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1 Introduction
In this paper, we investigate the following boundary-value problem for impulsive frac-
tional differential equations with fractional integral jump conditions:

⎧⎪⎪⎨
⎪⎪⎩

cDαx(t) = f (t,x(t)), t ∈ [,T] \ {t, t, . . . , tm},
�x(tk) = Jk(

∑k
j= dk,jI

βk,j x(t–j )), k = , , . . . ,m,

ax() + bx(T) = c,

(.)

where cDα is the Caputo fractional derivative of order α,  < α < , f : [,T] × R → R

is a continuous function, Jk : R → R, �x(tk) = x(t+k ) – x(t–k ) with x(t+k ) = limh→+ x(tk + h),
x(t–k ) = limh→– x(tk +h), dk,j are constants, Iβk,j is the Riemann-Liouville fractional integral
of order βk,j >  for j = ,  . . . ,k and k = , , . . . ,m,  = t < t < · · · < tm < tm+ = T , a, b, c
are given constants such that a + b �= .
The integral jump conditions are very general and include many conditions as special

cases. In particular, if dk,j = dj and βk,j = βj, then the impulsive fractional integral of equa-
tion (.) reduces to

�x(tk) = Jk
(
d

∫ t



(t – s)β–

�(β)
x(s)ds + d

∫ t



(t – s)β–

�(β)
x(s)ds + · · ·

+ dk
∫ tk



(t – s)βk–

�(βk)
x(s)ds

)
.

Recently, much attention has been paid to the existence of solutions for fractional dif-
ferential equations due to its wide application in engineering, economics and other fields.
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Avariety of results on initial- and boundary-value problems of fractional differential equa-
tions and inclusions can easily be found in the literature on the topic. For some recent
results, we can refer to [–] and references cited therein.
On the other hand, integer order impulsive differential equations have become impor-

tant in recent years as mathematical models of phenomena in both the physical and social
sciences. There has a significant development in impulsive theory especially in the area of
impulsive differential equations with fixed moments, see for instance [–].
In this paper we prove some new existence and uniqueness results by using a variety of

fixed-point theorems. In Theorem . we prove an existence and uniqueness result by us-
ing Banach’s contraction principle, in Theorem . we prove an existence and uniqueness
result by using Banach’s contraction principle and Hölder’s inequality, in Theorem . we
prove the existence of a solution by using Krasnoselskii’s fixed-point theorem, while in
Theorem . we prove the existence of a solution via Leray-Schauder’s nonlinear alterna-
tive. Leray-Schauder’s degree theory is used in proving the existence result inTheorem ..
The rest of the paper is organized as follows: In Section  we recall some preliminaries

and present a basic lemma which is used to convert the impulsive fractional boundary-
value problem (.) into an equivalent integral equation. The main results are presented
in Section , while illustrative examples are contained in Section .

2 Preliminaries
Let PC([,T],R) = {x : [,T] → R : x(t) is continuous everywhere except for some tk at
which x(t+k ) and x(t–k ) exist and x(t–k ) = x(tk), k = , , . . . ,m}. PC([,T],R) is a Banach
space endowed with the norm defined by ‖x‖ = supt∈[,T] |x(t)|. Next, we introduce some
notations, definitions of fractional calculus [–], and we present a preliminary result
needed in our proofs later.

Definition . The Riemann-Liouville fractional integral of order α >  of a function g ∈
L((,T),R) is defined by

Iαg(t) =
∫ t



(t – s)α–

�(α)
g(s)ds,

where � is the Gamma function.

Definition . The Riemann-Liouville fractional derivative of order α >  of a continuous
function g : (,∞) →R is defined by

Dαg(t) =


�(n – α)

(
d
dt

)n ∫ t



g(s)
(t – s)α–n+

ds,

where n = [α] + , [α] denotes the integral part of real number α, provided the right-hand
side is point-wise defined on (,∞).

Definition . For a continuous function g : (,∞) → R, the Caputo derivative of frac-
tional order α is defined as

cDαg(t) =


�(n – α)

∫ t


(t – s)n–α–g(n)(s)ds,

where n = [α] + , [α] denotes the integral part of real number α, provided g(n)(t) exists.
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Lemma . ([]) Let α ∈ (, ) and h : [,T] → R be continuous. A function x ∈
C([,T],R) is a solution of the fractional Cauchy problem

⎧⎨
⎩

cDαx(t) = h(t), t ∈ [,T],

x(η) = x, η > ,

if and only if x is a solution of the following integral equation:

x(t) = x –


�(α)

∫ η


(η – s)α–h(s)ds

+


�(α)

∫ t


(t – s)α–h(s)ds.

Lemma . Let  < α <  and a + b �= . The unique solution of the impulsive fractional
boundary-value problem (.) is given by

x(t) =
c

a + b
–

b
a + b

[ m∑
i=

Ji

( i∑
j=

di,jIβi,j x
(
t–j

))
+


�(α)

∫ T


(T – s)α–f

(
s,x(s)

)
ds

]

+
k∑
i=

Ji

( i∑
j=

di,jIβi,j x
(
t–j

))
+


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds. (.)

Proof For t ∈ [t, t], Riemann-Liouville fractional integrating of order α, from  to t, for
the first equation of (.), we have

x(t) = x() +


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds. (.)

Substituting t = t into (.), we get

x(t) = x() +


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds.

For t ∈ (t, t], by Lemma . with the second equation of (.), we obtain

x(t) = x
(
t+

)
–


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds

+


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds

= x(t) + J

( ∑
j=

d,jIβ,j x
(
t–j

))
–


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds

+


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds

= x() + J

( ∑
j=

d,jIβ,j x
(
t–j

))
+


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds.
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If t ∈ (t, t] then again from Lemma ., we have

x(t) = x
(
t+

)
–


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds +


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds

= x() +
∑
i=

Ji

( i∑
j=

di,jIβi,j x
(
t–j

))
+


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds.

If t ∈ (tk , tk+] then again from Lemma ., we get

x(t) = x() +
k∑
i=

Ji

( i∑
j=

di,jIβi,j x
(
t–j

))
+


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds.

In particular, for t = T , we have

x(T) = x() +
m∑
i=

Ji

( i∑
j=

di,jIβi,j x
(
t–j

))
+


�(α)

∫ T


(T – s)α–f

(
s,x(s)

)
ds. (.)

From the third equation of (.) and (.), we get

x() =
c

a + b
–

b
a + b

[ m∑
i=

Ji

( i∑
j=

di,jIβi,j x
(
t–j

))
+


�(α)

∫ T


(T – s)α–f

(
s,x(s)

)
ds

]
.

Therefore, we have

x(t) =
c

a + b
–

b
a + b

[ m∑
i=

Ji

( i∑
j=

di,jIβi,j x
(
t–j

))
+


�(α)

∫ T


(T – s)α–f

(
s,x(s)

)
ds

]

+
k∑
i=

Ji

( i∑
j=

di,jIβi,j x
(
t–j

))
+


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds.

This completes the proof. �

As in Lemma ., we define an operator A : PC([,T],R)→ PC([,T],R) by

(Ax)(t) =
c

a + b
–

b
a + b

[ m∑
i=

Ji

( i∑
j=

di,jIβi,j x
(
t–j

))
+


�(α)

∫ T


(T – s)α–f

(
s,x(s)

)
ds

]

+
k∑
i=

Ji

( i∑
j=

di,jIβi,j x
(
t–j

))
+


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds, (.)

with a+ b �= . It should be noticed that problem (.) has solutions if and only if the oper-
ator A has fixed points.

3 Main results
We are in a position to establish our main results. In the following subsections we prove
existence as well as existence and uniqueness results for the impulsive fractional BVP (.)
by using a variety of fixed-point theorems.
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3.1 Existence and uniqueness results via Banach’s fixed-point theorem
In this subsection we give first an existence and uniqueness result for the impulsive frac-
tional BVP (.) by using Banach’s fixed-point theorem.
For convenience, we set

� =
|a + b| + |b|

|a + b|�(α + )
Tα , (.)

� =
( |a + b| + |b|

|a + b|
) m∑

i=

i∑
j=

|di,j|tβi,jj

�(βi,j + )
, (.)

	 =
(|a + b| + |b|)mN + |c|

|a + b| . (.)

Theorem . Assume the following.

(H) There exists a constant L >  such that |f (t,x) – f (t, y)| ≤ L|x – y|, for each t ∈ [,T]
and x, y ∈ R.

(H) There exists a constant L >  such that |Jk(x) – Jk(y)| ≤ L|x – y| for each x, y ∈ R,
k = , , . . . ,m.

If


 := L� + L� ≤ δ ≤ ε < , (.)

then impulsive fractional boundary-value problem (.) has a unique solution in [,T].

Proof We transform the problem (.) into a fixed-point problem, x = Ax, where the op-
erator A is defined by equation (.). Using Banach’s contraction principle, we shall show
that A has a fixed point.
Setting supt∈[,T] |f (t, )| =M <∞, sup{|Jk()|;k = , , . . . ,m} =N < ∞ and choosing r ≥


–ε
(M� +	), we show that ABr ⊂ Br , where Br = {x ∈ PC([,T],R) : ‖x‖ ≤ r}. For x ∈ Br ,

we have

‖Ax‖ ≤ sup
t∈[,T]

{
|b|

|a + b|

[ m∑
i=

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))∣∣∣∣∣ + 
�(α)

∫ T


(T – s)α–

∣∣f (s,x(s))∣∣ds
]

+
k∑
i=

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))∣∣∣∣∣ + 
�(α)

∫ t


(t – s)α–

∣∣f (s,x(s))∣∣ds + |c|
|a + b|

}

≤ |a + b| + |b|
|a + b|

{ m∑
i=

[∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))
– Ji()

∣∣∣∣∣ + ∣∣Ji()∣∣
]

+


�(α)

∫ T


(T – s)α–

(∣∣f (s,x(s)) – f (s, )
∣∣ + ∣∣f (s, )∣∣)ds

}
+

|c|
|a + b|

≤ |a + b| + |b|
|a + b|

{ m∑
i=

[
L

∣∣∣∣∣
i∑
j=

di,jIβi,j x
(
t–j

)∣∣∣∣∣ +N

]

+
Lr +M
�(α)

∫ T


(T – s)α– ds

}
+

|c|
|a + b|

http://www.boundaryvalueproblems.com/content/2014/1/17
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≤ |a + b| + |b|
|a + b|

{ m∑
i=

[
Lr

i∑
j=

|di,j|tβi,jj

�(βi,j + )
+N

]
+
(Lr +M)Tα

�(α + )

}
+

|c|
|a + b|

= (Lr +M)� + Lr� +	

≤ (δ +  – ε)r ≤ r,

which proves that ABr ⊂ Br .
Now let x, y ∈ PC([,T],R). Then, for t ∈ [,T], we have

∣∣(Ax)(t) – (Ay)(t)
∣∣ ≤ sup

t∈[,T]

{
|b|

|a + b|

[ m∑
i=

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))
– Ji

( i∑
j=

di,jIβi,j y
(
t–j

))∣∣∣∣∣
+


�(α)

∫ T


(T – s)α–

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ds
]

+
k∑
i=

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))
– Ji

( i∑
j=

di,jIβi,j y
(
t–j

))∣∣∣∣∣
+


�(α)

∫ t


(t – s)α–

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ds
}

≤ |a + b| + |b|
|a + b|

[
L‖x – y‖

m∑
i=

i∑
j=

|di,j|
�(βi,j)

∫ tj


(tj – s)βi,j– ds

+
L‖x – y‖

�(α)

∫ T


(T – s)α– ds

]

= L�‖x – y‖ + L�‖x – y‖.

Therefore,

‖Au –Av‖ ≤ 
‖u – v‖.

As follows from equation (.), A is a contraction. As a consequence of Banach’s fixed-
point theorem, we have A has a fixed point which is a unique solution of the impulsive
fractional boundary-value problem (.). This completes the proof. �

Now we give another existence and uniqueness result for impulsive fractional BVP (.)
by using Banach’s fixed-point theorem and Hölder’s inequality. In addition, for σ ∈ (, ),
we set

�∗ =
( |a + b| + |b|

|a + b|�(α)
)(

 – γ

α – γ

)–γ

Tα–γ , (.)

�∗ =
( |a + b| + |b|

|a + b|
)( m∑

i=

( i∑
j=

|di,j|tβi,jj

�(βi,j + )

) 
–σ

)–σ

, (.)

η∗ =

( m∑
i=

(ηi)

σ

)σ

. (.)

http://www.boundaryvalueproblems.com/content/2014/1/17
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Theorem . Assume that the following conditions hold:

(H) |f (t,x) – f (t, y)| ≤ ξ (t)|x – y|, for each t ∈ [,T], x, y ∈ R, where ξ ∈ L

γ ([,T],R+),

γ ∈ (,α).
(H) |Ji(x) – Ji(y)| ≤ ηi|x – y|, for each x, y ∈R, with constants ηi > , i = , , . . . ,m.

Denote ‖ξ‖ = (
∫ T
 |ξ (s)| 

γ ds)γ .
If

‖ξ‖�∗ + η∗�∗ < ,

then the impulsive fractional boundary-value problem (.) has a unique solution.

Proof For x, y ∈ PC([,T],R) and for each t ∈ [,T], by Hölder’s inequality, we get

∣∣(Ax)(t) – (Ay)(t)
∣∣

≤ sup
t∈[,T]

{
|b|

|a + b|

[ m∑
i=

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))
– Ji

( i∑
j=

di,jIβi,j y
(
t–j

))∣∣∣∣∣
+


�(α)

∫ T


(T – s)α–

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ds
]

+
k∑
i=

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))
– Ji

( i∑
j=

di,jIβi,j y
(
t–j

))∣∣∣∣∣
+


�(α)

∫ t


(t – s)α–

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ds
}

≤ |a + b| + |b|
|a + b|

[ m∑
i=

ηi

i∑
j=

|di,j|
�(βi,j)

∫ tj


(tj – s)βi,j–|x – y|ds

+


�(α)

∫ T


(T – s)α–ξ (s)|x – y|ds

]

≤
{

|a + b| + |b|
|a + b|

[( m∑
i=

(ηi)

σ

)σ ( m∑
i=

( i∑
j=

|di,j|
�(βi,j)

∫ tj


(tj – s)βi,j– ds

) 
–σ

)–σ

+


�(α)

(∫ T



(
(T – s)α–

) 
–γ ds

)–γ (∫ T



(
ξ (s)

) 
γ ds

)γ
]}

‖x – y‖

≤
{

|a + b| + |b|
|a + b|

[
η∗

( m∑
i=

( i∑
j=

|di,j|tβi,jj

�(βi,j + )

) 
–σ

)–σ

+
‖ξ‖
�(α)

(
 – γ

α – γ

)–γ

Tα–γ

]}
‖x – y‖

=
(‖ξ‖�∗ + η∗�∗)‖x – y‖.

http://www.boundaryvalueproblems.com/content/2014/1/17
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Therefore,

‖Ax –Ay‖ ≤ (‖ξ‖�∗ + η∗�∗)‖x – y‖.

It follows that A is a contraction mapping. Hence Banach’s fixed-point theorem implies
that A has a unique fixed point, which is the unique solution of the impulsive fractional
boundary-value problem (.). This completes the proof. �

3.2 Existence result via Krasnoselskii’s fixed-point theorem
Lemma . (Krasnoselskii’s fixed point theorem) [] Let M be a closed, bounded, convex
and nonempty subset of a Banach space X. Let A, B be the operators such that (a) Ax+By ∈
M whenever x, y ∈ M; (b) A is compact and continuous; (c) B is a contraction mapping.
Then there exists z ∈ M such that z = Az + Bz.

Theorem . Let f : [,T]×R →R be a continuous function and let (H) holds. In addi-
tion, we assume that:

(H) |f (t,x)| ≤ μ(t), ∀(t,x) ∈ [,T]×R, and μ ∈ C([,T],R+).
(H) There exists a constant N >  such that |Jk(x)| ≤ N , ∀x ∈R, for k = , , . . . ,m.

Then the impulsive fractional boundary-value problem (.) has at least one solution on
[,T] if

L� < , (.)

where � is defined by equation (.).

Proof We define supt∈[,T] |μ(t)| = ‖μ‖ and choose a suitable constant r as

r ≥ ‖μ‖� +	 ,

where � and 	 are defined by equations (.) and (.), respectively. We define the oper-
ators P andQ on Br = {x ∈ PC([,T],R) : ‖x‖ ≤ r} as

(Px)(t) = –
b

(a + b)�(α)

∫ T


(T – s)α–f

(
s,x(s)

)
ds +


�(α)

∫ t


(t – s)α–f

(
s,x(s)

)
ds,

(Qx)(t) =
c

a + b
–

b
a + b

m∑
i=

Ji

( i∑
j=

di,jIβi,j x
(
t–j

))
+

k∑
i=

Ji

( i∑
j=

di,jIβi,j x
(
t–j

))
.

For x, y ∈ Br , we find that

‖Px +Qy‖

≤ ‖μ‖
( |a + b| + |b|

|a + b|�(α + )

)
Tα +

(|a + b| + |b|)mN + |c|
|a + b|

≤ ‖μ‖� +	

≤ r.

http://www.boundaryvalueproblems.com/content/2014/1/17
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Thus, Px +Qy ∈ Br . It follows from the assumption (H) together with (.) that Q is a
contraction mapping. Continuity of f implies that the operator P is continuous. Also, P
is uniformly bounded on Br as

‖Px‖ ≤ ‖μ‖�.

Now we prove the compactness of the operator P .
We define sup(t,x)∈[,T]×Br |f (t,x)| = f < ∞, τ, τ ∈ [,T] with τ < τ and consequently

we have

∣∣(Px)(τ) – (Px)(τ)
∣∣

=


�(α)

∣∣∣∣
∫ τ



[
(τ – s)α– – (τ – s)α–

]
f
(
s,x(s)

)
ds +

∫ τ

τ

(τ – s)α–f
(
s,x(s)

)
ds

∣∣∣∣
≤ f

�(α + )
∣∣τα

 – τα

∣∣,

which is independent of x and tends to zero as τ – τ → . Thus, P is equicontinuous.
So P is relatively compact on Br . Hence, by the Arzelá-Ascoli theorem, P is compact on
Br . Thus all the assumptions of Lemma . are satisfied. So the conclusion of Lemma .
implies that the impulsive fractional boundary-value problem (.) has at least one solution
on [,T]. The proof is completed. �

3.3 Existence result via Leray-Schauder’s Nonlinear Alternative
Lemma . (Nonlinear alternative for single valued maps) [] Let E be a Banach space,
C a closed, convex subset of E,U an open subset of C and  ∈U . Suppose that F :U → C is
a continuous, compact (that is, F(U) is a relatively compact subset of C)map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Theorem . Assume the following.

(H) There exist a continuous nondecreasing function ψ : [,∞) → (,∞) and a function
p ∈ L([,T],R+) such that

∣∣f (t,x)∣∣ ≤ p(t)ψ
(|x|) for each (t,x) ∈ [,T]×R.

(H) There exists a continuous nondecreasing function ϕ : [,∞)→ (,∞) such that

∣∣Jk(x)∣∣ ≤ ϕ
(|x|) for all x ∈R.

(H) There exists a constantM∗ >  such that

M∗

( |a+b|+|b|
|a+b| )

∑m
i= ϕ(M∗ ∑i

j=
|di,j|t

βi,j
j

�(βi,j+)
) +ψ(M∗)‖p‖L� + |c|

|a+b|

> .

Then the impulsive fractional boundary-value problem (.) has at least one solution on
[,T].
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Proof We show that A maps bounded sets (balls) into bounded sets in PC([,T],R). For a
positive number r, let Br = {x ∈ C([,T],R) : ‖x‖ ≤ r} be a bounded ball in PC([,T],R).
Then for t ∈ [,T] we have

∣∣Ax(t)∣∣
≤ |b|

|a + b|

[ m∑
i=

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))∣∣∣∣∣ + 
�(α)

∫ T


(T – s)α–

∣∣f (s,x(s))∣∣ds
]

+
k∑
i=

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))∣∣∣∣∣ + 
�(α)

∫ t


(t – s)α–

∣∣f (s,x(s))∣∣ds + |c|
|a + b|

≤ |a + b| + |b|
|a + b|

[ m∑
i=

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))∣∣∣∣∣ + 
�(α)

∫ T


(T – s)α–

∣∣f (s,x(s))∣∣ds
]

+
|c|

|a + b|

≤ |a + b| + |b|
|a + b|

[ m∑
i=

ϕ

(∣∣∣∣∣
i∑
j=

di,jIβi,j x
(
t–j

)∣∣∣∣∣
)
+

ψ(‖x‖)
�(α)

∫ T


(T – s)α–p(s)ds

]

+
|c|

|a + b|

≤ |a + b| + |b|
|a + b|

[ m∑
i=

ϕ

( i∑
j=

|di,j|tβi,jj

�(βi,j + )
‖x‖

)
+

ψ(‖x‖)‖p‖L
�(α + )

Tα

]
+

|c|
|a + b| .

Consequently

‖Ax‖ ≤ |a + b| + |b|
|a + b|

m∑
i=

ϕ

( i∑
j=

|di,j|tβi,jj

�(βi,j + )
r

)
+ψ(r)‖p‖L� +

|c|
|a + b| .

Next we show that A maps bounded sets into equicontinuous sets of PC([,T],R). Let
sup(t,x)∈[,T]×Br |f (t,x)| = f ∗ < ∞, τ, τ ∈ [,T] with τ ∈ (tu, tu+], τ ∈ (tv, tv+], u ≤ v, u, v ∈
{, , . . . ,m} and x ∈ Br . Then we have

∣∣(Ax)(τ) – (Ax)(τ)
∣∣ ≤ 

�(α)

∣∣∣∣
∫ τ



[
(τ – s)α– – (τ – s)α–

]
f
(
s,x(s)

)
ds

+
∫ τ

τ

(τ – s)α–f
(
s,x(s)

)
ds

∣∣∣∣ +
v∑

i=u+

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))∣∣∣∣∣
≤ f ∗

�(α + )
∣∣τα

 – τα

∣∣ + v∑

i=u+

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))∣∣∣∣∣.

Obviously the right-hand side of the above inequality tends to zero independently of x ∈ Br

as τ – τ → . As A satisfies the above assumptions, therefore it follows by the Arzelá-
Ascoli theorem that A : PC([,T],R)→ PC([,T],R) is completely continuous.
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Let x be a solution. Then, for t ∈ [,T], and following the similar computations as in the
first step, we have

‖x‖ ≤ |a + b| + |b|
|a + b|

m∑
i=

ϕ

( i∑
j=

|di,j|tβi,jj

�(βi,j + )
‖x‖

)
+ψ

(‖x‖)‖p‖L� +
|c|

|a + b| .

Consequently, we have

‖x‖

( |a+b|+|b|
|a+b| )

∑m
i= ϕ(

∑i
j=

|di,j|t
βi,j
j

�(βi,j+)
‖x‖) +ψ(‖x‖)‖p‖L� + |c|

|a+b|

≤ .

In view of (H), there existsM∗ such that ‖x‖ �=M∗. Let us set

U =
{
x ∈ PC

(
[,T],R

)
: ‖x‖ <M∗}.

Note that the operator A : U → PC([,T],R) is continuous and completely continuous.
From the choice of U , there is no x ∈ ∂U such that x = λAx for some λ ∈ (, ). Conse-
quently, by the nonlinear alternative of Leray-Schauder type (Lemma .), we deduce that
A has a fixed point x ∈ U which is a solution of the problem (.). This completes the
proof. �

3.4 Existence result via Leray-Schauder degree
Theorem . Assume the following.

(H) There exist constants  ≤ κ < �– andM >  such that

∣∣f (t,x)∣∣ ≤ κ|x| +M for all (t,x) ∈ [,T]×R.

(H) There exist constants  ≤ γ < ( – κ�)�– and N >  such that

∣∣Jk(x)∣∣ ≤ γ |x| +N for all x ∈R,

where � and � are given by equations (.) and (.), respectively.

Then the impulsive fractional boundary-value problem (.) has at least one solution on
[,T].

Proof We define an operator A : PC([,T],R) → PC([,T],R) as in equation (.) and
consider the fixed-point problem

x = Ax. (.)

We are going to prove that there exists a fixed point x ∈ PC([,T],R) satisfying equation
(.). It is sufficient to show that A : BR → PC([,T],R) satisfies

x �= λAx, ∀x ∈ ∂BR,∀λ ∈ [, ], (.)

http://www.boundaryvalueproblems.com/content/2014/1/17
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where BR = {x ∈ PC([,T],R) :maxt∈[,T] |x(t)| < R,R > }. We define

H(λ,x) = λAx, x ∈ PC
(
[,T],R

)
,λ ∈ [, ].

As shown in Theorem ., we find that the operator A is continuous, uniformly bounded,
and equicontinuous. Then, by the Arzelá-Ascoli theorem, a continuous map hλ defined
by hλ(x) = x –H(λ,x) = x – λAx is completely continuous. If equation (.) is true, then
the following Leray-Schauder degrees are well defined and by the homotopy invariance of
topological degree, it follows that

deg(hλ,BR, ) = deg(I – λA,BR, ) = deg(h,BR, )

= deg(h,BR, ) = deg(I,BR, ) =  �= ,  ∈ BR, (.)

where I denotes the identity operator. By the nonzero property of the Leray-Schauder
degree, h(x) = x – Ax =  for at least one x ∈ BR. In order to prove equation (.), we
assume that x = λAx for some λ ∈ [, ]. Then

∣∣Ax(t)∣∣
≤ sup

t∈[,T]

{
|b|

|a + b|

[ m∑
i=

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))∣∣∣∣∣ + 
�(α)

∫ T


(T – s)α–

∣∣f (s,x(s))∣∣ds
]

+
k∑
i=

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))∣∣∣∣∣ + 
�(α)

∫ t


(t – s)α–

∣∣f (s,x(s))∣∣ds + |c|
|a + b|

}

≤ |a + b| + |b|
|a + b|

[ m∑
i=

∣∣∣∣∣Ji
( i∑

j=

di,jIβi,j x
(
t–j

))∣∣∣∣∣ + 
�(α)

∫ T


(T – s)α–

∣∣f (s,x(s))∣∣ds
]

+
|c|

|a + b|

≤ |a + b| + |b|
|a + b|

[ m∑
i=

(
γ

∣∣∣∣∣
i∑
j=

di,jIβi,j x
(
t–j

)∣∣∣∣∣ +N

)
+

κ|x| +M
�(α)

∫ T


(T – s)α– ds

]

+
|c|

|a + b|

≤ |a + b| + |b|
|a + b|

[(
γ ‖x‖

m∑
i=

i∑
j=

|di,j|tβi,jj

�(βi,j + )
+mN

)
+

κ‖x‖ +M
�(α + )

Tα

]
+

|c|
|a + b|

≤ (
κ‖x‖ +M

)
� + γ ‖x‖� +	 .

Computing directly for ‖x‖ = supt∈[,T] |x(t)|, we have

‖x‖ ≤ M� +	

 – κ� – γ�
.

If R = M�+	
–κ�–γ�

+ , inequality (.) holds. This completes the proof. �
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4 Examples
In this section we give examples to illustrate our results.

Example . Consider the following impulsive fractional boundary-value problem:

cD

 x(t) =

sinπ t
(t + )

· |x(t)|
 + |x(t)| , t ∈

(
,




)
, t �= 


,


, (.)

�x
(



)
= J

(



∫ 




(t – s)–



�(  )
x(s)ds

)
,

�x
(



)
= J

(



∫ 




(t – s)– 


�(  )
x(s)ds +




∫ 




(t – s)– 


�(  )
x(s)ds

)
, (.)

x() + x
(



)
= , (.)

where J(u) = |u|/( + |u|), J(u) = |u|/( + |u|).

Set α = /, T = /, d, = /, d, = /, d, = /, β, = /, β, = /, β, = /, a = ,
b =  and c = .
Since |f (t,x) – f (t, y)| ≤ (/)|x– y| and |Jk(u) – Jk(v)| ≤ (/)|u– v| for k = , , then (H)

and (H) are satisfied with L = / and L = /. We can show that

L� + L� ≈ . < .

Hence, by Theorem ., the boundary-value problem (.)-(.) has a unique solution on
[, /].

Example . Consider the following impulsive fractional boundary-value problem:

cD

 x(t) =

et

(et + )
· |x(t)|
 + |x(t)| , t ∈

(
,




)
, t �= 


,


, (.)

�x
(



)
= J

(



∫ 




(t – s)– 


�(  )
x(s)ds

)
,

�x
(



)
= J

(



∫ 




(t – s)–



�(  )
x(s)ds +




∫ 




(t – s)–



�(  )
x(s)ds

)
, (.)

x() + x
(



)
= , (.)

where J(u) = (u/) – , J(u) = |u|/( + |u|).

Set α = /,T = /, d, = /, d, = /, d, = /, β, = /, β, = /, β, = /, a = ,
b =  and c = .
Since |f (t,x) – f (t, y)| ≤ [et/((et + ))]|x – y|, |J(u) – J(v)| ≤ (/)|u – v| and |J(u) –

J(v)| ≤ (/)|u – v|, then (H) and (H) are satisfied with ξ (t) = et/((et + )), η = /,
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η = /, γ = / and σ = /. We can show that

‖ξ‖�∗ + η∗�∗
≈ . < .

Hence, by Theorem ., the boundary-value problem (.)-(.) has a unique solution on
[, /].

Example . Consider the following impulsive fractional boundary-value problem:

cD

 x(t) =

sinπx
π + sin πx

+
 + sinπ t

π
, t ∈

(
,




)
, t �= 


,


, (.)

�x
(



)
= J

(



∫ 




(t – s)–



�(  )
x(s)ds

)
,

�x
(



)
= J

(



∫ 




(t – s)–



�(  )
x(s)ds +

∫ 




(t – s)– 


�(  )
x(s)ds

)
, (.)

x() + x
(



)
= , (.)

where J(u) = (sinπu)/(π), J(u) = u/(π + u).

Set α = /, T = /, d, = /, d, = /, d, = , β, = /, β, = /, β, = /, a = ,
b = , c =  and f (t,x) = ((sinπx)/(π + sin πx)) + (( + sinπ t)/(π )).
It is easy to see that � = .. Clearly,

∣∣f (t,x)∣∣ = ∣∣∣∣ sinπx
π + sin πx

+
 + sinπ t

π

∣∣∣∣ ≤ ( + sinπ t)
( |x| + 

π

)
,

∣∣J(u)∣∣ = | sinπu|
π ≤ |u|

π
,

and

∣∣J(u)∣∣ =
∣∣∣∣ u
π + u

∣∣∣∣ ≤ |u|
π

.

Choosing p(t) =  + sinπ t, ψ(|x|) = (|x| + )/(π ) and ϕ(|u|) = |u|/π , we obtain

M∗

. + .M∗ > 

which implies that M∗ > .. Hence, by Theorem ., the boundary-value prob-
lem (.)-(.) has at least one solution on [, /].

Example . Consider the following impulsive fractional boundary-value problem:

cD

 x(t) =

t sinπx
(t + )(x + )

+
t

(t + )
, t ∈

(
,




)
, t �= 


,


,


, (.)

�x
(



)
= J

(



∫ 




(t – s)– 


�(  )
x(s)ds

)
,
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�x
(



)
= J

(



∫ 




(t – s)– 


�(  )
x(s)ds +




∫ 




(t – s)– 


�(  )
x(s)ds

)
,

�x
(



)
= J

(



∫ 




(t – s)– 


�(  )
x(s)ds +




∫ 




(t – s)– 


�(  )
x(s)ds

+



∫ 




(t – s)– 


�(  )
x(s)ds

)
, (.)

x() + x
(



)
= , (.)

where J(u) = (u/( + u)) + , J(u) = (u/( + sin u)) + (/), J(u) = ((sinπu)/(π )) + (/).

Set α = /, T = /, d, = /, d, = /, d, = /, d, = /, d, = /, d, = /,
β, = /, β, = /, β, = /, β, = /, β, = /, β, = /, a = , b =  and c = .
Since |f (t,x)| ≤ (/)|x| + , |Jk(x)| ≤ (/)|x| +  for k = , , , then (H) and (H) are

satisfied with κ = /, γ = /,M =  and N = . We have

κ = . < . = �–

and

λ = . < . = ( – κ�)�–.

Hence, byTheorem., the boundary value-problem (.)-(.) has at least one solution
on [, /].
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