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Abstract
In this paper, the sign-changing solution of a third-order two-point boundary-value
problem is considered. By calculating the eigenvalues and the algebraic multiplicity
of the linear problem and using a new fixed point theorem in an ordered Banach
space with lattice structure, we give some conditions to guarantee the existence for a
sign-changing solution.
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1 Introduction
In this paper, we consider the following nonlinear third-order two-point boundary-value
problem

{
–u′′′(t) = f (t,u(t)), t ∈ [, ],
u() = u′() = u′() = ,

(.)

where f ∈ C([, ]× R,R).
The study on the existence of the sign-changing solutions for the boundary-value prob-

lem is very useful and interesting both in theory and in application. Recently, there has
been much attention focused on the problem, especially to the two-point or multi-point
boundary-value problem. For the second-order two-point or multi-point boundary-value
problem, many beautiful results have been given on the existence and multiplicity of the
sign-changing solutions (see [–] and the references therein). For example, Xu and Sun
[] obtained an existence result of the sign-changing solutions for the second-order three-
point boundary-value problem

{
–u′′(t) = f (u), t ∈ [, ],
u() = , αu(η) = u(),

where  < α < ,  < η < , f ∈ C(R,R). Xu [] considered the sign-changing solutions for
the second-order multi-point boundary-value problem

{
–u′′(t) = f (u), t ∈ [, ],
u() = , u() =

∑m–
i= αiu(ηi),
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where αi > , i = , , . . . ,m – ,  < η < · · · < ηm– < , f ∈ C(R,R). In [], Zhang and
Sun obtained the existence and multiplicity of the sign-changing solutions for the inte-
gral boundary-value problem

{
–u′′(t) = f (u), t ∈ [, ],
u() = , u() =

∫ 
 a(s)u(s)ds,

(.)

where f ∈ C(R,R), a ∈ L(, ) is nonnegative with
∫ 
 a

(s)ds < . For the integral boundary-
value problem (.), Li and Liu [] also obtained the existence and multiplicity of the sign-
changing solutions in ordered Banach space with the lattice structure.
For the third-order boundary-value problem, the existence and multiplicity of solutions

have also been discussed inmany papers (see [–] and the references therein). However,
the research on the sign-changing solutions has been proceeded slowly. For the problem
(.), Yao and Feng [, ] established several existence results for the solutions includ-
ing the positive solutions using the lower and upper solutions and a maximum princi-
ple, respectively. To our knowledge, however, there are fewer papers considered the sign-
changing solutions of the problem (.). Motivated by the work mentioned above, using
the eigenvalues of linear operator, we give an existence result for the sign-changing solu-
tions of the problem (.).
Themain contribution of this paper are as follows: (a) for the sign-changing solutions of

the problem (.), to our knowledge, there is no result using the eigenvalues of the linear
operator until now; (b) we obtain the eigenvalues and the algebraic multiplicity of the
linear problem corresponding the problem (.), which is one of the key points that we
can use to prove our main result; (c) some conditions are given to guarantee the existence
for a sign-changing solution of the problem (.).

2 Notations and preliminaries
The following results will be used throughout the paper.
Let E = C[, ], ‖u‖ =maxt∈[,] |u(t)|. Then E is a real Banach space with the norm ‖ · ‖.

Let P = {u ∈ E : u(t) ≥ , t ∈ [, ]}, and P is a normal solid cone of E, {u ∈ E : u(t) > , t ∈
(, ]} ⊂ ◦

P = {x ∈ P|x is an interior point of P}.
Let the operators K , F , A be defined by

(Ku)(t) =
∫ 


G(t, s)u(s)ds, (Fu)(t) = f

(
t,u(t)

)
, for t ∈ [, ],u ∈ E, (.)

and A = KF , respectively, where

G(t, s) =



{
ts – s – ts, ≤ s≤ t ≤ ,
t( – s),  ≤ t ≤ s ≤ .

(.)

Remark  () A,K : E → E are completely continuous. () G(t, s) ≥ , t, s ∈ [, ]. In fact,
since it is obvious in the other case, we only need to prove the case  ≤ s≤ t ≤ . Now we
suppose that  ≤ s ≤ t ≤ . Then

G(t, s) =


(
ts – s – ts

)
=


s
((
t – t

)
+ (t – s)

) ≥ .
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Definition . [] We call E a lattice under the partial ordering≤, if sup{x, y} and inf{x, y}
exist for arbitrary x, y ∈ E.

Remark  E = C[, ] is a lattice under the partial ordering ≤ that is deduced by the cone
P = {u ∈ E : u(t)≥ , t ∈ [, ]} of E.

Definition . [] Let E be a Banach space with a cone P,A : E −→ E be a nonlinear
operator. We call that A is a unilaterally asymptotically linear operator along Pw = {x ∈ E :
x ≥ w,w ∈ E}, if there exists a bounded linear operator L such that

lim
x∈Pw ,‖x‖−→∞

‖Ax – Lx‖
‖x‖ = .

L is said to be the derived operator of A along Pw and will be denoted by A′
Pw . Similarly, we

can also define a unilaterally asymptotically linear operator along Pw = {x ∈ E : x ≤ w,w ∈
E}. Specially, if w = θ , We call that A is a unilaterally asymptotically linear operator along
P and –P.

Definition . [] Let D ⊆ E and A : D −→ E be a nonlinear operator. A is said to be
quasi-additive on lattice, if there exists v∗ ∈ E such that

Ax = Ax+ +Ax– + v∗, ∀x ∈D,

where x+ = x+ = sup{x, θ}, x– = x– = – sup{–x, θ}.

Remark  It is easy to see that the operators F andA = KF defined by (.) are both quasi-
additive on the lattice E = C[, ].

Let us list some conditions and preliminary lemmas to be used in this paper.

(H) f ∈ C([, ] × R,R) is strictly increasing in u, and f (t,u)u >  for all t ∈ [, ], u ∈
R\{}.

(H) lim|u|→+∞ f (t,u)
u = β uniformly on [, ]. There exists a positive integer n such

that

λ
n < β < λ

n+,

where  < λ < λ < · · · < λn < · · · are the positive solutions of the equation

–


e–


 λ = cos

(√



λ +
π


)
. (.)

(H) limu→
f (t,u)
u = β uniformly on [, ], and  < β < λ

 .

Lemma . For any f ∈ C[, ], u ∈ C[, ] is a solution of the following problem:

{
–u′′′(t) = f (t), t ∈ [, ],
u() = u′() = u′() = 
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if and only if u(t) is a solution of the integral equation

u(t) =
∫ 


G(t, s)f (s)ds,

where G(t, s) is defined by (.).

Proof On the one hand, integrating the equation

–u′′′(t) = f (t), t ∈ [, ]

over [, t] for three times, we have

u(t) = –



∫ t


(t – s)f (s)ds +



u′′()t + u′()t + u().

Then

u′(t) = –t
∫ t


f (s)ds +

∫ t


sf (s)ds + u′′()t + u′().

Combining them with boundary condition u() = u′() = u′() = , we conclude that

u′′() =
∫ 


( – s)f (s)ds.

Therefore,

u(t) = –



∫ t


(t – s)f (s)ds +



t

∫ 


( – s)f (s)ds

= –



∫ t



[
(t – s) – t( – s)

]
f (s)ds +



t

∫ 

t
( – s)f (s)ds

=
∫ 


G(t, s)f (s)ds.

On the other hand, since

u(t) =
∫ 


G(t, s)f (s)ds =




∫ t



(
ts – s – ts

)
f (s)ds +




∫ 

t
t( – s)f (s)ds,

therefore,

u′(t) =
∫ t


(s – ts)f (s)ds +

∫ 

t
t( – s)f (s)ds,

u′′(t) = –
∫ t


sf (s)ds +

∫ 

t
( – s)f (s)ds,

and

u′′′(t) = –tf (t) – ( – t)f (t) = –f (t).

Moreover, we get u() = u′() = u′() = . �
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Remark  Considering Lemma ., we find that u is a solution of the problem (.) if and
only if u is a fixed point of the operator A = KF .

From the following lemma, we can obtain the eigenvalues and the algebraic multiplicity
of the linear operator K .

Lemma . The eigenvalues of the linear operator K are


λ

>


λ

> · · · > 

λ
n
> · · ·

and the algebraic multiplicity of each positive eigenvalue 
λn

is equal to , where  < λ <
λ < · · · < λn < · · · are the positive solutions of (.).

Proof Let λ be a positive eigenvalue of the linear operator K , and y ∈ E \ {θ} be an eigen-
function corresponding to eigenvalue λ. By Lemma ., we have

{
–y′′′(t) = 

λ
y(t), t ∈ (, ),

y() = y′() = y′() = .
(.)

The auxiliary equation of the differential equation (.) has roots –μ, 
μ( +

√
i), 

μ( –√
i), where μ = 

√
λ
. Thus the general solution of (.) is

y(t) = Ce–μt +Ce

μt cos

(√



μt
)
+Ce


μt sin

(√



μt
)
.

Then

y′(t) = C
(
–μe–μt) +Cμe


μt cos

(√



μt +
π



)
+Cμe


μt sin

(√



μt +
π



)
.

Applying the condition y() = y′() = , we obtain C = –C, C =
√
C, where C �= .

Applying the second condition y′() = , that is,

e–μ + e

μ cos

(√



μ +
π


)
= . (.)

Considering (.), we see that μ is one of λ,λ, . . . ,λn, . . . , that is,


λ

>


λ

> · · · > 

λ
n
> · · ·

are eigenvalues of the linear operatorK and the eigenfunction corresponding to the eigen-
value 

λn
is

yn(t) = C
(
e–λnt – e


 λnt cos

(√



λnt
)
+

√
e


 λnt sin

(√



λnt
))

, (.)

where C is a nonzero constant.

http://www.boundaryvalueproblems.com/content/2014/1/132


Lin and Zhao Boundary Value Problems 2014, 2014:132 Page 6 of 10
http://www.boundaryvalueproblems.com/content/2014/1/132

Next we prove that the algebraic multiplicity of the eigenvalue 
λn

is . From (.), any
two eigenfunctions corresponding to the same eigenvalue 

λn
are merely nonzero constant

multiples of each other, that is,

dimker

(

λ
n
I –K

)
= dimker

(
I – λ

nK
)
= .

Now we show that

ker
(
I – λ

nK
)
= ker

(
I – λ

nK
).

Obviously, we only need to show that

ker
(
I – λ

nK
) ⊂ ker

(
I – λ

nK
)
.

In fact, for any y ∈ ker (I – λ
nK ), (I –λ

nK )y is an eigenfunction of linear operator K cor-
responding to the eigenvalue 

λn
if (I –λ

nK )y �= θ . Considering (.), there exists a nonzero
constant σ such that

(
I – λ

nK
)
y(t) = σ

(
e–λnt – e


 λnt cos

(√



λnt
)
+

√
e


 λnt sin

(√



λnt
))

.

By direct computation, we have

⎧⎪⎨
⎪⎩
y′′′(t) + λ

ny(t)
= –σλ

n(e–λnt – e 
 λnt cos(

√

 λnt) +

√
e 

 λnt sin(
√

 λnt)), t ∈ [, ],

y() = y′() = y′() = .
(.)

It is easy to see that the solution for the corresponding homogeneous equation of (.) is
of the form

y(t) = Ce–λnt +Ce

 λnt cos

(√



λnt
)
+Ce


 λnt sin

(√



λnt
)
.

Then, by an ordinary differential equationmethod, we see that the general solution of (.)
is of the form

y(t) = y(t) + y∗
 (t) + y∗

(t), t ∈ [, ],

where

y∗
 (t) = –



σλnte–λnt

is the special solution of the equation

y′′′(t) + λ
ny(t) = –σλ

ne
–λnt ,
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and

y∗
(t) =



σλnte


 λnt

(
cos

(√



λnt
)
+

√
 sin

(√



λnt
))

=


σλnte


 λnt cos

(
π


–

√



λnt
)

is the special solution of the equation

y′′′(t) + λ
ny(t) = σλ

ne

 λnt

(
cos

(√



λnt
)
–

√
 sin

(√



λnt
))

.

Then

(
y∗

)′(t) = –



σλne–λnt +



σλ

nte
–λnt ,

(
y∗

)′(t) =



σλne


 λnt cos

(
π


–

√



λnt
)
+


σλ

nte

 λnt cos

(
π


–

√



λnt
)

+
√



σλ
nte


 λnt sin

(
π


–

√



λnt
)
.

Applying the condition y() = y′() = , we obtain C = –C, C =
√
C. From the condi-

tion y′() = , we obtain

(y)′() +
(
y∗

)′() +

(
y∗

)′() = . (.)

From (.), we have (y)′() = . Thus it follows from (.) that

–e–λn + λne–λn + e

 λn cos

(
π


–

√



λn

)
+ λne


 λn cos

(
π


–

√



λn

)

+
√
λne


 λn sin

(
π


–

√



λn

)
= ,

which implies that

e–λn + e

 λn cos

(
π


–

√



λn

)
+

√
e


 λn sin

(
π


–

√



λn

)
= .

That is

–


e–


 λn = cos

√



λn,

which is a contradiction of

–


e–


 λn = cos

(√



λn +
π


)
.

Therefore, the algebraic multiplicity of the eigenvalue 
λn

is . �
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Lemma . Suppose that (H) holds and y ∈ P\{θ} is a solution of the (.), then y ∈ ◦
P.

Similarly, if y ∈ (–P)\{θ} is a solution of the (.), then y ∈ –
◦
P.

Proof The proof is obvious. �

Lemma . Suppose that (H)-(H) hold. Then the operator A is Fréchet differentiable at
θ and ∞, and A′

θ = βK , A′∞ = βK .

Proof Since (H): limu→
f (t,u)
u = β uniformly on [, ]. That is, for any ε > , there exists

δ >  such that

∣∣f (t,u) – βu
∣∣ ≤ ε|u|, ∀t ∈ [, ],  < |u| < δ.

From (H), it is easy to see that ∀t ∈ [, ], f (t, ) = . Then, for any u ∈ E with ‖u‖ < δ, we
have

∣∣(Au –Aθ – βKu)(t)
∣∣ = ∣∣K (Fu – βu)(t)

∣∣
≤ ‖K‖ max

s∈[,]
∣∣f (s,u(s)) – βu(s)

∣∣ ≤ ‖K‖‖u‖ε.

Then

‖Au –Aθ – βKu‖ ≤ ‖K‖‖u‖ε, ‖u‖ < δ.

Thus,

lim‖u‖→

‖Au –Aθ – βKu‖
‖u‖ = ,

which means A′
θ = βK .

Since (H): lim|u|→+∞ f (t,u)
u = β uniformly on [, ]. That is, for any ε > , there exists

R >  such that

∣∣f (t,u) – βu
∣∣ ≤ ε|u|, ∀t ∈ [, ], |u| > R.

LetMR =max≤|u|≤R |f (t,u)|. Then
∣∣(Fu)(t) – βu(t)

∣∣ = ∣∣f (t,u(t)) – βu(t)
∣∣ ≤MR + βR + ε‖u‖, t ∈ [, ],u ∈ E.

Thus,

∣∣(Au – βKu)(t)
∣∣ = ∣∣K (Fu – βu)(t)

∣∣ ≤ ‖K‖(MR + βR + ε‖u‖).
Then

lim‖u‖→+∞
‖Au – βKu‖

‖u‖ ≤ ε‖K‖.

Therefore, A′∞ = βK . �
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Remark  Suppose (H) holds. Similar to Lemma ., we have

A′
P = A′

–P = A′
∞ = βK .

Lemma . [] Suppose that E is an ordered Banach space with a lattice structure, P is
a normal solid cone in E, and the nonlinear operator A is quasi-additive on the lattice.
Assume that

(i) A is strongly increasing on P and –P;
(ii) both A′

P and A′
–P exist with r(A′

P) >  and r(A′
–P) > ;  is not an eigenvalue of A′

P or
A′
–P corresponding a positive eigenvector;

(iii) Aθ = θ ; the Fréchet derivative A′
θ of A at θ is strongly positive, and r(A′

θ ) < ;
(iv) the Fréchet derivative A′∞ of A at ∞ exists;  is not an eigenvalue of A′∞; the sum β

of the algebraic multiplicities for all eigenvalues of A′∞ lying in the interval (,∞) is
an even number.

Then A has at least three nontrivial fixed points containing one sign-changing fixed point.

3 Main result
We state the main result of this paper.

Theorem . Suppose that (H)-(H) hold. Then the problem (.) has at least three solu-
tions including a sign-changing solution.

We need only to prove that A = KF satisfies the four conditions of Lemma ..

Proof Noticing

A′
θ = βK , A′

P = A′
–P = A′

∞ = βK .

(i) A is strongly increasing on P and –P. In fact, from (H) and K (P \ {θ})⊆ ◦
P, we see

that A is strongly increasing on P. Similarly, A is strongly increasing on –P.
(ii) From A′

P = A′
–P = βK , λ

n < β < λ
n+ and Lemma ., we find that  is not an

eigenvalue of A′
P or A′

–P and r(A′
P) = r(A′

–P) =
β
λ

> .

(iii) From A′
θ = βK ,  < β < λ

 , K (P \ {θ})⊆ ◦
P, Lemma . and (H), we have A′

θ is
strongly positive, Aθ = θ and r(A′

θ ) =
β
λ

< .
(iv) Since A′∞ = βK , λ

n < β < λ
n+ and Lemma ., the condition (iv) of Lemma .

is satisfied.
Therefore, from Lemma ., we see that A has at least three nontrivial fixed points in-

cluding one sign-changing fixed point. Then, the problem (.) has at least three solutions,
including one sign-changing solution. �

Example . Consider the following third-order boundary-value problem

{
–u′′′(t) = f (t,u(t)), t ∈ [, ],
u() = u′() = u′() = ,

(.)

http://www.boundaryvalueproblems.com/content/2014/1/132
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where

f (t,u) =

⎧⎪⎨
⎪⎩
(u – ) + ( + t)

√
u + , t ∈ [, ],u ∈ (, +∞),

( + t)u 
 + u, t ∈ [, ],u ∈ [–, ],

(u + ) + ( + t) √u – , t ∈ [, ],u ∈ (–∞, –).

By simple calculations, we have λ ≈ ., λ ≈ ., λ ≈ ., β = , β =
. Then it is easy to see that f (t,u) satisfies the conditions (H)-(H). Therefore, the
boundary-value problem (.) has at least three solutions, including one sign-changing
solution.
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