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Abstract
A modified Novikov equation with symmetric coefficients is investigated. Provided
that the initial value u0 ∈ Hs(R) (s > 3

2 ), (1 – ∂2
x )u0 does not change sign and the

solution u itself belongs to L1(R), the existence and uniqueness of the global strong
solutions to the equation are established in the space
C([0,∞);Hs(R))∩ C1([0,∞);Hs–1(R)). A blow-up result to the development of
singularities in finite time for the equation is acquired.
MSC: 35G25; 35L05
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1 Introduction
Many scholars have paid attention to the integrable equation

ut – utxx + uux = uuxuxx + uuxxx, ()

which was derived byNovikov [].Well-posedness of the Novikov equation in the Sobolev
spaces on the torus was first done by Tiglay in [], and was completed on both the line and
the circle by Himonas and Holliman in []. Its Hölder continuity properties were stud-
ied in Himonas and Holmes []. The periodic and the non-periodic Cauchy problem for
Eq. () and continuity results for the data-to-solution map in the Sobolev spaces are dis-
cussed in Grayshan []. A matrix Lax pair for Eq. () is acquired in [] and is shown to be
related to a negative flow in the Sawada-Kotera hierarchy. The scattering theory is applied
to find non-smooth explicit soliton solutions with multiple peaks for Eq. () in []. Suf-
ficient conditions on the initial data to guarantee the formation of singularities in finite
time for Eq. () are given in Jiang and Ni []. This multiple peak property is common with
the Camassa-Holm and Degasperis-Procesi equations [–]. Mi andMu [] established
many dynamic results for a modified Novikov equation with peak solution. It is shown
in Ni and Zhou [] that the Novikov equation associated with initial value has locally
well-posedness in a Sobolev space Hs with s > 

 by using the abstract Kato theorem. Two
results about the persistence properties of the strong solution for Eq. () are established
in []. Using the Littlewood-Paley decomposition and nonhomogeneous Besov spaces,
Yan et al. [] proved the global existence and blow-up phenomena for the weakly dissipa-
tive Novikov equation. For other methods to handle the Novikov equation and the related
partial differential equations, the reader is referred to [–] and the references therein.
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Observing the coefficients of theNovikov equation (), we see that the coefficient of uux
is equal to the coefficient of uuxuxx plus the coefficient of uuxxx. That is,

 =  + .

Indeed, this relationship among the coefficients plays important roles in the study of the
essential dynamical properties of the Novikov model [, , –]. This motivates us to
study the following equation:

ut – utxx + (a + b)uux = auuxuxx + buuxxx, ()

where a >  and b >  are arbitrary constants. Clearly, letting a =  and b = , Eq. () be-
comes the Novikov equation (). The essential difference between Eq. () and the Novikov
equation () is that Eq. () does not conform with the following conservation law:

∫
R

(
u + ux

)
dx =

∫
R

(
u + ux

)
dx,

which results in the bounds of ‖u(t, ·)‖L∞(R) for Eq. ().
Making use of u ∈Hs(R), s > 

 , the assumption that (–∂
x )u does not change sign, and

the assumption that the solution of Eq. () satisfies u ∈ L(R), we prove the global existence
theorem of Eq. () in the Sobolev space,

u(t,x) ∈ C
(
[,∞);Hs(R)

) ∩C([,∞);Hs–(R)
)
.

The objective of this work is to investigate Eq. (). Since a >  and b >  are arbitrary
constants, we cannot obtain the boundedness of the solution u for Eq. () although the
initial data satisfy the sign condition. To overcome this, assuming that the solution itself
satisfies u ∈ L(R) and the initial data satisfy the sign condition, we adopt themethods used
in Rodriguez-Blanco [] to derive that ‖ ∂u(t,x)

∂x ‖L∞(R) possesses bounds for any time t > .
This leads us to establish the well-posedness of the global strong solutions to Eq. (). Parts
of the main results in [, ] are extended. In addition, we acquire a blow-up result to the
development of singularities in finite time, which includes the blow-up result in [].
The rest of this paper is organized as follows. Section  states the main results of this

work. Section  proves the global existence result. The proof of a blow-up result is given
in Section .

2 Main results
We let Lp = Lp(R) ( ≤ p < +∞) be the space of all measurable functions h such that
‖h‖pLp =

∫
R |h(t,x)|p dx < ∞. We define L∞ = L∞(R) with the standard norm ‖h‖L∞ =

infm(e)= supx∈R\e |h(t,x)|. For any real number s, we letHs =Hs(R) denote the Sobolev space
with the norm defined by

‖h‖Hs =
(∫

R

(
 + |ξ |)s∣∣ĥ(t, ξ )∣∣ dξ

) 

< ∞,

where ĥ(t, ξ ) =
∫
R e

–ixξh(t,x)dx. Here we note that the norms ‖ · ‖pLp , ‖ · ‖L∞ and ‖ · ‖Hs

depend on variable t.
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For T >  and nonnegative number s, C([,T);Hs(R)) denotes the Frechet space of all
continuous Hs-valued functions on [,T). We set � = ( – ∂

x )

 .

In order to study the existence of solutions for Eq. (), we consider its Cauchy problem
in the form

{
ut – utxx + (a + b)uux = auuxuxx + buuxxx,
u(,x) = u(x),

()

which is equivalent to

{
ut + buux =�–[(–auux + a–b

 (uux)x +
b–a
 ux],

u(,x) = u(x),
()

where a >  and b >  are arbitrary constants. Now we give the main results for prob-
lem ().

Theorem  Assume that the solution of problem () satisfies u(t,x) ∈ L(R) and let u(x) ∈
Hs, s > 

 and ( – ∂
x )u ≥  for all x ∈ R (or equivalently ( – ∂

x )u ≤  for all x ∈ R). Then
problem () has a unique solution satisfying

u(t,x) ∈ C
(
[,∞);Hs(R)

) ∩C([,∞);Hs–(R)
)
.

Theorem  Assume that u(x) ∈ Hs(R) with s > 
 . If a = b, then every solution of prob-

lem () exists globally in time. If a > b, then the solution blows up in finite time if and only
if uux becomes unbounded from below in finite time. If a < b, then the solution blows up in
finite time if and only if uux becomes unbounded from above in finite time.

3 Global strong solutions
For proving the global existence for problem (), we cite the local well-posedness result
presented in [].

Lemma . ([]) Let u(x) ∈Hs(R) with s > 
 . Then the Cauchy problem () has a unique

solution u(t,x) ∈ C([,T);Hs(R))∩C([,T);Hs–(R)) where T >  depends on ‖u‖Hs(R).
Assume u ∈ Hs(R) with s > 

 . Then there exists a unique solution u(t,x) to problem ()
and

u(t,x) ∈ C
(
[,T);Hs(R)

) ∩C([,T);Hs–(R)
)

with the maximal existence time T > . First, we study the differential equation

{
pt = bu(t,p), t ∈ [,T),
p(,x) = x.

()

Lemma . Let u ∈ Hs, s >  and let T >  be the maximal existence time of the solution
to problem (). Then problem () has a unique solution p ∈ C([,T)×R,R).Moreover, the
map p(t, ·) is an increasing diffeomorphism of R with px(t,x) >  for (t,x) ∈ [,T)× R.
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Proof From Lemma ., we have u ∈ C([,T);Hs–(R)) and Hs– ∈ C(R). Thus we con-
clude that both functions u(t,x) and ux(t,x) are bounded, Lipschitz in space and C in
time. Using the existence and uniqueness theorem of ordinary differential equations de-
rives that problem () has a unique solution p ∈ C([,T)× R,R).
Differentiating Eq. () with respect to x yields

{
d
dt px = buux(t,p)px, t ∈ [,T),b �= ,
px(,x) = ,

()

which leads to

px(t,x) = exp

(∫ t


buux

(
τ ,p(τ ,x)

)
dτ

)
. ()

For every T ′ < T , using the Sobolev imbedding theorem yields

sup
(τ ,x)∈[,T ′)×R

∣∣uux(τ ,x)∣∣ < ∞.

It is inferred that there exists a constant K >  such that px(t,x) ≥ e–Kt for (t,x) ∈
[,T)× R. It completes the proof. �

Lemma . Let u ∈ Hs with s > , and let T >  be the maximal existence time of the
problem ().We have

y
(
t,p(t,x)

)
px(t,x) = y(x)e–(a–b)

∫ t
 uux dτ , ()

where (t,x) ∈ [,T)× R and y := u – uxx.

Proof Using Eqs. () and ()-(), we have

d
dt

[
y
(
t,p(t,x)

)
px(t,x)

]
= ytpx + ypxpxt + yxptpx

= ytpx + byuuxpx + buyxpx

=
(
ut – utxx + auux(u – uxx) + bu(ux – uxxx)

)
px – auuxypx + buuxypx

=
(
ut – utxx + (a + b)uux – auuxuxx – buuxxx

)
px – (a – b)uuxypx

= –(a – b)uuxypx . ()

Using px(,x) =  and solving the above equation, we complete the proof of the lemma.
�

Remark  From Lemma ., we conclude that, if u – uxx = ( – ∂
x )u ≥ , then ( –

∂
x )u(t,x) ≥ . Since the operator ( – ∂

x )– preserves positivity, we get u ≥ . Similarly, if
( – ∂

x )u ≤ , we have ( – ∂
x )u≤  and u ≤ .
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Lemma . If u ∈Hs, s > 
 , such that (–∂

x )u ≥  (or (–∂
x )u ≤ ) and

∫
R |u|dx < ∞,

then there exists a constant K >  such that the solution of problem () satisfies ‖ux‖L∞ ≤ K .

Proof We will prove this lemma to assume u ∈ H∞ which results in u ∈ H∞ from
Lemma .. For ( – ∂

x )u ≥ , from Lemma ., we have ( – ∂
x )u ≥ . Then u ≥  does

not change sign. From the assumption
∫
R |u|dx < ∞ one derives

–ux +
∫ x

–∞
udx =

∫ x

–∞
(u – uxx)dx ≤

∫ ∞

–∞
(u – uxx)dx = c, ()

where c is a positive constant. Then

–ux ≤ c –
∫ x

–∞
udx ≤ c +

∫ x

–∞
udx ≤ c. ()

On the other hand, we have

ux +
∫ ∞

x
udx =

∫ ∞

x
(u – uxx)dx ≤

∫ ∞

–∞
(u – uxx)dx = c, ()

which results in

ux ≤ c –
∫ ∞

x
udx ≤ c +

∫ ∞

x
udx ≤ c. ()

We conclude from Eqs. () and () that ‖ux‖L∞ ≤ K . To complete the proof, we use
a simple density argument []. Setting uε

 = eε∂x u, we have uε
 ∈ H∞ and ‖uε

x‖L∞ ≤

∫
R |u|dx < K . Applying ‖uε

x – ux‖L∞ ≤ sup[,T] ‖uε
x – ux‖Hs →  when ε → , we have

‖ux‖L∞ ≤ K . �

Using the first equation of system () one derives

d
dt

∫
R

(
u + ux

)
dx + (a – b)

∫
R
uux dx = ,

from which we have the conservation law

∫
R

(
u + ux

)
dx + (a – b)

∫ t



∫
R
uux dx =

∫
R

(
u + ux

)
dx. ()

Lemma . (Kato and Ponce []) If r ≥ , then Hr ∩ L∞ is an algebra.Moreover

‖uv‖r ≤ c
(‖u‖L∞‖v‖r + ‖u‖r‖v‖L∞

)
,

where c is a constant depending only on r.

Lemma . (Kato and Ponce []) Let r > . If u ∈Hr ∩W ,∞ and v ∈Hr– ∩ L∞, then

∥∥[
�r ,u

]
v
∥∥
L ≤ c

(‖∂xu‖L∞
∥∥�r–v

∥∥
L +

∥∥�ru
∥∥
L‖v‖L∞

)
.
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Lemma . Let s > 
 and the function u(t,x) is a solution of problem () and the initial

data u(x) ∈ Hs(R). Then the following results hold:

‖u‖L∞ ≤ ‖u‖H ≤ ‖u‖H(R)e
|a–b|


∫ t
 ‖ux‖L∞(R) dτ . ()

For q ∈ (, s – ], there is a constant c only depending on a and b such that
∫
R

(
�q+u

) dx ≤
∫
R

[(
�q+u

)]dx
+ c

∫ t


‖u‖Hq+

(‖ux‖L∞‖u‖L∞ + ‖ux‖L∞
)
dτ . ()

Proof Using |uux| ≤ (u + ux), the Gronwall inequality and Eq. (), one derives Eq. ().
Using ∂

x = –� +  and the Parseval equality gives rise to

∫
R
�qu�q∂

x
(
u

)
dx = –

∫
R

(
�q+u

)
�q+(uux)dx + 

∫
R

(
�qu

)
�q(uux)dx.

For q ∈ (, s – ], applying (�qu)�q to both sides of the first equation of system () and
integrating with respect to x by parts, we have the identity



d
dt

∫
R

[(
�qu

) + (
�qux

) ]
dx = – a

∫
R

(
�qu

)
�q(uux)dx

– b
∫
R

(
�q+u

)
�q+(uux)dx – b

∫
R
�qu�qux dx

+ (a – b)
∫
R
�qu�q(uuxuxx)dx. ()

We will estimate the terms on the right-hand side of Eq. () separately. For the first term,
by using the Cauchy-Schwartz inequality and Lemmas . and ., we have

∣∣∣∣
∫
R

(
�qu

)
�q(uux)dx

∣∣∣∣ =
∣∣∣∣
∫
R

(
�qu

)[
�q(uux) – u�qux

]
dx +

∫
R

(
�qu

)
u�qux dx

∣∣∣∣
≤ c‖u‖Hq

(
‖u‖L∞‖ux‖L∞‖u‖Hq + ‖ux‖L∞‖u‖L∞‖u‖Hq

)
+ ‖u‖L∞‖ux‖L∞

∥∥�qu
∥∥
L

≤ c‖u‖Hq‖u‖L∞‖ux‖L∞ . ()

Using the above estimate to the second term yields
∣∣∣∣
∫
R

(
�q+u

)
�q+(uux)dx

∣∣∣∣ ≤ c‖u‖Hq+‖u‖L∞‖ux‖L∞ . ()

Using the Cauchy-Schwartz inequality and Lemma ., we obtain
∣∣∣∣
∫
R

(
�qux

)
�q(uux)dx

∣∣∣∣ ≤ ∥∥�qux
∥∥
L

∥∥�q(uux)∥∥L

≤ c‖u‖Hq+
(‖u‖L∞

∥∥ux∥∥Hq + ‖u‖Hq
∥∥ux∥∥L∞

)
≤ c‖u‖Hq+

(‖u‖L∞‖ux‖L∞ + ‖ux‖L∞
)
. ()
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For the last term in Eq. (), using u(ux)x = (uux)x – uxux results in

∣∣∣∣
∫
R

(
�qu

)
�q(uuxuxx)dx

∣∣∣∣
≤ 



∣∣∣∣
∫
R
�qux�q(uux)dx

∣∣∣∣ + 


∣∣∣∣
∫
R
�qu�q[uxux]dx

∣∣∣∣
= K +K. ()

For K, it follows from Eq. () that

K ≤ c‖u‖Hq+
(‖u‖L∞‖ux‖L∞ + ‖ux‖L∞

)
. ()

For K, applying Lemma . derives

K ≤ c‖u‖Hq
∥∥uxux∥∥Hq

≤ c‖u‖Hq
(‖ux‖L∞

∥∥ux∥∥Hq + ‖ux‖Hq
∥∥ux∥∥L∞

)
≤ c‖u‖Hq+‖ux‖L∞ . ()

It follows from Eqs. ()-() that there exists a constant c such that



d
dt

∫
R

[(
�qu

) + (
�qux

)]dx ≤ c‖u‖Hq+
(‖ux‖L∞‖u‖L∞ + ‖ux‖L∞

)
. ()

Integrating both sides of the above inequality with respect to t results in inequality ().
�

Proof of Theorem  Using Eq. () with q = s – , we obtain

‖u‖Hs ≤ ‖u‖Hs + c
∫ t


‖u‖Hs

(‖u‖L∞‖ux‖L∞ + ‖ux‖L∞
)
dτ . ()

Applying the Gronwall inequality, we get

‖u‖Hs ≤ ‖u‖Hsec
∫ t
(‖u‖L∞‖ux‖L∞+‖ux‖L∞ )dτ . ()

Using Eq. () and Lemma ., we complete the proof of Theorem . �

Remark  In fact, using ‖ux‖L∞ ≤ ‖u‖Hs with s > 
 , Eqs. () and (), we derive that the

solution of Eq. () in space Hs(R) blows up in finite time if and only if ‖ux‖L∞ = +∞.

4 Proof of Theorem 2
Multiplying Eq. () by y = u – uxx and integrating by parts, we get



d
dt

∫
R
y dx =

∫
R
yyt dx

=
∫
R
y
(
auuxuxx + buuxxx – (a + b)uux

)
dx

http://www.boundaryvalueproblems.com/content/2014/1/16
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=
∫
R
y
(
auux(u – y) + bu(ux – yx) – (a + b)uux

)
dx

=
∫
R
y
(
–auuxy – buyx

)
dx

= (b – a)
∫
R
uuxy dx. ()

When a = b, from Eq. (), we derive ‖ux‖L∞ is bounded. From Lemma . and Re-
mark , we see that problem () has a global solution in the space

C
(
[,∞);Hs(R)

) ∩C([,∞);Hs–(R)
)
.

Assume that the solution u = u(·,u) of problem () blows up in finite time in the space
Hs(R) with s > 

 . If b–a < , we assume that uux is bounded from below on [,T)×R, i.e.,
there exists a constantM >  such that

(b – a)uux(t,x)≤M on [,T)× R.

From Eq. (), we get

‖u‖H ≤ c‖u‖HeMt , ()

from which we derive that the H norm of the solution to problem () does not blow
up in finite time. From Remark , we know that this is impossible. Therefore, we have
limt→T inf{infx∈R uux(t,x)} = –∞.
Similar to the above, we know that if b – a > , the solution of problem () blows up if

and only if limt→T inf{infx∈R uux(t,x)} =∞.
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