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Abstract
This article deals with the mathematical analysis of the inverse coefficient problem of
identifying the unknown coefficient k(x) in the linear time fractional parabolic
equation Dα

t u(x, t) = (k(x)ux)x , 0 < α ≤ 1, with mixed boundary conditions
u(0, t) =ψ0(t), ux(1, t) =ψ1(t). By defining the input-output mappings
�[·] :K → C1[0, T ] and �[·] :K → C[0, T ], the inverse problem is reduced to the
problem of their invertibility. Hence the main purpose of this study is to investigate
the distinguishability of the input-output mappings�[·] and �[·]. This work shows
that the input-output mappings �[·] and �[·] have the distinguishability property.
Moreover, the value k(0) of the unknown diffusion coefficient k(x) at x = 0 can be
determined explicitly by making use of measured output data (boundary
observation) k(0)ux(0, t) = f (t), which brings greater restriction on the set of admissible
coefficients. It is also shown that the measured output data f (t) and h(t) can be
determined analytically by a series representation, which implies that the
input-output mappings �[·] :K → C1[0, T ] and �[·] :K → C[0, T ] can be described
explicitly.

1 Introduction
The inverse problem of determining an unknown coefficient in a linear parabolic equation
by using over-measured data has generated an increasing amount of interest from engi-
neers and scientist during the last few decades. This kind of problem plays a crucial role
in engineering, physics and appliedmathematics. The problem of recovering an unknown
coefficient or coefficients in the mathematical model of physical phenomena is frequently
encountered. Intensive study has been carried out on this kind of problem, and various nu-
merical methods have been developed in order to overcome the problem of determining
an unknown coefficient or coefficients [–]. The inverse problemof unknown coefficients
in a quasi-linear parabolic equations was studied by Demir and Ozbilge [, ]. Moreover,
the identification of the unknown diffusion coefficient in a linear parabolic equation was
studied by Demir and Hasanov [].
Fractional differential equations are generalizations of ordinary and partial differential

equations to an arbitrary fractional order. By linear time-fractional parabolic equation, we
mean a certain parabolic-like partial differential equation governed by master equations
containing fractional derivatives in time [, ]. The research areas of fractional differ-
ential equations range from theoretical to applied aspects. The main goal of this study is
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to investigate the inverse problem of determining an unknown coefficient k(x) in a one-
dimensional time fractional parabolic equation.We first obtain the unique solution of this
problemusing the Fouriermethod of separation of variables with respect to the eigenfunc-
tions of the corresponding Sturm-Liouville eigenvalue problem under certain conditions
[]. As the next step, the noise-freemeasured output data are used to introduce the input-
output mappings �[·] : K → C[,T] and �[·] : K → C[,T]. Finally, we investigate the
distinguishability of the unknown coefficient via the above input-output mappings �[·]
and �[·].
Consider now the following initial boundary value problem:

⎧⎪⎨
⎪⎩
Dα

t u(x, t) = (k(x)ux)x,  < α ≤ , (x, t) ∈ �T ,
u(x, ) = g(x),  < x < ,
u(, t) = ψ(t), ux(, t) =ψ(t),  < t < T ,

()

where �T = {(x, t) ∈ R :  < x < ,  < t ≤ T} and the fractional derivative Dα
t u(x, t) is de-

fined in the Caputo-Dzherbashyan sense Dα
t u(x, t) = (I–αu′)(t),  < α ≤ , Iα being the

Riemann-Liouville fractional integral

(
Iαf

)
(t) =

{


�(α)
∫ t
 (t – τ )α–f (τ )dτ ,  < α ≤ ,

f (t), α = .

The left and right boundary value functions ψ(t) and ψ(t) belong to C[,T]. The func-
tions  < c ≤ k(x) < c and g(x) satisfy the following conditions:
(C) k(x) ∈ C[, ];
(C) g(x) ∈ C[, ], g() = ψ(), g ′() = ψ().

Under these conditions, the initial boundary value problem () has the unique solution
u(x, t) defined in the domain �T = {(x, t) ∈ R :  ≤ x ≤ ,  ≤ t ≤ T} which belongs to
the space C(�T ) ∩ W 

t (,T] ∩ C
x (, ). Moreover, it satisfies the equation, initial and

boundary conditions. The space W 
t (,T] contains the functions f ∈ C(,T] such that

f ′(t) ∈ L(,T).
This kind of problem plays a crucial role in engineering, physics and applied mathe-

matics since it is used successfully to model complex phenomena in various fields such
as fluid mechanics, viscoelasticity, physics, chemistry and engineering. The problem of
recovering an unknown coefficient or coefficients in the mathematical model of physical
phenomena is frequently encountered.
Consider the inverse problem of determining the unknown coefficient k(x) from the

Neumann-type measured output data at the boundary x = :

k()ux(, t) = f (t), t ∈ (,T]

and the Dirichlet-type measured output data at the boundary x = :

u(, t) = h(t), t ∈ (,T].

Here u = u(x, t) is the solution of parabolic problem (). The functions f (t) and h(t) are
assumed to be noise-free measured output data. In this context, parabolic problem () will
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be referred to as a direct (forward) problem with the inputs g(x) and k(x). It is assumed
that the functions f (t) and h(t) belong to C[,T] and satisfy the consistency conditions
f () = k()g ′() and g() = h().
By denoting K := {k(x) ∈ C[, ] : c > k(x) ≥ c > ,x ∈ [, ]} ⊂ C[, ], the set of ad-

missible coefficients k(x), let us introduce the input-output mappings �[·] :K → C[,T]
and �[·] :K → C[,T], where

�[k] = k(x)ux(x, t;k)|x=, k ∈K

and

�[k] = u(x, t;k)|x=, k ∈K.

Then the inverse problem with the measured output data f (t) and h(t) can be formulated
as follows:

�[k] = f , f ∈ C(,T], �[k] = h, h ∈ C(,T],

which reduces the inverse problem of determining the unknown coefficient k(x) to the
problem of invertibility of the input-output mappings �[·] and �[·]. Hence this leads us
to investigate the distinguishability of the unknown coefficient via the above input-output
mappings. We say that the mappings �[·] : K → C[,T] and �[·] : K → C[,T] have
the distinguishability property if �[k] 	= �[k] implies k(x) 	= k(x) and the same holds
for�[·]. This, in particular, means the injectivity of inverse mappings �– and�–. In this
paper,measured output data ofNeumann type at the boundary x =  andmeasured output
data of Dirichlet type at the boundary x =  are used in the identification of the unknown
coefficient. In addition, in the determination of the unknown parameter, analytical results
are obtained.
The paper is organized as follows. In Section , an analysis of the inverse problem with

the single measured output data f (t) at the boundary x =  is given. An analysis of the
inverse problem with the single measured output data h(t) at the boundary x =  is con-
sidered in Section . Finally, some concluding remarks are given in the last section.

2 An analysis of the inverse problemwith givenmeasured data f (t)
Consider now the inverse problem with one measured output data f (t) at x = . In order
to formulate the solution of parabolic problem () by using the Fourier method of the
separation of variables, let us first introduce an auxiliary function v(x, t) as follows:

v(x, t) = u(x, t) –ψ(t) –ψ(t)x, x ∈ [, ],

by which we transform problem () into a problem with homogeneous boundary condi-
tions. Hence the initial boundary value problem () can be rewritten in terms of v(x, t) in
the following form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Dα

t v(x, t) – vxx(x, t) = ((k(x) – )vx(x, t))x – xDα
t ψ(t) –Dα

t ψ(t) + k′(x)ψ(t),
(x, t) ∈ �T ,

v(x, ) = g(x) –ψ() –ψ()x,  < x < ,
v(, t) = , vx(, t) = ,  < t < T .

()
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The unique solution of the initial-boundary value problem can be represented in the
following form []:

v(x, t) =
∞∑
n=

〈
ζ (θ ),φn(θ )

〉
Eα,

(
–λntα

)
φn(x)

+
∞∑
n=

(∫ t


sα–Eα,α

(
–λnsα

)〈
ξ (θ , t – s),φn(θ )

〉
ds

)
φn(x),

where

ζ (x) = g(x) –ψ() –ψ()x,

ξ (x, t) =
((
k(x) – 

)
vx(x, t)

)
x – xDα

t ψ(t) –Dα
t ψ(t) + k′(x)ψ(t).

Moreover, 〈ζ (θ ),φn(θ )〉 =
∫ 
 φn(θ )ζ (θ )dθ , Eα,β being the generalized Mittag-Leffler

function defined by

Eα,β (z) =
∞∑
n=

zn

�(βn + α)
.

Assume that φn(x) is the solution of the following Sturm-Liouville problem:

{
–φxx(x) = λφ(x),  < x < ,
φ() = , φx() = ,  < t < T .

The Neumann-type measured output data at the boundary x =  in terms of v(x, t) can be
written in the following form:

k()
(
vx(, t) +ψ(t)

)
= f (t), t ∈ (,T].

In order to arrange the above solution, let us define the following:

zn(t) =
〈
ζ (θ ),φn(θ )

〉
Eα,

(
–λntα

)
,

wn(t) =
∫ t


sα–Eα,α

(
–λnsα

)〈
ξ (θ , t – s),φn(θ )

〉
ds.

()

The solution in terms of zn(t) and wn(t) can then be rewritten in the following form:

v(x, t) =
∞∑
n=

zn(t)φn(x) +
∞∑
n=

wn(t)φn(x).

Differentiating both sides of the above identity with respect to x and substituting x = 
yields

vx(, t) =
∞∑
n=

zn(t)φ′
n() +

∞∑
n=

wn(t)φ′
n().
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Taking into account the over-measured data k()(vx(, t) +ψ(t)) = f (t),

f (t) = k()

(
ψ(t) +

∞∑
n=

zn(t)φ′
n() +

∞∑
n=

wn(t)φ′
n()

)
()

is obtained, which implies that f (t) can be determined analytically. Substituting t =  into
this yields

f () = k()

(
ψ() +

∞∑
n=

zn()φ′
n()

)
.

Hence we obtain the following explicit formula for the value k() of the unknown coeffi-
cient k(x)

k() =
f ()

ψ() +
∑∞

n= zn()φ′
n()

.

Under the determined value k(), the set of admissible coefficients can be defined as fol-
lows:

K :=
{
k(x) ∈ C[, ] : c > k(x)≥ c > ,x ∈ [, ],k() =

f ()
ψ() +

∑∞
n= zn()φ′

n()

}
.

The right-hand side of identity () defines the input-output mapping �[k] on the set of
admissible source functions K

�[k](t) := k()

(
ψ(t) +

∞∑
n=

zn(t)φ′
n() +

∞∑
n=

wn(t)φ′
n()

)
, ∀t ∈ [,T].

The following lemma implies the relation between the parameters k(x),k(x) ∈K at x = 
and the corresponding outputs fj(t) := k()ux(, t;pj), j = , .

Lemma  Let υ(x, t) = υ(x, t;k) and υ(x, t) = υ(x, t;k) be the solutions of direct problem
(), corresponding to the admissible parameters k(x),k(x) ∈K. If fj(t) = ux(, t;kj), j = , ,
are the corresponding outputs. If the condition k() = k() = k(), then the outputs fj(t),
j = , , satisfy the following integral identity:

�f (t) = k()
∞∑
n=

�wn(t)φ′
n()

for each t ∈ (,T], where �f (t) = f(t) – f(t), �wn(t) = w(t) –w(t).

Proof By using identity (), the measured output data fj(t) := k()(vx(, t) +ψ(t) –ψ(t)),
j = , , can be written as follows:

f(τ ) = k()

(
ψ(τ ) +

∞∑
n=

zn(t)φ
′
n() +

∞∑
n=

w
n(t)φ

′
n()

)
,

f(τ ) = k()

(
ψ(τ ) +

∞∑
n=

zn(t)φ
′
n() +

∞∑
n=

w
n(t)φ

′
n()

)
,
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respectively. Note that the definition of zn(t) implies that zn(t) = zn(t). Hence, the differ-
ence of these formulas implies the desired result. �

The lemma and the definitions of wn(t) and zn(t) given above enable us to reach the
following conclusion.

Corollary  Let the conditions of Lemma  hold. If in addition

〈
ξ(x, t) – ξ(x, t),φn(x)

〉
= , ∀t ∈ (,T],∀n = , , . . .

holds, where

ξ(x, t) =
((
k(x) – 

)
vx(x, t)

)
x – xDα

t ψ(t) –Dα
t ψ(t) + k′

(x)ψ(t),

ξ(x, t) =
((
k(x) – 

)
= vx(x, t)

)
x – xDα

t ψ(t) –Dα
t ψ(t) + k′

(x)ψ(t),

then f(t) = f(t), ∀t ∈ [,T].

Proof If 〈ξ(x, t) – ξ(x, t),φn(x)〉 = , ∀n = , , . . . , then k(x) = k(x). If k(x) = k(x), then
u(x, t) = u(x, t). Since f (t) depends on u(x, t), then from the uniqueness of solution f(t) =
f(t).
Since φn(x), ∀n = , , , . . . form a basis for the space and φ′

n() 	= , ∀n = , , , . . . , then
k(x) 	= k(x) implies that 〈ξ(x, t) – ξ(x, t),φn(x)〉 	=  at least for some n ∈ N . Hence by
Lemma we conclude that f(t) 	= f(t), which leads us to the following consequence: k(x) 	=
k(x) implies that �[k] 	=�[k]. �

Theorem  Let conditions (C), (C) hold. Assume that �[·] : K → C[,T] is the
input-output mapping defined by () and corresponding to the measured output f (t) :=
k()ux(, t). In this case the mapping �[k] has the distinguishability property in the class
of admissible parameters K, i.e.,

�[k] 	=�[k], ∀k,k ∈K ⇒ k(x) 	= k(x).

3 An analysis of the inverse problemwith givenmeasured data h(t)
Consider now the inverse problem with one measured output data h(t) at x = . Taking
into account the over-measured data (v(, t) +ψ(t) +ψ(t)) = h(t),

h(t) =

(
ψ(t) +ψ(t) +

∞∑
n=

zn(t)φn() +
∞∑
n=

wn(t)φn()

)
()

is obtained, which implies that h(t) can be determined analytically.
The set of admissible coefficients can be defined as follows:

K :=
{
k(x) ∈ C[, ] : c > k(x)≥ c > ,x ∈ [, ]

}
.

The right-hand side of identity () defines the input-output mapping �[k] on the set of
admissible parameters K:

�[k](t) :=

(
ψ(t) +ψ(t) +

∞∑
n=

zn(t)φn() +
∞∑
n=

wn(t)φn()

)
, ∀t ∈ [,T]. ()
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The following lemma implies the relation between the parameters k(x),k(x) ∈K at x = 
and the corresponding outputs hj(t) := u(, t;kj), j = , .

Lemma  Let υ(x, t) = υ(x, t;k) and υ(x, t) = υ(x, t;k) be the solutions of direct problem
(), corresponding to the admissible parameters k(x),k(x) ∈K. If hj(t) = u(, t;kj), j = , ,
are the corresponding outputs. The outputs hj(t), j = , , satisfy the following integral iden-
tity:

�h(t) =
∞∑
n=

�wn(t)φn()

for each t ∈ (,T], where �h(t) = h(t) – h(t), �wn(t) = w(t) –w(t).

Proof By using identity (), the measured output data hj(t) := v(, t) +ψ(t) +ψ(t), j = , ,
can be written as follows:

h(t) =ψ(t) +ψ(t) +
∞∑
n=

zn(t)φn() +
∞∑
n=

w
n(t)φn(),

h(t) = ψ(t) +ψ(t) +
∞∑
n=

zn(t)φn() +
∞∑
n=

w
n(t)φn(),

respectively. Note that the definition of zn(t) implies that zn(t) = zn(t). Hence, the differ-
ence of these formulas implies the desired result. �

The lemma and the definitions given above enable us to reach the following conclusion.

Corollary  Let the conditions of Lemma  hold. If, in addition,

〈
ξ(x, t) – ξ(x, t),φn(x)

〉
= , ∀t ∈ (,T],∀n = , , . . .

holds, where

ξ(x, t) =
((
k(x) – 

)
vx(x, t)

)
x – xDα

t ψ(t) –Dα
t ψ(t) + k′

(x)ψ(t),

ξ(x, t) =
((
k(x) – 

)
vx(x, t)

)
x – xDα

t ψ(t) –Dα
t ψ(t) + k′

(x)ψ(t),

then h(t) = h(t), ∀t ∈ [,T].

Proof If 〈ξ(x, t) – ξ(x, t),φn(x)〉 = , ∀n = , , . . . , then k(x) = k(x). If k(x) = k(x), then
u(x, t) = u(x, t). Since h(t) depends on u(x, t), then from the uniqueness of solution h(t) =
h(t).
Since φn(x), ∀n = , , , . . . form a basis for the space and φ′

n() 	= , ∀n = , , , . . . , then
k(x) 	= k(x) implies that 〈ξ(x, t) – ξ(x, t),φn(x)〉 	=  at least for some n ∈ N . Hence by
Lemma  we conclude that h(t) 	= h(t), which leads us to the following consequence:
k(x) 	= k(x) implies that �[k] 	=�[k]. �

Theorem  Let conditions (C), (C) hold. Assume that �[·] :K → C[,T] is the input-
output mapping defined by () and corresponding to the measured output h(t) := u(, t).

http://www.boundaryvalueproblems.com/content/2014/1/134
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In this case the mapping �[k] has the distinguishability property in the class of admissible
parameters K, i.e.,

�[k] 	=�[k], ∀k,k ∈K ⇒ k(x) 	= k(x).

4 Conclusion
The aim of this study was to investigate the distinguishability properties of the input-
output mappings �[·] : K → C[,T] and �[·] : K → C[,T], which are determined by
the measured output data at x =  and x = , respectively. In this study, we conclude that
the distinguishability of the input-outputmappings�[·] and�[·] holds, which implies the
injectivity of the inverse mappings �– and �–. This provides the insight that compared
to the Dirichlet type, the Neumann-type measured output data is more effective for the
inverse problems of determining unknown coefficients. Moreover, the measured output
data f (t) and h(t) are obtained analytically by a series representation, which leads to the
explicit form of the input-output mappings �[·] and �[·]. We also show that the value of
the unknown coefficient k(x) at x =  is determined by using theNeumann-typemeasured
output data at x = , which brings more restrictions on the set of admissible coefficients.
However, k() is not obtained by the Dirichlet-type measured output data at x = . This
provides the insight that the Neumann-type measured output data is more effective than
that ofDirichlet type for the inverse problems of determining anunknown coefficient. This
work advances our understanding of the use of the Fourier method of separation of vari-
ables and the input-output mapping in the investigation of inverse problems for fractional
parabolic equations. The author plans to consider various fractional inverse problems in
future studies, since the method discussed has a wide range of applications.
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