
By suggesting our own approach, we construct modified Hilbert spaces and a linear
operator in them in such a way that the considered problem can be interpreted as a
spectral problem for this operator. Then we introduce so-called left- and right-definite
solutions and give a representation of solution of the corresponding
nonhomogeneous problem in terms of these one-hand solutions. Finally, we
construct Green’s vector-function and investigate some important properties of the
resolvent operator by using this Green’s vector-function.

Keywords: Sturm-Liouville problems; eigenparameter-dependent boundary and
transmission conditions; Green’s function; resolvent operator

1 Introduction
Many important special equations which appear in physics, such as Airy’s equation,
Bessel’s equation, wave equation, heat equation, Schrödinger’s equation, Heun’s equation,
advection-dispersion equation, etc., are associated with Sturm-Liouville type operators.
For instance, the one-dimensional form of the advection-dispersion equation for a non-
reactive dissolved solute in a saturated, homogeneous, isotropic porous medium under
steady, uniform flow is

ct + νcx =Dcxx,  < x < L, t > ,

where c(x, t) is the concentration of the solute, ν is the average linear groundwater velocity,
D is the coefficient of hydrodynamic dispersion, and L is the length of the aquifer. Using
the method of separation of variables, the problem can be written in the simplest Sturm-
Liouville form

[
p(x)X ′]′ + λr(x)X = , X() = , X ′(L) = ,  < x < L.

This examplemakes it clear that the Sturm-Liouville problems are of broad interest. There
is a well-developed theory for classical Sturm-Liouville problems (see, e.g., [–] and the
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references therein). Details of the derivation of the theory and of related background re-
sults can be found in the cited references. Although the subject of Sturm-Liouville prob-
lems is over  years old, these problems are an intensely active field of research today.
The main tool for solvability analysis of such problems is the concept of Green’s func-
tion. Green’s functions have played an important role as a theoretical tool in the field of
physics, since the possibility of a transition from the problems in mathematical physics to
integral equations is based on the fundamental concept of Green’s function. Therefore, the
powerful and unifying formalism of Green’s functions finds applications not only in stan-
dard physics subjects such as perturbation and scattering theory, bound-state formation,
etc., but also at the forefront of current and, most likely, future developments (see []).
Green’s function transforms the differential equation into the integral equation, which, at
times, is more informative. In terms of Green’s function, the BVP with arbitrary data can
be solved in a form that shows clearly the dependence of the solution on the data. Namely,
Green’s function approach would allow us to have an integral representation of the solu-
tion instead of an infinite series. Determination of Green’s functions is also possible using
Sturm-Liouville theory. This leads to series representation of Green’s functions (see, e.g.,
the monograph [] as well as the recent results in [] and the references therein).
Sturm-Liouville type problemswith transmission conditions have become an important

area of research in recent years because of the needs of modern technology, engineering
and physics. Many of the mathematical problems encountered in the study of boundary-
value-transmission problem cannot be treated with the usual techniques within the stan-
dard framework of boundary value problem (see [–]). In this study we shall consider
a new type of Sturm-Liouville problems consisting of the two-interval Sturm-Liouville
equation

L(u) :=
(
–p(x)u′(x)

)′ + q(x)u(x) = μu(x), x ∈ �– ∪ �+ ()

together with eigenparameter-dependent boundary conditions of the form

�(u) := δu(a) – δu′(a) –μ(̃δu(a) – δ̃u′(a)
)
= , ()

�(u) := δu(b) – δu′(b) +μ(̃δu(b) – δ̃u′(b)
)
= , ()

and eigenparameter-dependent transmission conditions at one interaction point x = c of
the form

�(u) := γ +
u(c+) + γ –

u(c–) = , ()

�(u) := γ +
u(c+) + γ +

u
′(c+) + γ –

u(c–) + γ –
u

′(c–)

–μ(γ̃ +
u(c+) + γ̃ +

u
′(c+) + γ̃ –

u(c–) + γ̃ –
u

′(c–)
)
= , ()

where p(x) is a real-valued piecewise constant function, p(x) = p– >  for x ∈ �– = [a, c),
p(x) = p+ >  for x ∈ �+ = (c,b], the potential q(x) is a real-valued function continuous in
each of the intervals�– and�+, and has finite limits q(c±) = limx→c± q(x),μ is a complex
spectral parameter, the coefficients δij, δ̃ij, γ ±

j , γ̃
±
j (i = ,  and j = , ), γ ±

 are real numbers.
This Sturm-Liouville problem is a non-classical eigenvalue problem since the eigenvalue
parameter μ appears not only in the differential equation, but also in the boundary and
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transmission conditions. Moreover, in the differential equation there appears a singular-
ity at one interior point. Because of these reasons the spectral theory of this problem is
more complicate. Naturally, eigenfunctions of this problem may have discontinuity at the
singular interior point. Some special cases of this problem arise after an application of the
Fourier method to a varied assortment of physical problems. For instance, some boundary
value problemswith transmission conditions arise in heat andmass transfer problems [],
in vibrating string problems when the string is loaded additionally with point masses [],
in diffraction problems [], in quantummechanics [], in thermal conduction problems
for a thin laminated plate [] etc. Such properties as isomorphism, coerciveness with
respect to the spectral parameter, completeness and Abel bases property of a system of
root functions of some boundary value problems with transmission conditions and its ap-
plications to the corresponding initial boundary value problems for parabolic equations
have been investigated in [–]. For the background and applications of boundary value
transmission problems to different areas, we refer the reader to themonographs and some
recent contribution [–, , , –].

2 Hilbert space formulation of the problem
In certain cases the boundary value problem can be characterized by means of a uniquely
determined unbounded self-adjoint operator. In these cases the eigenvalues and eigen-
functions of the boundary value problem are determined by the eigenvalues and eigenvec-
tors of the corresponding operator; these will be called a self-adjoint case of the boundary
value problem. In some cases such a characterization is not possible and these will be re-
ferred to as ‘symmetric’ cases in general. In classical point of view, our problem cannot
be characterized as ‘self-adjoint case’. For ‘self-adjoint characterization’ of the considered
problem ()-(), we shall define a new Hilbert space as follows.
Denote the determinant of the ith and jth columns of the matrix

θ =

[
γ +
 γ +

 γ –
 γ –



γ̃ +
 γ̃ +

 γ̃ –
 γ̃ –



]

by |θij| ( ≤ i < j ≤ ). Throughout the paper we shall assume that the conditions

γ –


(
γ –
|θ| – γ +

|θ|
)
> , γ +


(
γ +
|θ| – γ –

|θ|
)
< , |θ| = ,

ρ = det

(
δ δ

δ̃ δ̃

)
> , ρ = det

(
δ δ

δ̃ δ̃

)
> 

hold. Define a new inner-product space H as a direct sum space (L(�–)⊕ L(�+))⊕ C

equipped with the modified inner-product

〈U ,V 〉H := –

p–

(
|θ| – γ –


γ +


|θ|
)∫ c–

a
u(x)v(x)dx

+

p+

(
|θ| – γ +


γ –


|θ|
)∫ b

c+
u(x)v(x)dx

–

ρ

(
|θ| – γ –


γ +


|θ|
)
uv +


ρ

(
|θ| – γ +


γ –


|θ|
)
uv + uv ()

http://www.boundaryvalueproblems.com/content/2014/1/131


Aydemir Boundary Value Problems 2014, 2014:131 Page 4 of 11
http://www.boundaryvalueproblems.com/content/2014/1/131

for U = (u(x),u,u,u),V = (v(x), v, v, v) ∈ (L(�–) ⊕ L(�+)) ⊕ C. It is easy to see
that the relation () really defines a new inner product in the direct sum space (L(�–)⊕
L(�+))⊕C.

Lemma  H is a Hilbert space.

Proof Let Un = (un(x),un,un,un), n = , , . . . , be any Cauchy sequence in H. Then
by () the sequences (un(x)) and (un,un,un) will be Cauchy sequences in the Hilbert
spaces L(�–)⊕L(�+) and C, respectively. Therefore they are convergent. Let u(x) and
(u,u,u) be limits of these sequences, respectively. Defining U = (u(x),u,u,u)
we have that U ∈H and Un →U inH. The proof is complete. �

Let us now define the boundary and transmission functionals Ba(u) := δu(a) – δu′(a),
B̃a(u) := δ̃u(a) – δ̃u′(a), Bb(u) := δu(b) – δu′(b), B̃b(u) := δ̃u(b) – δ̃u′(b), Tc(u) :=
T–
c (u) – T+

c (u), T̃c(u) := T̃–
c (u) – T̃+

c (u), where T±
c (u) = γ ±

u(c±) + γ ±
u′(c±), T̃±

c (u) =
γ̃ ±
u(c±) + γ̃ ±

u′(c±) and the linear operator 
 :H →H with the domain

dom(
) :=
{
U =

(
u(x),u,u,u

)
: u(x),u′(x) ∈ ACloc

(
�–) ⊕ACloc

(
�+),

with a finite left- and right-hand limits u(c∓ ) and u′(c∓ );

L(u) ∈ L[a,b];�(u) = ;u = B̃a(u);u = –B̃b(u);u = T̃c(u)
}

and action low


(
u(x),u,u,u

)
=

(
Lf ,Ba(u),Bb(u),Tc(u)

)
.

Then problem ()-() can be written in the operator equation form as 
U = μU , U ∈
dom(
) in the Hilbert spaceH.

Theorem  The linear operator 
 is symmetric in the Hilbert spaceH.

Proof By applying the method of [] it is not difficult to prove that the operator 

is densely defined in H, i.e., dom(
) = H. Now let U = (u(x), B̃a(u), –B̃b(u), T̃–

c (u) –
T̃+
c (u)),V = (v(x), B̃a(v), –B̃b(v), T̃–

c (v) – T̃+
c (v)) ∈ dom(
). By partial integration we have

〈
U ,V 〉H – 〈U ,
V 〉H

=
(

|θ| – γ –


γ +


|θ|
)
W (u, v;a)

–
(

|θ| – γ –


γ +


|θ|
)
W (u, v; c–) +

(
|θ| – γ +


γ –


|θ|
)
W (u, v;b)

–
(

|θ| – γ +


γ –


|θ|
)
W (u, v; c+) –


ρ

(
|θ| – γ –


γ +


|θ|
)(

Ba(u)̃Ba(v) – B̃a(u)Ba(v)
)

+

ρ

(
|θ| – γ +


γ –


|θ|
)(̃

Bb(u)Bb(v) – Bb(u)̃Bb(v)
)

+
(
Tc(u)T̃c(v) – T̃c(u)Tc(v)

)
, ()
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where, as usual, W (u, v;x) denotes the Wronskians of the functions u and v. From the
definitions of boundary functionals we get that

Ba(u)̃Ba(v) – B̃a(u)Ba(v) = ρW (u, v;a), ()

B̃b(u)Bb(v) – Bb(u)̃Bb(v) = –ρW (u, v;b). ()

Further, taking in view the definition of 
 and initial conditions ()-() we can derive
that

Tc(u)T̃c(v) – T̃c(u)Tc(v) =
(

|θ| – γ +


γ –


|θ|
)
W (u, v; c+)

+
(

|θ| – γ –


γ +


|θ|
)
W (u, v; c–). ()

Finally, substituting (), () and () in () we obtain that

〈
U ,V 〉H = 〈U ,
V 〉H for all U ,V ∈ dom(
).

The proof is complete. �

Theorem  The linear operator 
 is self-adjoint inH.

Proof Since 
 is symmetric and densely defined onH, it is sufficient to show that if

〈
U ,V 〉H = 〈U ,W 〉H ()

for allU = (u(x), B̃a(u), –B̃b(u), T̃–
c (u) – T̃+

c (u)) ∈ D(
), then V ∈ D(
) and
V =W , where
V = (v(x),�,�,�) and W = (w(x),κ,κ,κ). Writing equality () for all U ∈ (C∞

 (�–)⊕
C∞
 (�+))⊕C ⊂D(
) by standard Sturm-Liouville theory, we find that 〈�u, v〉L = 〈u,w〉L

and w(x) =Lv. Then from equality () it follows that

〈Lu, v〉L = 〈u,Lv〉L –

ρ

(
|θ| – γ –


γ +


|θ|
)(̃

Ba(u)κ – Ba(u)�
)

–

ρ

(
|θ| – γ +


γ –


|θ|
)(̃

Bb(u)κ + Bb(u)�
)

+
[(
T̃–
c (u) – T̃+

c (u)
)
κ –

(
T–
c (u) – T+

c (u)
)
�

]
.

On the other hand, by two partial integrations we get

〈Lu, v〉L = 〈u,Lv〉L +
(

|θ| – γ –


γ +


|θ|
)
W (u, v;a)

–
(

|θ| – γ –


γ +


|θ|
)
W (u, v; c–) +

(
|θ| – γ +


γ –


|θ|
)
W (u, v;b)

–
(

|θ| – γ +


γ –


|θ|
)
W (u, v; c+). ()
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Thus,

–

ρ

(
|θ| – γ –


γ +


|θ|
)(̃

Ba(u)κ – Ba(u)�
)

–

ρ

(
|θ| – γ +


γ –


|θ|
)(̃

Bb(u)κ + Bb(u)�
)

+
[(
T̃–
c (u) – T̃+

c (u)
)
κ –

(
T–
c (u) – T+

c (u)
)
�

]
=

(
|θ| – γ –


γ +


|θ|
)
W (u, v;a) –

(
|θ| – γ –


γ +


|θ|
)
W (u, v; c–)

+
(

|θ| – γ +


γ –


|θ|
)
W (u, v;b) –

(
|θ| – γ +


γ –


|θ|
)
W (u, v; c+). ()

From this equality, by applying the technique of Theorem . in our previous work [], it
can be derived easily that � = B̃a(v), � = –B̃b(v), � = T̃–

c (v)–T̃+
c (v), �v =  and κ = Ba(w),

κ = Bb(w), κ = T–
c (w) – T+

c (w). The proof is complete. �

Theorem  The operator 
 has only point spectrum, i.e., σ (
) = σp(
).

Proof It suffices to prove that if μ is not an eigenvalue of 
, then μ is a regular point
of 
, i.e., μ ∈ σ (
). Let μ not be an eigenvalue of 
. The resolvent operator R(μ,
) =
(μI –
)– exists and is defined on all ofH. By Theorem  and the closed graph theorem,
we get that R(μ,
) is bounded. Thus, μ ∈ σ (
). Hence σ (
) = σp(
). �

3 Left-definite and right-definite solutions
In this section we shall define two basic solutions υ–(x,μ) and ω–(x,μ) on the left inter-
val �– (so-called left-definite solutions) and two basic solutions υ+(x,μ) and ω+(x,μ) on
the right interval �+ (so-called right-definite solutions) by a special procedure as follows.
Let υ–(x,μ) and ω+(x,μ) be solutions of equation () on �– and �+ satisfying the initial
conditions

υ–(a,μ) = δ –μδ̃,
∂υ–(a,μ)

∂x
= δ –μδ̃ ()

and

ω+(b,μ) = δ +μδ̃,
∂ω+(b,μ)

∂x
= δ +μδ̃, ()

respectively. By using these solutions we shall define the other solutions υ+(x,μ) and
ω–(x,μ) by the initial conditions

υ+(c+,μ) = –
γ –


γ +


υ–(c–,μ), ()

∂υ+(c+,μ)
∂x

=


γ +
(γ +

 –μγ̃ +
)

[
γ +


(
μγ̃ –

 – γ –


)∂υ–(c–,μ)
∂x

+
(
γ +


(
μγ̃ –

 – γ –


)
– γ –


(
μγ̃ +

 – γ +


))
υ–(c–,μ)

]
()
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and

ω–(c–,μ) = –
γ +


γ –


ω+(c+,μ), ()

∂ω–(c–,μ)
∂x

=


γ –
(γ –

 –μγ̃ –
)

[
γ –


(
μγ̃ +

 – γ +


)∂ω+(c+,μ)
∂x

+
(
γ –


(
μγ̃ +

 – γ +


)
– γ +


(
μγ̃ –

 – γ –


))
ω+(c+,μ)

]
, ()

respectively. The existence of these solutions follows from the well-known Cauchy-Picard
theorem of ordinary differential equation theory. Moreover, by applying the method of
[], we can prove that each of these solutions are entire functions of the parameter μ ∈ C
for each fixed x.

4 Construction of Green’s function
In this section we develop the idea of a resolvent operator to solve nonhomogeneous
boundary-value transmission problems (BVTP) as follows. Consider the operator equa-
tion

(
μI –
)

U = F ()

for arbitrary F = (f (x), f, f, f) ∈ H. This operator equation is equivalent to the following
nonhomogeneous BVTP:

(
μ –L

)
u(x) = f (x), x ∈ �– ∪ �+, ()

�(u) = f, �(u) = f, �(u) = , �(u) = f. ()

Let us define theWronskians�–(μ) :=W [υ–,ω–]x for x ∈ �– and�+(μ) :=W [υ+,ω+]x for
x ∈ �+ and suppose that (γ ±

 – μγ̃ ±
 )�±(μ) �= . We shall search the resolvent function

of this BVTP in the form

u(x,μ) =

{
�(x,μ)υ–(x,μ) + �(x,μ)ω–(x,μ) for x ∈ �–,
�(x,μ)υ+(x,μ) + �(x,μ)ω+(x,μ) for x ∈ �+,

()

where the functions �(x,μ) and �(x,μ) are the solutions of the system of equations{
∂�(x,μ)

∂x υ–(x,μ) + ∂�(x,μ)
∂x ω–(x,μ) = ,

∂�(x,μ)
∂x

∂υ–(x,μ)
∂x + ∂�(x,μ)

∂x
∂ω–(x,μ)

∂x = f (x)
p–

()

and the functions �(x,μ), �(x,μ) are the solutions of the system of equations{
∂�(x,μ)

∂x υ+(x,μ) + ∂d�(x,μ)
∂x ω+(x,μ) = ,

∂�(x,μ)
∂x

∂υ+(x,μ)
∂x + ∂�(x,μ)

∂x
∂ω+(x,μ)

∂x = f (x)
p+

()

for x ∈ �– and x ∈ �+, respectively. Since �–(μ) �=  and �+(μ) �= , from () and () we
have

�(x,μ) =


p–�–(μ)

∫ c–

x
f (s)ω–(s,μ)ds + �̃(μ), x ∈ �–,

http://www.boundaryvalueproblems.com/content/2014/1/131
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�(x,μ) =


p–�–(μ)

∫ x

a
f (s)υ–(s,μ)ds + �̃(μ), x ∈ �–,

�(x,μ) =


p+�+(μ)

∫ b

x
f (s)ω+(s,μ)ds + �̃(μ), x ∈ �+,

�(x,μ) =


p+�+(μ)

∫ x

c+
f (s)υ+(s,μ)ds + �̃(μ), x ∈ �+,

where �̃ij(μ) (i, j = , ) are unknown functions depending only on the parameter μ. Sub-
stituting into () gives

u(x,μ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ω–(x,μ)
p–�–(μ)

∫ x
a υ–(s,μ)f (s)ds + υ–(x,μ)

p–�–(μ)
∫ c–
x ω–(s,μ)f (s)ds

+ �̃(μ)υ–(x,μ) + �̃(μ)ω–(x,μ) for x ∈ �–,
ω+(x,μ)
p+�+(μ)

∫ x
c+ υ+(s,μ)f (s)ds + υ+(x,μ)

p+�+(μ)
∫ b
x ω+(s,μ)f (s)ds

+ �̃(μ)υ+(x,μ) + �̃(μ)ω+(x,μ) for x ∈ �+.

()

By differentiating we have

∂u(x,μ)
∂x

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


p–�–(μ)

∂ω–(x,μ)
∂x

∫ x
a υ–(s,μ)f (s)ds

+ 
p–�–(μ)

∂υ–(x,μ)
∂x

∫ c–
x ω–(s,μ)f (s)ds

+ �̃(μ) ∂υ–(x,μ)
∂x + �̃(μ) ∂ω–(x,μ)

∂x for x ∈ �–,


p+�+(μ)
∂ω+(x,μ)

∂x
∫ x
c+ υ+(s,μ)f (s)ds

+ 
p+�+(μ)

∂υ+(x,μ)
∂x

∫ b
x ω+(s,μ)f (s)ds

+ �̃(μ) ∂υ+(x,μ)
∂x + �̃(μ) ∂ω+(x,μ)

∂x for x ∈ �+.

()

By using (), () and conditions () we can derive that

�̃(μ) =


p+�+(μ)

∫ b

c+
ω+(s,μ)f (s)ds +

f
�+(μ)

+
f

γ +
(γ +

 –μγ̃ +
)�+(μ)

,

�̃(μ) =
f

�–(μ)
, �̃(μ) =

f
�+(μ)

and

�̃(μ) =


p–�–(μ)

∫ c–

a
υ–(s,μ)f (s)ds +

f
�–(μ)

+
f

γ –
(γ –

 –μγ̃ –
)�–(μ)

.

Putting in () gives

u(x,μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω–(x,μ)
p–�–(μ)

∫ x
a υ–(s,μ)f (s)ds + υ–(x,μ)

p–�–(μ)
∫ c–
x ω–(s,μ)f (s)ds

+ υ–(x,μ)( 
p+�+(μ)

∫ b
c+ ω+(s,μ)f (s)ds + f

�+(μ)

+ f
γ +
(γ

+
–μγ̃ +

)�+(μ) ) +ω–(x,μ) f
�–(μ) for x ∈ �–,

ω+(x,μ)
p+�+(μ)

∫ x
c+ υ(s,μ)f (s)ds + υ+(x,μ)

p+�+(μ)
∫ b
x ω+(s,μ)f (s)ds

+ υ+(x,μ) f
�+(μ) +ω+(x,μ)( 

p–�–(μ)
∫ c–
a υ–(s,μ)f (s)ds

+ f
�–(μ) +

f
γ –
(γ

–
–μγ̃ –

)�–(μ) ) for x ∈ �+.

()
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Thus we find the needed resolvent function u(x,μ) in terms of the left- and right-define
solutions υ±(x,μ) and ω±(x,μ). By introducing Green’s function as

G(x, s;μ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

υ–(x,μ)ω–(s,μ)
p–�–(μ) if x, s ∈ �–, s ≥ x,

ω–(x,μ)υ–(s,μ)
p–�–(μ) if x, s ∈ �–, s < x,

υ–(x,μ)ω+(s,μ)
p–�–(μ) if x ∈ �–, s ∈ �+,

ω–(x,μ)υ+(s,μ)
p+�+(μ) if x ∈ �+, s ∈ �–,

ω+(x,μ)υ+(s,μ)
p+�+(μ) if x ∈ �+, s≤ x,

υ+(x,μ)ω+(s,μ)
p+�+(μ) if x ∈ �+, s > x

()

from () and () we have that the considered problem ()-() has a unique solution
given by

u(x,μ) = –

p–

(
|θ| – γ –


γ +


|θ|
)∫ c–

a
G(x, s;μ)f (s)ds

+

p+

(
|θ| – γ +


γ –


|θ|
)∫ b

c+
G(x, s;μ)f (s)ds

+

ρ

(
|θ| – γ –


γ +


|θ|
)
B̃a

(
G(x, ·;μ))f

–

ρ

(
|θ| – γ +


γ –


|θ|
)
B̃b

(
G(x, ·;μ))f

+ T̃c
(
G(x, ·;μ))f. ()

5 Representations of the resolvent operator in terms of Green’s
vector-function

We now shall define Green’s vector-function as follows:

G̃x,μ :=
(
G(x, ·;μ), B̃a

(
G(x, ·;μ)), –B̃b

(
G(x, ·;μ)), T̃c

(
G(x, ·;μ))). ()

Consequently, for the solution U(F ,μ) of nonhomogeneous operator equation (), we
obtain the following formula:

U(F ,μ) =
(〈G̃x,μ,F〉, B̃a

(〈G̃x,μ,F〉), –B̃b
(〈G̃x,μ,F〉), T̃c

(〈G̃x,μ,F〉)). ()

Using this, the resolvent function () can be written in the form

u(x,μ) = 〈G̃x,μ,F〉H, ()

where F = (f (x), f , f , f ) ∈H. Consequently, we have the following theorem.

Theorem  For the resolvent operator R(μ,
) = (μI –
)–, the formula

R
(
μ,
)

F =
(〈G̃x,μ,F〉, B̃a

(〈G̃x,μ,F〉), –B̃b
(〈G̃x,μ,F〉), T̃c

(〈G̃x,μ,F〉)), ()

where F = (f (x), f , f , f ) ∈H, holds.
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Theorem  The estimation

∥∥R(
μ,
)

F
∥∥
H ≤ ∣∣Imμ∣∣–‖F‖H, F ∈H

holds for all regular value μ such that Imμ �= .

Proof Let F = (f (x), f, f, f) ∈H. Denote U = R(μ,
)F . Since 
U = μU – F , taking into
account that the operator 
 is symmetric, we have

μ〈U ,U〉H – 〈F ,U〉H = 〈
U ,U〉H = 〈U ,
U〉H = μ〈U ,U〉H – 〈F ,U〉H.

Using the well-known Cauchy-Schwarz inequality, we conclude that

∣∣Imμ∣∣‖U‖H =
∣∣Im〈F ,U〉∣∣H ≤ ‖F‖H‖U‖H.

Consequently,

∥∥R(
μ,
)

F
∥∥
H ≤ ∣∣Imμ∣∣–‖F‖H.

The proof is complete. �

Theorem  The resolvent operator R(μ,
) is compact in the Hilbert spaceH.

Proof Let λ ≤ λ ≤ · · · be eigenvalues of 
 and let Eλ ,Eλ , . . . be orthogonal projections
onto the corresponding eigenspace. Since 
 is a self-adjoint operator with discrete spec-
trum, we can write the spectral resolution of the resolvent operator R(μ,
) by

R
(
μ,
)

=
∞∑
n=

(
λn –μ)–Eλn . ()

Similarly to [] we can easily show that λn =O(n). Thus (λn –μ)– =O(n–) for n → ∞.
Consequently, the series () is strongly convergent. It is obvious that the orthogonal pro-
jections Eλn , n = , , . . . , are compact operators since each of them are of finite rank. Con-
sequently, the sum of series () is also compact inH. The proof is complete. �
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