# The global solution and blow-up phenomena to a modified Novikov equation 

Shaoyong Lai*, Haibo Yan and Nan Li

"Correspondence:
laishaoy@swufe.edu.cn Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu, 610074, China


#### Abstract

A modified Novikov equation with symmetric coefficients is investigated. Provided that the initial value $u_{0} \in H^{5}(R)\left(s>\frac{3}{2}\right),\left(1-\partial_{x}^{2}\right) u_{0}$ does not change sign and the solution $u$ itself belongs to $L^{1}(R)$, the existence and uniqueness of the global strong solutions to the equation are established in the space $C\left([0, \infty) ; H^{5}(R)\right) \cap C^{1}\left([0, \infty) ; H^{s-1}(R)\right)$. A blow-up result to the development of singularities in finite time for the equation is acquired.


MSC: 35G25;35L05
Keywords: global existence; strong solutions; blow-up result

## 1 Introduction

Many scholars have paid attention to the integrable equation

$$
\begin{equation*}
u_{t}-u_{t x x}+4 u^{2} u_{x}=3 u u_{x} u_{x x}+u^{2} u_{x x x}, \tag{1}
\end{equation*}
$$

which was derived by Novikov [1]. Well-posedness of the Novikov equation in the Sobolev spaces on the torus was first done by Tiglay in [2], and was completed on both the line and the circle by Himonas and Holliman in [3]. Its Hölder continuity properties were studied in Himonas and Holmes [4]. The periodic and the non-periodic Cauchy problem for Eq. (1) and continuity results for the data-to-solution map in the Sobolev spaces are discussed in Grayshan [5]. A matrix Lax pair for Eq. (1) is acquired in [6] and is shown to be related to a negative flow in the Sawada-Kotera hierarchy. The scattering theory is applied to find non-smooth explicit soliton solutions with multiple peaks for Eq. (1) in [7]. Sufficient conditions on the initial data to guarantee the formation of singularities in finite time for Eq. (1) are given in Jiang and Ni [8]. This multiple peak property is common with the Camassa-Holm and Degasperis-Procesi equations [9-11]. Mi and Mu [12] established many dynamic results for a modified Novikov equation with peak solution. It is shown in Ni and Zhou [13] that the Novikov equation associated with initial value has locally well-posedness in a Sobolev space $H^{s}$ with $s>\frac{3}{2}$ by using the abstract Kato theorem. Two results about the persistence properties of the strong solution for Eq. (1) are established in [13]. Using the Littlewood-Paley decomposition and nonhomogeneous Besov spaces, Yan et al. [14] proved the global existence and blow-up phenomena for the weakly dissipative Novikov equation. For other methods to handle the Novikov equation and the related partial differential equations, the reader is referred to [15-22] and the references therein.

Observing the coefficients of the Novikov equation (1), we see that the coefficient of $u^{2} u_{x}$ is equal to the coefficient of $u u_{x} u_{x x}$ plus the coefficient of $u^{2} u_{x x x}$. That is,

$$
4=3+1 .
$$

Indeed, this relationship among the coefficients plays important roles in the study of the essential dynamical properties of the Novikov model [1, 2, 11-13]. This motivates us to study the following equation:

$$
\begin{equation*}
u_{t}-u_{t x x}+(a+b) u^{2} u_{x}=a u u_{x} u_{x x}+b u^{2} u_{x x x} \tag{2}
\end{equation*}
$$

where $a>0$ and $b>0$ are arbitrary constants. Clearly, letting $a=3$ and $b=1$, Eq. (2) becomes the Novikov equation (1). The essential difference between Eq. (2) and the Novikov equation (1) is that Eq. (2) does not conform with the following conservation law:

$$
\int_{R}\left(u^{2}+u_{x}^{2}\right) d x=\int_{R}\left(u_{0}^{2}+u_{0 x}^{2}\right) d x
$$

which results in the bounds of $\|u(t, \cdot)\|_{L^{\infty}(R)}$ for Eq. (1).
Making use of $u_{0} \in H^{s}(R), s>\frac{3}{2}$, the assumption that $\left(1-\partial_{x}^{2}\right) u_{0}$ does not change sign, and the assumption that the solution of Eq. (2) satisfies $u \in L^{1}(R)$, we prove the global existence theorem of Eq. (2) in the Sobolev space,

$$
u(t, x) \in C\left([0, \infty) ; H^{s}(R)\right) \cap C^{1}\left([0, \infty) ; H^{s-1}(R)\right)
$$

The objective of this work is to investigate Eq. (2). Since $a>0$ and $b>0$ are arbitrary constants, we cannot obtain the boundedness of the solution $u$ for Eq. (2) although the initial data satisfy the sign condition. To overcome this, assuming that the solution itself satisfies $u \in L^{1}(R)$ and the initial data satisfy the sign condition, we adopt the methods used in Rodriguez-Blanco [16] to derive that $\left\|\frac{\partial u(t, x)}{\partial x}\right\|_{L^{\infty}(R)}$ possesses bounds for any time $t>0$. This leads us to establish the well-posedness of the global strong solutions to Eq. (2). Parts of the main results in $[17,18]$ are extended. In addition, we acquire a blow-up result to the development of singularities in finite time, which includes the blow-up result in [12].
The rest of this paper is organized as follows. Section 2 states the main results of this work. Section 3 proves the global existence result. The proof of a blow-up result is given in Section 4.

## 2 Main results

We let $L^{p}=L^{p}(R)(1 \leq p<+\infty)$ be the space of all measurable functions $h$ such that $\|h\|_{L^{p}}^{p}=\int_{R}|h(t, x)|^{p} d x<\infty$. We define $L^{\infty}=L^{\infty}(R)$ with the standard norm $\|h\|_{L^{\infty}}=$ $\inf _{m(e)=0} \sup _{x \in R \backslash e}|h(t, x)|$. For any real number $s$, we let $H^{s}=H^{s}(R)$ denote the Sobolev space with the norm defined by

$$
\|h\|_{H^{s}}=\left(\int_{R}\left(1+|\xi|^{2}\right)^{s}|\hat{h}(t, \xi)|^{2} d \xi\right)^{\frac{1}{2}}<\infty
$$

where $\hat{h}(t, \xi)=\int_{R} e^{-i x \xi} h(t, x) d x$. Here we note that the norms $\|\cdot\|_{L^{p}}^{p},\|\cdot\|_{L^{\infty}}$ and $\|\cdot\|_{H^{s}}$ depend on variable $t$.

For $T>0$ and nonnegative number $s, C\left([0, T) ; H^{s}(R)\right)$ denotes the Frechet space of all continuous $H^{s}$-valued functions on $[0, T)$. We set $\Lambda=\left(1-\partial_{x}^{2}\right)^{\frac{1}{2}}$.

In order to study the existence of solutions for Eq. (2), we consider its Cauchy problem in the form

$$
\left\{\begin{array}{l}
u_{t}-u_{t x x}+(a+b) u^{2} u_{x}=a u u_{x} u_{x x}+b u^{2} u_{x x x}  \tag{3}\\
u(0, x)=u_{0}(x)
\end{array}\right.
$$

which is equivalent to

$$
\left\{\begin{array}{l}
u_{t}+b u^{2} u_{x}=\Lambda^{-2}\left[\left(-a u^{2} u_{x}+\frac{a-6 b}{2}\left(u u_{x}^{2}\right)_{x}+\frac{2 b-a}{2} u_{x}^{3}\right],\right.  \tag{4}\\
u(0, x)=u_{0}(x),
\end{array}\right.
$$

where $a>0$ and $b>0$ are arbitrary constants. Now we give the main results for problem (3).

Theorem 1 Assume that the solution of problem (3) satisfies $u(t, x) \in L^{1}(R)$ and let $u_{0}(x) \in$ $H^{s}, s>\frac{3}{2}$ and $\left(1-\partial_{x}^{2}\right) u_{0} \geq 0$ for all $x \in R$ (or equivalently $\left(1-\partial_{x}^{2}\right) u_{0} \leq 0$ for all $\left.x \in R\right)$. Then problem (3) has a unique solution satisfying

$$
u(t, x) \in C\left([0, \infty) ; H^{s}(R)\right) \cap C^{1}\left([0, \infty) ; H^{s-1}(R)\right)
$$

Theorem 2 Assume that $u_{0}(x) \in H^{s}(R)$ with $s>\frac{3}{2}$. If $a=b$, then every solution of problem (3) exists globally in time. If $a>b$, then the solution blows up in finite time if and only if $u u_{x}$ becomes unbounded from below in finite time. If $a<b$, then the solution blows up in finite time if and only if uux becomes unbounded from above in finite time.

## 3 Global strong solutions

For proving the global existence for problem (3), we cite the local well-posedness result presented in [18].

Lemma $3.1([18])$ Let $u_{0}(x) \in H^{s}(R)$ with $s>\frac{3}{2}$. Then the Cauchy problem (3) has a unique solution $u(t, x) \in C\left([0, T) ; H^{s}(R)\right) \cap C^{1}\left([0, T) ; H^{s-1}(R)\right)$ where $T>0$ depends on $\left\|u_{0}\right\|_{H^{s}(R)}$.
Assume $u_{0} \in H^{s}(R)$ with $s>\frac{3}{2}$. Then there exists a unique solution $u(t, x)$ to problem (3) and

$$
u(t, x) \in C\left([0, T) ; H^{s}(R)\right) \cap C^{1}\left([0, T) ; H^{s-1}(R)\right)
$$

with the maximal existence time $T>0$. First, we study the differential equation

$$
\left\{\begin{array}{l}
p_{t}=b u^{2}(t, p), \quad t \in[0, T)  \tag{5}\\
p(0, x)=x
\end{array}\right.
$$

Lemma 3.2 Let $u_{0} \in H^{s}, s>3$ and let $T>0$ be the maximal existence time of the solution to problem (3). Then problem (5) has a unique solution $p \in C^{1}([0, T) \times R, R)$. Moreover, the map $p(t, \cdot)$ is an increasing diffeomorphism of $R$ with $p_{x}(t, x)>0$ for $(t, x) \in[0, T) \times R$.

Proof From Lemma 3.1, we have $u \in C^{1}\left([0, T) ; H^{s-1}(R)\right)$ and $H^{s-1} \in C^{1}(R)$. Thus we conclude that both functions $u(t, x)$ and $u_{x}(t, x)$ are bounded, Lipschitz in space and $C^{1}$ in time. Using the existence and uniqueness theorem of ordinary differential equations derives that problem (5) has a unique solution $p \in C^{1}([0, T) \times R, R)$.

Differentiating Eq. (5) with respect to $x$ yields

$$
\left\{\begin{array}{l}
\frac{d}{d t} p_{x}=2 b u u_{x}(t, p) p_{x}, \quad t \in[0, T), b \neq 0  \tag{6}\\
p_{x}(0, x)=1
\end{array}\right.
$$

which leads to

$$
\begin{equation*}
p_{x}(t, x)=\exp \left(\int_{0}^{t} 2 b u u_{x}(\tau, p(\tau, x)) d \tau\right) \tag{7}
\end{equation*}
$$

For every $T^{\prime}<T$, using the Sobolev imbedding theorem yields

$$
\sup _{(\tau, x) \in\left[0, T^{\prime}\right) \times R}\left|u u_{x}(\tau, x)\right|<\infty .
$$

It is inferred that there exists a constant $K_{0}>0$ such that $p_{x}(t, x) \geq e^{-K_{0} t}$ for $(t, x) \in$ $[0, T) \times R$. It completes the proof.

Lemma 3.3 Let $u_{0} \in H^{s}$ with $s>3$, and let $T>0$ be the maximal existence time of the problem (3). We have

$$
\begin{equation*}
y(t, p(t, x)) p_{x}^{2}(t, x)=y_{0}(x) e^{-(a-4 b) \int_{0}^{t} u u_{x} d \tau} \tag{8}
\end{equation*}
$$

where $(t, x) \in[0, T) \times R$ and $y:=u-u_{x x}$.

Proof Using Eqs. (2) and (6)-(8), we have

$$
\begin{align*}
\frac{d}{d t} & {\left[y(t, p(t, x)) p_{x}^{2}(t, x)\right] } \\
& =y_{t} p_{x}^{2}+2 y p_{x} p_{x t}+y_{x} p_{t} p_{x}^{2} \\
& =y_{t} p_{x}^{2}+4 b y u u_{x} p_{x}^{2}+b u^{2} y_{x} p_{x}^{2} \\
& =\left(u_{t}-u_{t x x}+a u u_{x}\left(u-u_{x x}\right)+b u^{2}\left(u_{x}-u_{x x x}\right)\right) p_{x}^{2}-a u u_{x} y p_{x}^{2}+4 b u u_{x} y p_{x}^{2} \\
& =\left(u_{t}-u_{t x x}+(a+b) u^{2} u_{x}-a u u_{x} u_{x x}-b u^{2} u_{x x x}\right) p_{x}^{2}-(a-4 b) u u_{x} y p_{x}^{2} \\
& =-(a-4 b) u u_{x} y p_{x}^{2} . \tag{9}
\end{align*}
$$

Using $p_{x}(0, x)=1$ and solving the above equation, we complete the proof of the lemma.

Remark 1 From Lemma 3.3, we conclude that, if $u_{0}-u_{0 x x}=\left(1-\partial_{x}^{2}\right) u_{0} \geq 0$, then ( $1-$ $\left.\partial_{x}^{2}\right) u(t, x) \geq 0$. Since the operator $\left(1-\partial_{x}^{2}\right)^{-1}$ preserves positivity, we get $u \geq 0$. Similarly, if $\left(1-\partial_{x}^{2}\right) u_{0} \leq 0$, we have $\left(1-\partial_{x}^{2}\right) u \leq 0$ and $u \leq 0$.

Lemma 3.4 If $u_{0} \in H^{s}, s>\frac{3}{2}$, such that $\left(1-\partial_{x}^{2}\right) u_{0} \geq 0\left(\right.$ or $\left.\left(1-\partial_{x}^{2}\right) u_{0} \leq 0\right)$ and $\int_{R}|u| d x<\infty$, then there exists a constant $K>0$ such that the solution of problem (3) satisfies $\left\|u_{x}\right\|_{L^{\infty}} \leq K$.

Proof We will prove this lemma to assume $u_{0} \in H^{\infty}$ which results in $u \in H^{\infty}$ from Lemma 3.1. For $\left(1-\partial_{x}^{2}\right) u_{0} \geq 0$, from Lemma 3.3, we have $\left(1-\partial_{x}^{2}\right) u \geq 0$. Then $u \geq 0$ does not change sign. From the assumption $\int_{R}|u| d x<\infty$ one derives

$$
\begin{equation*}
-u_{x}+\int_{-\infty}^{x} u d x=\int_{-\infty}^{x}\left(u-u_{x x}\right) d x \leq \int_{-\infty}^{\infty}\left(u-u_{x x}\right) d x=c \tag{10}
\end{equation*}
$$

where $c$ is a positive constant. Then

$$
\begin{equation*}
-u_{x} \leq c-\int_{-\infty}^{x} u d x \leq c+\int_{-\infty}^{x} u d x \leq 2 c \tag{11}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
u_{x}+\int_{x}^{\infty} u d x=\int_{x}^{\infty}\left(u-u_{x x}\right) d x \leq \int_{-\infty}^{\infty}\left(u-u_{x x}\right) d x=c \tag{12}
\end{equation*}
$$

which results in

$$
\begin{equation*}
u_{x} \leq c-\int_{x}^{\infty} u d x \leq c+\int_{x}^{\infty} u d x \leq 2 c . \tag{13}
\end{equation*}
$$

We conclude from Eqs. (11) and (13) that $\left\|u_{x}\right\|_{L^{\infty}} \leq K$. To complete the proof, we use a simple density argument [16]. Setting $u_{0}^{\varepsilon}=e^{\varepsilon \partial_{x}^{2}} u_{0}$, we have $u_{0}^{\varepsilon} \in H^{\infty}$ and $\left\|u_{x}^{\varepsilon}\right\|_{L^{\infty}} \leq$ $2 \int_{R}|u| d x<K$. Applying $\left\|u_{x}^{\varepsilon}-u_{x}\right\|_{L^{\infty}} \leq \sup _{[0, T]}\left\|u_{x}^{\varepsilon}-u_{x}\right\|_{H^{s}} \rightarrow 0$ when $\varepsilon \rightarrow 0$, we have $\left\|u_{x}\right\|_{L^{\infty}} \leq K$.

Using the first equation of system (3) one derives

$$
\frac{d}{d t} \int_{R}\left(u^{2}+u_{x}^{2}\right) d x+2(a-3 b) \int_{R} u u_{x}^{3} d x=0
$$

from which we have the conservation law

$$
\begin{equation*}
\int_{R}\left(u^{2}+u_{x}^{2}\right) d x+2(a-3 b) \int_{0}^{t} \int_{R} u u_{x}^{3} d x=\int_{R}\left(u_{0}^{2}+u_{0 x}^{2}\right) d x . \tag{14}
\end{equation*}
$$

Lemma 3.5 (Kato and Ponce [23]) If $r \geq 0$, then $H^{r} \cap L^{\infty}$ is an algebra. Moreover

$$
\|u v\|_{r} \leq c\left(\|u\|_{L^{\infty}}\|v\|_{r}+\|u\|_{r}\|v\|_{L^{\infty}}\right)
$$

where $c$ is a constant depending only on $r$.

Lemma 3.6 (Kato and Ponce [23]) Let $r>0$. If $u \in H^{r} \cap W^{1, \infty}$ and $v \in H^{r-1} \cap L^{\infty}$, then

$$
\left\|\left[\Lambda^{r}, u\right] v\right\|_{L^{2}} \leq c\left(\left\|\partial_{x} u\right\|_{L^{\infty}}\left\|\Lambda^{r-1} v\right\|_{L^{2}}+\left\|\Lambda^{r} u\right\|_{L^{2}}\|v\|_{L^{\infty}}\right)
$$

Lemma 3.7 Let $s>\frac{3}{2}$ and the function $u(t, x)$ is a solution of problem (3) and the initial data $u_{0}(x) \in H^{s}(R)$. Then the following results hold:

$$
\begin{equation*}
\|u\|_{L^{\infty}} \leq\|u\|_{H^{1}} \leq\left\|u_{0}\right\|_{H^{1}(R)} e^{\frac{|a-3 b|}{2} \int_{0}^{t}\left\|u_{x}\right\|_{L^{\infty}(R)}^{2} d \tau} . \tag{15}
\end{equation*}
$$

For $q \in(0, s-1]$, there is a constant $c$ only depending on $a$ and $b$ such that

$$
\begin{align*}
\int_{R}\left(\Lambda^{q+1} u\right)^{2} d x \leq & \int_{R}\left[\left(\Lambda^{q+1} u_{0}\right)^{2}\right] d x \\
& +c \int_{0}^{t}\|u\|_{H^{q+1}}^{2}\left(\left\|u_{x}\right\|_{L^{\infty}}\|u\|_{L^{\infty}}+\left\|u_{x}\right\|_{L^{\infty}}^{2}\right) d \tau . \tag{16}
\end{align*}
$$

Proof Using $\left|2 u u_{x}\right| \leq\left(u^{2}+u_{x}^{2}\right)$, the Gronwall inequality and Eq. (14), one derives Eq. (15). Using $\partial_{x}^{2}=-\Lambda^{2}+1$ and the Parseval equality gives rise to

$$
\int_{R} \Lambda^{q} u \Lambda^{q} \partial_{x}^{3}\left(u^{3}\right) d x=-3 \int_{R}\left(\Lambda^{q+1} u\right) \Lambda^{q+1}\left(u^{2} u_{x}\right) d x+3 \int_{R}\left(\Lambda^{q} u\right) \Lambda^{q}\left(u^{2} u_{x}\right) d x .
$$

For $q \in(0, s-1]$, applying $\left(\Lambda^{q} u\right) \Lambda^{q}$ to both sides of the first equation of system (3) and integrating with respect to $x$ by parts, we have the identity

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t} \int_{R}\left[\left(\Lambda^{q} u\right)^{2}+\left(\Lambda^{q} u_{x}\right)^{2}\right] d x= & -a \int_{R}\left(\Lambda^{q} u\right) \Lambda^{q}\left(u^{2} u_{x}\right) d x \\
& -b \int_{R}\left(\Lambda^{q+1} u\right) \Lambda^{q+1}\left(u^{2} u_{x}\right) d x-2 b \int_{R} \Lambda^{q} u \Lambda^{q} u_{x}^{3} d x \\
& +(a-6 b) \int_{R} \Lambda^{q} u \Lambda^{q}\left(u u_{x} u_{x x}\right) d x \tag{17}
\end{align*}
$$

We will estimate the terms on the right-hand side of Eq. (17) separately. For the first term, by using the Cauchy-Schwartz inequality and Lemmas 3.5 and 3.6, we have

$$
\begin{align*}
\left|\int_{R}\left(\Lambda^{q} u\right) \Lambda^{q}\left(u^{2} u_{x}\right) d x\right|= & \left|\int_{R}\left(\Lambda^{q} u\right)\left[\Lambda^{q}\left(u^{2} u_{x}\right)-u^{2} \Lambda^{q} u_{x}\right] d x+\int_{R}\left(\Lambda^{q} u\right) u^{2} \Lambda^{q} u_{x} d x\right| \\
\leq & c\|u\|_{H^{q}}\left(2\|u\|_{L^{\infty}}\left\|u_{x}\right\|_{L^{\infty}}\|u\|_{H^{q}}+\left\|u_{x}\right\|_{L^{\infty}}\|u\|_{L^{\infty}}\|u\|_{H^{q}}\right) \\
& +\|u\|_{L^{\infty}}\left\|u_{x}\right\|_{L^{\infty}}\left\|\Lambda^{q} u\right\|_{L^{2}}^{2} \\
\leq & c\|u\|_{H^{q}}^{2}\|u\|_{L^{\infty}}\left\|u_{x}\right\|_{L^{\infty}} . \tag{18}
\end{align*}
$$

Using the above estimate to the second term yields

$$
\begin{equation*}
\left|\int_{R}\left(\Lambda^{q+1} u\right) \Lambda^{q+1}\left(u^{2} u_{x}\right) d x\right| \leq c\|u\|_{H^{q+1}}^{2}\|u\|_{L^{\infty}}\left\|u_{x}\right\|_{L^{\infty}} . \tag{19}
\end{equation*}
$$

Using the Cauchy-Schwartz inequality and Lemma 3.5, we obtain

$$
\begin{align*}
\left|\int_{R}\left(\Lambda^{q} u_{x}\right) \Lambda^{q}\left(u u_{x}^{2}\right) d x\right| & \leq\left\|\Lambda^{q} u_{x}\right\|_{L^{2}}\left\|\Lambda^{q}\left(u u_{x}^{2}\right)\right\|_{L^{2}} \\
& \leq c\|u\|_{H^{q+1}}\left(\|u\|_{L^{\infty}}\left\|u_{x}^{2}\right\|_{H^{q}}+\|u\|_{H^{q}}\left\|u_{x}^{2}\right\|_{L^{\infty}}\right) \\
& \leq c\|u\|_{H^{q+1}}^{2}\left(\|u\|_{L^{\infty}}\left\|u_{x}\right\|_{L^{\infty}}+\left\|u_{x}\right\|_{L^{\infty}}^{2}\right) . \tag{20}
\end{align*}
$$

For the last term in Eq. (17), using $u\left(u_{x}^{2}\right)_{x}=\left(u u_{x}^{2}\right)_{x}-u_{x} u_{x}^{2}$ results in

$$
\begin{align*}
& \left|\int_{R}\left(\Lambda^{q} u\right) \Lambda^{q}\left(u u_{x} u_{x x}\right) d x\right| \\
& \quad \leq \frac{1}{2}\left|\int_{R} \Lambda^{q} u_{x} \Lambda^{q}\left(u u_{x}^{2}\right) d x\right|+\frac{1}{2}\left|\int_{R} \Lambda^{q} u \Lambda^{q}\left[u_{x} u_{x}^{2}\right] d x\right| \\
& \quad=K_{1}+K_{2} . \tag{21}
\end{align*}
$$

For $K_{1}$, it follows from Eq. (20) that

$$
\begin{equation*}
K_{1} \leq c\|u\|_{H^{q+1}}^{2}\left(\|u\|_{L^{\infty}}\left\|u_{x}\right\|_{L^{\infty}}+\left\|u_{x}\right\|_{L^{\infty}}^{2}\right) \tag{22}
\end{equation*}
$$

For $K_{2}$, applying Lemma 3.5 derives

$$
\begin{align*}
K_{2} & \leq c\|u\|_{H^{q}}\left\|u_{x} u_{x}^{2}\right\|_{H^{q}} \\
& \leq c\|u\|_{H^{q}}\left(\left\|u_{x}\right\|_{L^{\infty}}\left\|u_{x}^{2}\right\|_{H^{q}}+\left\|u_{x}\right\|_{H^{q}}\left\|u_{x}^{2}\right\|_{L^{\infty}}\right) \\
& \leq c\|u\|_{H^{q+1}}^{2}\left\|u_{x}\right\|_{L^{\infty}}^{2} . \tag{23}
\end{align*}
$$

It follows from Eqs. (18)-(23) that there exists a constant $c$ such that

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int_{R}\left[\left(\Lambda^{q} u\right)^{2}+\left(\Lambda^{q} u_{x}\right)^{2}\right] d x \leq c\|u\|_{H^{q+1}}^{2}\left(\left\|u_{x}\right\|_{L^{\infty}}\|u\|_{L^{\infty}}+\left\|u_{x}\right\|_{L^{\infty}}^{2}\right) \tag{24}
\end{equation*}
$$

Integrating both sides of the above inequality with respect to $t$ results in inequality (16).

Proof of Theorem 1 Using Eq. (16) with $q=s-1$, we obtain

$$
\begin{equation*}
\|u\|_{H^{s}}^{2} \leq\left\|u_{0}\right\|_{H^{s}}^{2}+c \int_{0}^{t}\|u\|_{H^{s}}^{2}\left(\|u\|_{L^{\infty}}\left\|u_{x}\right\|_{L^{\infty}}+\left\|u_{x}\right\|_{L^{\infty}}^{2}\right) d \tau \tag{25}
\end{equation*}
$$

Applying the Gronwall inequality, we get

$$
\begin{equation*}
\|u\|_{H^{s}}^{2} \leq\left\|u_{0}\right\|_{H^{s}}^{2} e^{2 c \int_{0}^{t}\left(\|u\|_{L} \infty\left\|u_{x}\right\|_{L^{\infty}}+\left\|u_{x}\right\|_{L^{\infty}}^{2}\right) d \tau} . \tag{26}
\end{equation*}
$$

Using Eq. (15) and Lemma 3.4, we complete the proof of Theorem 1.
Remark 2 In fact, using $\left\|u_{x}\right\|_{L^{\infty}} \leq\|u\|_{H^{s}}$ with $s>\frac{3}{2}$, Eqs. (15) and (26), we derive that the solution of Eq. (2) in space $H^{s}(R)$ blows up in finite time if and only if $\left\|u_{x}\right\|_{L^{\infty}}=+\infty$.

## 4 Proof of Theorem 2

Multiplying Eq. (2) by $y=u-u_{x x}$ and integrating by parts, we get

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t} \int_{R} y^{2} d x & =\int_{R} y y_{t} d x \\
& =\int_{R} y\left(a u u_{x} u_{x x}+b u^{2} u_{x x x}-(a+b) u^{2} u_{x}\right) d x
\end{aligned}
$$

$$
\begin{align*}
& =\int_{R} y\left(a u u_{x}(u-y)+b u^{2}\left(u_{x}-y_{x}\right)-(a+b) u^{2} u_{x}\right) d x \\
& =\int_{R} y\left(-a u u_{x} y-b u^{2} y_{x}\right) d x \\
& =(b-a) \int_{R} u u_{x} y^{2} d x \tag{27}
\end{align*}
$$

When $a=b$, from Eq. (27), we derive $\left\|u_{x}\right\|_{L^{\infty}}$ is bounded. From Lemma 3.7 and Remark 2, we see that problem (3) has a global solution in the space

$$
C\left([0, \infty) ; H^{s}(R)\right) \cap C^{1}\left([0, \infty) ; H^{s-1}(R)\right)
$$

Assume that the solution $u=u\left(\cdot, u_{0}\right)$ of problem (3) blows up in finite time in the space $H^{s}(R)$ with $s>\frac{3}{2}$. If $b-a<0$, we assume that $u u_{x}$ is bounded from below on $[0, T) \times R$, i.e., there exists a constant $M>1$ such that

$$
(b-a) u u_{x}(t, x) \leq M \quad \text { on }[0, T) \times R .
$$

From Eq. (27), we get

$$
\begin{equation*}
\|u\|_{H^{2}} \leq c\left\|u_{0}\right\|_{H^{2}} e^{M t} \tag{28}
\end{equation*}
$$

from which we derive that the $H^{2}$ norm of the solution to problem (3) does not blow up in finite time. From Remark 2, we know that this is impossible. Therefore, we have $\lim _{t \rightarrow T} \inf \left\{\inf _{x \in R} u u_{x}(t, x)\right\}=-\infty$.
Similar to the above, we know that if $b-a>0$, the solution of problem (3) blows up if and only if $\lim _{t \rightarrow T} \inf \left\{\inf _{x \in R} u u_{x}(t, x)\right\}=\infty$.

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

The article is a joint work of three authors who contributed equally to the final version of the paper. All authors read and approved the final manuscript.

## Acknowledgements

This work is supported by both the Fundamental Research Funds for the Central Universities (JBK130401, JBK120504) and the Applied and Basic Project of Sichuan Province (2012JY0020).

Received: 14 August 2013 Accepted: 23 December 2013 Published: 15 Jan 2014

## References

1. Novikov, V: Generalizations of the Camassa-Holm equation. J. Phys. A, Math. Theor. 42, 342002 (2009)
2. Tiglay, F: The periodic Cauchy problem for Novikov's equation. Int. Math. Res. Not. 20, 4633-4648 (2011)
3. Himonas, AA, Holliman, C: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449-479 (2012)
4. Himonas, AA, Holmes, J: Hölder continuity of the solution map for the Novikov equation. J. Math. Phys. 54, 061501 (2013)
5. Grayshan, K: Peakon solutions of the Novikov equation and properties of the data-to-solution map. J. Math. Anal. Appl. 397, 515-521 (2013)
6. Hone, ANW, Wang, JP: Integrable peakon equations with cubic nonlinearity. J. Phys. A, Math. Theor. 41, 372002 (2009)
7. Hone, ANW, Lundmark, H, Szmigielski, J: Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm type equation. Dyn. Partial Differ. Equ. 6, 253-289 (2009)
8. Jiang, ZH, Ni, LD: Blow-up phenomenon for the integrable Novikov equation. J. Math. Anal. Appl. 385, 551-558 (2012)
9. Camassa, R, Holm, D: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661-1664 (1993)
10. Constantin, A, Lannes, D: The hydro-dynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 193, 165-186 (2009)
11. Constantin, A, Escher, J: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229-243 (1998)
12. $\mathrm{Mi}, \mathrm{YS}, \mathrm{Mu}, \mathrm{CL}$ : On the Cauchy problem for the modified Novikov equation with peakon solutions. J. Differ. Equ. 254, 961-982 (2013)
13. Ni, L, Zhou, Y: Well-posedness and persistence properties for the Novikov equation. J. Differ. Equ. 250, 3002-3021 (2011)
14. Yan, W, Li, YS, Zhang, YM: Global existence and blow-up phenomena for the weakly dissipative Novikov equation. Nonlinear Anal. 75, 2464-2473 (2012)
15. Himonas, A, Misiolek, G, Ponce, G, Zhou, Y: Persistence properties and unique continuation of solutions of Camassa-Holm equation. Commun. Math. Phys. 271, 511-522 (2007)
16. Rodriguez-Blanco, G: On the Cauchy problem for the Camassa-Holm equation. Nonlinear Anal. 46, 309-327 (2001)
17. Lai, SY, Li, N, Wu, YH: The existence of global strong and weak solutions for the Novikov equation. J. Math. Anal. Appl. 399, 682-691 (2013)
18. Lai, SY, Wu, M: The local strong and weak solutions to a generalized Novikov equation. Bound. Value Probl. 2013, Article ID 134 (2013)
19. Lai, SY, WU, YH: The local well-posedness and existence of weak solutions for a generalized Camassa-Holm equation. J. Differ. Equ. 248, 2038-2063 (2010)
20. Yan, W, Li, YS, Zhang, YM: The Cauchy problem for the integrable Novikov equation. J. Differ. Equ. 253, 298-318 (2012)
21. Zhao, L, Zhou, SG: Symbolic analysis and exact travelling wave solutions to a new modified Novikov equation. Appl. Math. Comput. 217, 590-598 (2010)
22. Coclite, GM, Karlsen, KH: On the well-posedness of the Degasperis-Procesi equation. J. Funct. Anal. 223, 60-91 (2006)
23. Kato, T, Ponce, G: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891-907 (1998)
10.1186/1687-2770-2014-16

Cite this article as: Lai et al.: The global solution and blow-up phenomena to a modified Novikov equation. Boundary Value Problems 2014, 2014:16

## Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

