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Abstract
The aim of the present paper is to study the influence of initial stress and magnetic
field on the propagation of harmonic waves in a human long dry bone as transversely
isotropic material, subject to the boundary conditions that the outer and inner
surfaces are traction free. The equations of elastodynamics are solved in terms of
displacements. The natural frequency of plane vibrations in the case of harmonic
vibrations has been obtained. The frequencies and phase velocity are calculated
numerically, the effects of initial stress and magnetic field are discussed. Comparisons
are made with the result in the absence of initial stress and magnetic field.
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1 Introduction
The investigation of wave propagation over a continuous medium has very important ap-
plication in the fields of engineering, medicine and in bioengineering. Application of the
poroelastic materials in medicinal fields such as cardiovascular, dental and orthopedics
is well known. The dry bone is piezoelectric in the classical sense [, ], i.e., mechani-
cal stress results in electric polarization (the indirect effect); and an applied electric field
causes strain (the converse effect). Since that time, many others have confirmed the ca-
pacity of bones to produce piezoelectric potentials []. Electrical properties of bone are
relevant not only as a hypothesized feedback mechanism for bone adaptation and remod-
eling, but also in the context of external electrical stimulation of bone in order to aid its
healing and repair []. In orthopedics, the propagation of wave over bone is used in moni-
toring the rate of fracture healing. There are two types of osseous tissue such as trabecular
or cancellous and cortical or compact bone, which are of different materials with respect
to their mechanical behavior. In macroscopic terms, the porosity percentage in the com-
pact bone is -%, whereas in the cancellous or trabecular the porosity percentage is up
to % [].
Mahmoud [, , ] investigated the wave propagation under the effects of initial stress,

rotation and magnetic field in cylindrical poroelastic bones, a granular medium and a
porous medium. Theoretical analyses of bone piezoelectricity may be relevant to the is-
sue of bone remodeling. Recent thorough studies have explored electromechanical effects
in wet and dry bone [, ]. They suggest that two different mechanisms are responsible for
these effects: classical piezoelectricity mainly due to the molecular asymmetry of collagen
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in dry bone and streaming potentials found in moist or living bone and generated by the
flow of a liquid across charged surfaces. The second mechanism was argued by dielectric
measurements, and it was suggested that the electromechanical effect in wet (fluid satu-
rated) bone is not due to a piezoelectric effect []. Abd-Alla and Mahmoud [, ] solved
a magneto-thermoelastic problem in a rotating non-homogeneous orthotropic hollow
cylinder under the hyperbolic heat conduction model and investigated analytical solution
of wave propagation in non-homogeneous orthotropic rotating elastic media. Abd-Alla
et al. [] studied the propagation of S-wave in a non-homogeneous anisotropic incom-
pressible and initially stressed medium under the influence of gravity field. Honarvarla et
al. [], Ding et al. [] studied the elasticity of transversely isotropic materials. Chen et al.
[, ] investigated the free vibration and general solution of non-homogeneous trans-
versely isotropic magneto-electroelastic hollow cylinders. Abd-Alla et al. [, ] stud-
ied the problem of transient coupled thermoelasticity of an annular fin and the problem
of radial vibrations in a non-homogeneous isotropic cylinder under the influence of ini-
tial stress and magnetic field. Mofakhami et al. [] studied the finite cylinder vibrations
with different end boundary conditions. Abd-Alla et al. [, ] studied the effect of ro-
tation, magnetic field and initial stress on peristaltic motion of micropolar fluid and in-
vestigated the effect of rotation on a non-homogeneous infinite cylinder of orthotropic
material.
In this paper, the equations of elastodynamics for transversely isotropic material under

the effect of initial stress andmagnetic field are solved in terms of displacement potentials.
Also, this paper is concerned with the determination of phase velocity and the eigenvalues
of natural frequency of plane vibrations of bones under the effect of initial stress andmag-
netic field for different boundary conditions in the cases of harmonic vibrations. The nu-
merical results of the frequency equation are discussed in detail for transversely isotropic
material and the effect of initial stress and magnetic field for different cases is indicated
by figures.

2 Formulation of the problem
Consider a homogeneous and transversely isotropic long bone as a hollow cylinder of
inner radius a and outer radius b taking the cylindrical polar coordinates (r, θ , z) such
that the z-axis points vertically upward along the bone axis.
The equations of the elastodynamic medium in the presence of magnetic field are as

follows:

∂τrr

∂r
+ r–

∂τrθ

∂θ
+

∂τrz

∂z
+ r–(τrr – τθθ ) + (–→J × –→B )r = ρ

∂ur
∂t

, (a)

∂τrθ

∂r
+ r–

∂τθθ

∂θ
+

∂τθz

∂z
+ r–τθr + (–→J × –→B )θ = ρ

∂uθ

∂t
, (b)

∂τrz

∂r
+ r–

∂τθz

∂θ
+

∂τzz

∂z
+ r–τθr + (–→J × –→B )z = ρ

∂uz
∂t

, (c)

where ρ is the density of bones, τrr , τθθ , τzz and τrz are the stresses, ur , uθ and uz are
the displacement components and –→B = μe

←–H , where μe is the magnetic permeability, ←–H =
(,H, ) and H is the intensity of the uniform magnetic field parallel to θ -axes, ←–F is
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Lorentz’s body forces vector where ←–F can take the following form:

←–F = (fr , fθ , fz) =
(
(–→J × –→B )r , (

–→J × –→B )θ , (
–→J × –→B )z

)
. ()

The relations of stresses-displacement for homogeneous transversely isotropic bone in
two dimensions are in the form:

τrr =
(
c + P∗)∂ur

∂r
+

(
c + P∗)ur

r
+

(
c + P∗)∂uz

∂z
, (a)

τθθ =
(
c + P∗)∂ur

∂r
+

(
c + P∗)ur

r
+

(
c + P∗)∂uz

∂z
, (b)

τzz = c
∂ur
∂r

+ c
ur
r
+ c

∂uz
∂z

, (c)

τrz = c
(

∂uz
∂r

+
∂ur
∂z

)
, (d)

where c; c; c; c; c; c are the elastic constants of bone, c = c, c = c, and
P∗ is the initial stress compression. The electromagnetic field is governed by Maxwell’s
equations considering that the medium is a perfect electric conductor taking into account
the absence of the displacement current SI.

curl
←–
h = –→J , curl

←–E = –μe
∂
←–
h

∂t
, div

←–
h = , div

←–E = ,

–→
h = curl(–→u × –→H ),

←–H =←–H  +
←–
h , ←–H  = (,H, ).

()

Maxwell’s stresses τ̄ij take the following form:

σ̄ij = μe
[
Hihj +Hjhi – (–→H · –→h )δij

]
, i, j = , , . ()

Two-dimentional equations of elastodynamics are as follows:

∂σrr

∂r
+

∂τrz

∂z
+

r
(τrr – τθθ ) +H

μer–
[

∂uz
∂z

+
∂ur
∂r

+ r
∂uz
∂r ∂z

+ r
∂ur
∂r

]
= ρ

∂ur
∂t

, (a)

∂τrz

∂r
+

∂σzz

∂z
+

r
τrz +H

μe

(
∂uz
∂z

+
∂ur
∂r ∂z

)
= ρ

∂uz
∂t

. (b)

Substituting equations (a)-(d) into equations (a) and (b), we obtain

∂ur
∂r

+

r
∂ur
∂r

–

r
ur +

c
c

∂ur
∂z

+
c + c

c
∂uz
∂r ∂z

+


P∗ ∂( ∂ur

∂z – uz)
∂z

+H
μer–

[
∂uz
∂z

+
∂ur
∂r

+ r
∂uz
∂r ∂z

+ r
∂ur
∂r

]
=

ρ

c

(
∂ur
∂t

)
, (a)

∂uz
∂z

+
c
c

(
∂uz
∂r

+

r
∂uz
∂r

)
+
c + c

c

(
∂ur
∂r ∂z

+

r
∂ur
∂z

)
+
P∗

r
∂(r( ∂ur

∂z – uz))
∂z

+H
μe

(
∂uz
∂z

+
∂ur
∂r ∂z

)
=

ρ

c

(
∂uz
∂t

)
. (b)
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System (a)-(b) can be simplified as follows:


r

[
–cur + rH

μe
∂uz
∂z

+ 
(
c +H

μe
)∂ur

∂r
+ r – ρ

∂ur
∂t

+ (c + P)
∂ur
∂z

+
(
c + c – P + H

μe
) ∂uz
∂r ∂z

+ 
(
c +H

μe
)∂ur

∂r

]
= , (a)


r

[
(c + c + P)

∂ur
∂z

+ (c – P)
∂uz
∂r

+ r
(
–ρ

∂uz
∂t

+ 
(
c +H

μe
)∂uz

∂z

+
(
c + c + P + H

μe
) ∂ur
∂r ∂z

+ (c – P)
∂uz
∂r

)]
= . (b)

3 Solution of the problem
By Helmohltz’s theorem [] the displacement vector ←–u can be written as

←–u =∇φ +∇ ∧ ←–
	 , ()

where the two functions φ and
←–
	 = (,ψ, ) are known in the theory of elasticity, by

Lame’s potentials irrotational and rotational parts of the displacement vector ←–u , respec-
tively. The cylinder being bounded by the curved surface, the stress distribution includes
the effect of both φ and

←–
ψ . It is possible to take only one component of the vector ←–

ψ to
be nonzero as follows: ←–ψ = (,ψ, ). From () we obtain

ur =
∂φ

∂r
–

∂ψ

∂z
, (a)

uz =
ψ

r
+

∂φ

∂z
+

∂ψ

∂r
. (b)

Substituting equations (a) and (b) into equations (a) and (b), we get two indepen-
dent equations for φ and ψ as follows:


r

[
c

(
∂ψ

∂z
–

∂φ

∂r

)
+ r

(
H

μe

(
∂ψ

∂z
r– +

∂φ

∂z
+

∂ψ

∂r ∂z

)

+ 
(
c +H

μe
)(

–
∂ψ

∂r ∂z
+

∂φ

∂r

)
+ r

(
ρ

(
∂ψ

∂z ∂t
–

∂φ

∂r ∂t

)

+
(
c + P∗)(–∂ψ

∂z
+

∂φ

∂r ∂z

)
+

(
c + c – P∗ + H

μe
)

×
(
–r–

∂ψ

∂z
+ r–

∂ψ

∂r ∂z
+

∂φ

∂r ∂z
+

∂ψ

∂r ∂z

)

+ 
(
c +H

μe
)(

–
∂ψ

∂r∂z
+

∂φ

∂r

)))]
, (a)


r

(
c + c + P∗)(–∂ψ

∂z
+

∂φ

∂r ∂z

)

+
(
c – P∗)(–ψr– +

∂ψ

∂r
r– +

∂φ

∂r ∂z
+

∂ψ

∂r

)

+ r
(
–ρ

(
∂ψ

∂t
r– +

∂φ

∂z ∂t
+

∂ψ

∂r ∂t

)
+ 

(
c +H

μe
)
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×
(

∂ψ

∂z
r– +

∂φ

∂z
+

∂ψ

∂r ∂z

)
+

(
c + c + P∗ + H

μe
)(

–
∂ψ

∂r ∂z
+

∂φ

∂r ∂z

)

+
(
c – P∗)((

ψ – r
∂ψ

∂r
+ r

∂ψ

∂r

)
r– +

∂φ

∂r ∂z
+

∂ψ

∂r

))
= . (b)

To study the propagation of harmonic waves in the z-direction, we assume a solution in
the form

�(r, z, t) = �(r)ei(γ z–ωt), (a)

	(r, z, t) = 	(r)ei(γ z–ωt), (b)

where γ is the wave number, ω is the angular frequency. Substituting equations (a) and
(b) into equations (a) and (b) and omitting the factor exponential throughout, we
have

–

r

iei(zγ–tω)
[
–iH

rγ
μe�(r) – γ

(
c – c + P∗ + c

(
– + rγ )

+ r
(
P∗γ  – ρω


))

	(r) – ic – icrγ  d�

dr
– icrγ

d�

dr


– iH
r

γ μe
d�

dr
+ irρω


d�

dr
+ crγ

d	

dr
– crγ

d	

dr
– crγ

d	

dr

+ P∗rγ
d	

dr
– H

rγμe
d	

dr
+ icr

d�

dr
+ iH

rμe
d�

dr
+ crγ

d	

dr

– crγ
d	

dr
– crγ

d	

dr
+ P∗rγ

d	

dr

+ ir
(
c +H

μe
)d�

dr

]
= , (a)


r

ei(zγ–tω)
[
–irγ

(
γ (c +H

μe
)
– ρω


)
�(r) +

(
c + crγ 

+ P∗(– + rγ ) + r
(
γ (c – c –H

μe
)
+ ρω


))

	(r)

+ r
(
i(c + c)rγ

d�

dr
+

(
P∗ + P∗rγ  + c

(
– + rγ )

+ r
(
(c – c)γ  + ρω


))d	

dr
+ r

(
irγ

(
c + c +H

μe
)d�

dr

+
(
c – P∗)(d	

dr
+ r

d	

dr

)))]
= . (b)

Similar results were obtained by Elnagar and Abd-Alla [], the former deriving the con-
stitutive equation for Rayleigh waves in an elastic medium under initial stress, and the
latter deriving the constitutive equation for thermoelastic problems in an infinite cylinder
under initial stress. From equations (a) and (b), we get equations (a) and (b) as
follows:


(
–H

rγ
μe�(r) –

(
c + r

(
γ (c + c +H

μe
)
– ρω


))d�

dr

+ r
(
c +H

μe
)(d�

dr
+ r

d�

dr

))
= , (a)

http://www.boundaryvalueproblems.com/content/2014/1/135


Mahmoud et al. Boundary Value Problems 2014, 2014:135 Page 6 of 13
http://www.boundaryvalueproblems.com/content/2014/1/135

(
c + crγ  + P∗(– + rγ ) + r

(
γ (c – c –H

μe
)
+ ρω


))

	(r)

+ r
((

P∗ + P∗rγ  + c
(
– + rγ ) + r

(
(c – c)γ  + ρω


))d	

dr

+
(
c – P∗)r

(

d	

dr
+ r

d	

dr

))
= . (b)

Equation (a) represents the shear wave, and equation (b) represents the longitudinal
wave. The solution of equations (a) and (b) can be written in the following form:

	 = Ard Jn (dr) + BrdYn (dr), (a)

� = AJn (er) + BYn (er), (b)

where

n =

√
d – cc + cc + c + cP∗ – cP∗ – cP∗ + P* +H

μ

e

c – c – c + P∗ ,

d =
H

μe

c – c – c + P
, d = –

ir
√
cγ  + P∗γ  – ρω

√
c – c – c + P∗ ,

e =
H

μe

(c + c +H
μe)

, d = c – cc + c, n =
H

μe

(c + c +H
μe)

,

e =

√
cγ  +H

γ μe – ρω
√

c + c +H
μe

.

A, A, B and B are arbitrary constants, J� is the Bessel function of the first kind and of
order zero, Y� is the Bessel function of the second kind and of order zero. Jn is the Bessel
function of the first kind and of order n, Yn is the Bessel function of the second kind and
of order n. From equations (a), (b) and (a), (b) we get

	(r, z, t) = ei(zγ–tω)
(
Ard Jn (dr) + BrdYn (dr)

)
, (a)

�(r, z, t) = ei(zγ–tω)
(
AJn (er) + BYn (er)

)
. (b)

Substituting equations (a) and (b) into equations (a) and (b), we obtain the final
solution of displacement components in the following form:

ur =

r
ei(zγ–tω)

[
AeJ–+n (er) – J+n (er) – irdγAJn (dr) + BYn (dr)

+ BeY–+n (er) – Y+n (er)
]
, (a)

uz =

r
ei(zγ–tω)

[
Adr+d J–+n (dr) +A( + d – n)rd Jn (dr) + iArγ Jn (er)

+ Bdr+dY–+n (dr) + B( + d – n)rdYn (dr) + iBrγYn (er)
]
. (b)

http://www.boundaryvalueproblems.com/content/2014/1/135


Mahmoud et al. Boundary Value Problems 2014, 2014:135 Page 7 of 13
http://www.boundaryvalueproblems.com/content/2014/1/135

Substituting equations (a) and (b) into equations (a)-(d), we obtain the final solution
of the stress components of solid in the following form:

τrr =

r

ei(zγ–tω)
[
AcerJ–+n (er) + AceJ–+n (er) – AcerJn (er)

– Acrγ Jn (er) – AceJ+n (er) +AcerJ+n (er)

– irdγ
(
A(c – c)drJ–+n (dr) +A

(
c + c(d – n)

+ c(– – d + n)
)
Jn (dr) + B(c – c)drY–+n (dr)

+ B
(
c + c(d – n) + c(– – d + n)

)
Yn (dr)

)
+ BcerY–+n (er)

+ BceY–+n (er) – BcerYn (er) – Bcrγ Yn (er)

– BceY+n (er) + BcerY+n (er)
]
, (a)

τθθ =

r

ei(zγ–tω)
[
AcerJ–+n (er) + AceJ–+n (er) – AcerJn (er)

– Acrγ Jn (er) – AceJ+n (er) +AcerJ+n (er)

– irdγ
(
A(c – c)drJ–+n (dr) +A

(
c + c(d – n)

+ c(– – d + n)
)
Jn (dr) + B(c – c)drY–+n (dr)

+ B
(
c + c(d – n) + c(– – d + n)

)
Yn (dr)

)
+ BcerY–+n (er)

+ BceY–+n (er) – BcerYn (er) – Bcrγ Yn (er)

– BceJ+n (er) + BcerY+n (er)
]
, (b)

τzz =

r
ei(zγ–tω)

[
–i(c – c)rdγ

(
AdrJ–+n (dr) +A( + d – n)Jn (dr)

+ BdrY–+n (dr) + B( + d – n)Yn (dr)
)

+ r–
(
A

(
c(n – er)(n + er) – crγ )Jn (er)

+ B
(
c(n – er)(n + er) – crγ )Yn (er)

)]
, (c)

τrz =

r

cei(zγ–tω)
[
–Ard

(
– + (d – n) + r

(
–d

 + γ ))J–+n (dr)
+ Ar–+d

(
d
 (– + n) + d

(
–(– + n)n + d

r
)

+ (– + n)
(
– + n + r

(
–d

 + γ )))J–+n (dr)d + iAerγ J–+n (er)

– iAnrγ Jn (er) – Brd
(
– + (d – n) + r

(
–d

 + γ ))Y–+n (dr)

+ Br–+d
(
d
 (– + n) + d

(
–(– + n)n + d

r
)

+ (– + n)
(
– + n + r

(
–d

 + γ )))Y–+n (dr)d + iBerγY–+n (er)

– iBnrγYn (er)
]
, (d)

where J andY are the Bessel functions of the first order. In the following section, solutions
of hollow circular cylinders with three different boundary conditions are performed.
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4 Boundary conditions and frequency equation
In this case, we are going to obtain the frequency equation for the boundary conditions.
Plane vibrations cylindrical bone free surface traction. In this case, we have

τrr(r) + σrr(r) = , τrz(r) = , at r = a, (a)

τrr(r) + σrr(r) = , τrz(r) = , at r = b, (b)

which correspond to free inner and outer surfaces, respectively. From equations (a)-
(d), () and (a)-(b) we obtain four homogeneous linear equations in A, B, A

and B

AcerJ–+n (ea) + AceJ–+n (ea) – AceaJn (ea)

– Acaγ Jn (ea) – AceJ+n (ea) +AceaJ+n (ea)

– iadγ
(
A(c – c)daJ–+n (da) +A

(
c + c(d – n)

+ c(– – d + n)
)
Jn (da) + B(c – c)daY–+n (da)

+ B
(
c + c(d – n) + c(– – d + n)

)
Yn (da)

)
+ BceaY–+n (ea)

+ BceY–+n (ea) – BceaYn (ea) – Bcaγ Yn (ea)

– BceY+n (ea) + BceaY+n (ea) = , (a)

–Aad
(
– + (d – n) + a

(
–d

 + γ ))J–+n (da) + Aa–+d
(
d
 (– + n)

+ d
(
–(– + n)n + d

a
) + (– + n)

(
– + n + a

(
–d

 + γ )))J–+n (da)d
+ iAeaγ J–+n (ea) – iAnaγ Jn (ea) – Bad

(
– + (d – n)

+ a
(
–d

 + γ ))Y–+n (da) + Ba–+d
(
d
 (– + n) + d

(
–(– + n)n + d

a
)

+ (– + n)
(
– + n + a

(
–d

 + γ )))Y–+n (da)d

+ iBeaγY–+n (ea) – iBnaγYn (ea) = , (b)

AcebJ–+n (eb) + AceJ–+n (eb) – AcebJn (eb) – Acbγ Jn (eb)

– AceJ+n (eb) +AcebJ+n (eb) – ibdγ
(
A(c – c)dbJ–+n (db)

+A
(
c + c(d – n) + c(– – d + n)

)
Jn (db) + B(c – c)dbY–+n (db)

+ B
(
c + c(d – n) + c(– – d + n)

)
Yn (db)

)
+ BcebY–+n (eb)

+ BceY–+n (eb) – BcebYn (eb) – Bcbγ Yn (eb)

– BceY+n (eb) + BcebY+n (eb) = , (c)

–Abd
(
– + (d – n) + b

(
–d

 + γ ))J–+n (db) + Ab–+d
(
d
 (– + n)

+ d
(
–(– + n)n + d

b
) + (– + n)

(
– + n + b

(
–d

 + γ )))J–+n (db)d
+ iAebγ J–+n (eb) – iAnbγ Jn (eb) – Bbd

(
– + (d – n)

+ b
(
–d

 + γ ))Y–+n (db) + Bb–+d
(
d
 (– + n) + d

(
–(– + n)n + d

b
)

+ (– + n)
(
– + n + b

(
–d

 + γ )))Y–+n (db)d

+ iBebγY–+n (eb) – iBnbγYn (eb) = . (d)
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These are a set of four homogeneous algebraic equations involving four unknown inte-
gration constants A, B, A and B. For a nontrivial solution of these equations, the de-
terminant of the coefficient matrix must vanish. The zero determinant of the coefficient
matrix will give the frequency equation for the surface waves. Thus, elimination of these
unknowns would give us the frequency equation as follows:

� =

∣∣∣∣∣∣∣∣∣

B B B B

B B B B

B B B B

B B B B

∣∣∣∣∣∣∣∣∣
= . ()

The roots of equation () give the values of natural frequency for the free surfaces of
the cylinder.

B = –iadγ
(
(c – c)daJ–+n (da) +

(
c + c(d – n)

+ c(– – d + n)
)
Jn (da)

)
,

B = cerJ–+n (ea) + ceJ–+n (ea) – ceaJn (ea) – caγ Jn (ea)

– ceJ+n (ea) + ceaJ+n (ea),

B = –iadγ
(
+B(c – c)daY–+n (da) + B

(
c + c(d – n)

+ c(– – d + n)
)
Yn (da)

)
,

B = ceaY–+n (ea) + ceY–+n (ea) – ceaYn (ea) – caγ Yn (ea)

– ceY+n (ea) + ceaY+n (ea),

B = –ad
(
– + (d – n) + a

(
–d

 + γ ))J–+n (da) + a–+d
(
d
 (– + n)

+ d
(
–(– + n)n + d

a
) + (– + n)

(
– + n + a

(
–d

 + γ )))J–+n (da)d,
B = ieaγ J–+n (ea) – inaγ Jn (ea),

B = –ad
(
– + (d – n) + a

(
–d

 + γ ))Y–+n (da) + a–+d
(
d
 (– + n)

+ d
(
–(– + n)n + d

a
) + (– + n)

(
– + n + a

(
–d

 + γ )))Y–+n (da)d,

B = ieaγY–+n (ea) – inaγYn (ea),

B = –ibdγ
(
(c – c)dbJ–+n (db) +

(
c + c(d – n)

+ c(– – d + n)
)
Jn (db)

)
,

B = cerJ–+n (eb) + ceJ–+n (eb) – cebJn (eb) – cbγ Jn (eb)

– ceJ+n (eb) + cebJ+n (eb),

B = –ibdγ
(
+B(c – c)dbY–+n (db) + B

(
c + c(d – n)

+ c(– – d + n)
)
Yn (db)

)
,

B = cebY–+n (eb) + ceY–+n (eb) – cebYn (eb) – cbγ Yn (eb)

– ceY+n (eb) + cebY+n (eb),
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Figure 1 Variation of phase velocity with respect to initial stress P∗ for different values of magnetic
field H0 for inner and outer free surfaces.

B = –bd
(
– + (d – n) + b

(
–d

 + γ ))J–+n (db) + b–+d
(
d
 (– + n)

+ d
(
–(– + n)n + d

b
) + (– + n)

(
– + n + b

(
–d

 + γ )))J–+n (db)d,
B = iebγ J–+n (eb) – inbγ Jn (eb),

B = –bd
(
– + (d – n) + b

(
–d

 + γ ))Y–+n (db) + b–+d
(
d
 (– + n)

+ d
(
–(– + n)n + d

b
) + (– + n)

(
– + n + b

(
–d

 + γ )))Y–+n (db)d,

B = iebγY–+n (eb) – inbγYn (eb).

5 Numerical results and discussion
For the numerical calculation of dimensionless frequency and phase velocity under the
effect of initial stress P∗ and magnetic field H, one shall investigate the frequency equa-
tions given by () numerically for a particularmodel. Since these equations are an implicit
function relation of dimensionless frequency, one can proceed with finding the variation
of frequency with ratio h. Once the frequency has been computed, the corresponding ef-
fect of initial stress P∗ andmagnetic fieldH on the frequency equations for dimensionless
frequency (the eigenvalues) can be studied by taking values of ratio h. As an illustrative
purpose of the foregoing solutions, the cylinder has the following geometric and mate-
rial constants which are used in the computations given by [, , ]: c = . × ,
c = .× , c = .× , c = .× , c = .× , ρ = .× .
For various values of dimensionless frequency, the phase velocity is obtained from fre-

quency equation flexural modes (n = ). Here, we explain graphically our results of the
previous applications. The dimensionless frequency and phase velocity were calculated
with the aid of an electronic computer by using the half-interval method. Figure  shows
the variation of phase velocity with respect to initial stress P∗ for different values of mag-
netic field H for inner and outer free surfaces. The phase velocity decreases with the in-
crease in initial stress, but the phase velocity increases when the values of magnetic field
H increase. Figure  shows variation of the dimensionless frequency with respect to ini-
tial stress P∗ for different values of magnetic fieldH for inner and outer free surfaces. The

http://www.boundaryvalueproblems.com/content/2014/1/135
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Figure 2 Variation of the dimensionless frequency with respect to initial stress P∗ for different values
of magnetic field H0 for inner and outer free surfaces.

Figure 3 Variation of phase velocity with respect to the ratio (h) of inner and outer free surfaces for
different values of initial stress P∗ whenmagnetic field H0 = 0.8× 103.

dimensionless frequency increases with the increase in initial stress, and the dimension-
less frequency increases when the values of magnetic field H increase. Figure  shows
variation of phase velocity with respect to the ratio (h) of inner and outer free surfaces for
different values of initial stress P∗ when magnetic field H = .× . The phase velocity
decreases with the increase in the ratio (h) of inner and outer free surfaces, and the phase
velocity increases when the values of initial stress increase. Figure  shows variation of
non-dimensional frequency with respect to the ratio (h) of inner and outer free surfaces
for different values of initial stress P∗ whenmagnetic fieldH = .× . The dimension-
less frequency increases with the increase in the ratio (h) of inner and outer free surfaces,
and the dimensionless frequency increases when the values of initial stress P∗ decrease. It
should be noticed that the effects of initial stress P∗ and magnetic field H on the dimen-
sionless frequency tend to be the increasing dimensionless frequency. These results are

http://www.boundaryvalueproblems.com/content/2014/1/135
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Figure 4 Variation of non-dimensional frequency with respect to the ratio (h) of inner and outer free
surfaces for different values of initial stress P∗ whenmagnetic field H0 = 0.8× 103.

specific for the case considered, but other cases may have different trends because of the
dependences of the results on the mechanical and constants of the material [–]. The
results indicate that the effect of initial stress P∗ and magnetic field H is very pronouced.

6 Conclusion
This study has presented the effect of initial stress P∗ and magnetic field H on surface
wave dispersion in bone. The phase velocity and the dimensionless frequency for this
problem are obtained from the dimensionless frequency equation. A numerical method
has been presented for obtaining the estimates of phase velocity and dimensionless fre-
quencies of vibration of transversely isotropic bone using the half-interval method. The
eigenvalues are calculated for different cases and compared with those reported in the
absence of initial stress P∗ and magnetic field H. The effects of initial stress P∗ and mag-
netic field H on the dimensionless frequencies and the phase velocity were indicated by
figures.
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