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Abstract
In this paper, a steady axisymmetric MHD flow of two-dimensional incompressible
fluids has been investigated. The reproducing kernel Hilbert space method (RKHSM)
has been implemented to obtain a solution of the reduced fourth-order nonlinear
boundary value problem. Numerical results have been compared with the results
obtained by the Runge-Kutta method (RK-4) and optimal homotopy asymptotic
method (OHAM).
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1 Introduction
Squeezing flows have many applications in food industry, principally in chemical engi-
neering [–]. Some practical examples of squeezing flow include polymer processing,
compression and injection molding. Grimm [] studied numerically the thin Newtonian
liquids films being squeezed between two plates. Squeezing flow coupled with magnetic
field is widely applied to bearing with liquid-metal lubrication [, –].
In this paper, we use RKHSM to study the squeezing MHD fluid flow between two in-

finite planar plates. This problem has been solved by RKHSM and for comparison it has
been compared with the OHAM and numerically with the RK- by using Maple .
The RKHSM, which accurately computes the series solution, is of great interest to ap-

plied sciences. The method provides the solution in a rapidly convergent series with com-
ponents that can be elegantly computed. The efficiency of the method was used by many
authors to investigate several scientific applications. Geng and Cui [] and Zhou et al. []
applied the RKHSM to handle the second-order boundary value problems. Yao and Cui
[] and Wang et al. [] investigated a class of singular boundary value problems by this
method and the obtained results were good. Wang and Chao [], Li and Cui [], Zhou
and Cui [] independently employed the RKSHSM to variable-coefficient partial differ-
ential equations. Du andCui [] investigated the approximate solution of the forcedDuff-
ing equation with integral boundary conditions by combining the homotopy perturbation
method and the RKM. Lv andCui [] presented a new algorithm to solve linear fifth-order
boundary value problems. Cui and Du [] obtained the representation of the exact solu-
tion for the nonlinear Volterra-Fredholm integral equations by using the RKHSM.Wu and
Li [] applied iterative RKHSM to obtain the analytical approximate solution of a non-
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linear oscillator with discontinuities. For more details about RKHSM and the modified
forms and its effectiveness, see [–] and the references therein.
The paper is organized as follows. We give the problem formulation in Section . Sec-

tion  introduces several reproducing kernel spaces. A bounded linear operator is pre-
sented in Section . In Section , we provide the main results, the exact and approximate
solutions. An iterative method is developed for the kind of problems in the reproduc-
ing kernel space. We prove that the approximate solution converges to the exact solution
uniformly. Some numerical experiments are illustrated in Section . There are some con-
clusions in the last section.

2 Problem formulation
Consider a squeezing flow of an incompressible Newtonian fluid in the presence of a mag-
netic field of a constant density ρ and viscosity μ squeezed between two large planar par-
allel plates separated by a small distance H and the plates approaching each other with a
low constant velocity V , as illustrated in Figure , and the flow can be assumed to quasi-
steady [–, ]. The Navier-Stokes equations [, ] governing such flow in the presence
of magnetic field, when inertial terms are retained in the flow, are given as []

∇V · u =  (.)

and

ρ

[
∂u
∂t

+ (u · ∇)u
]
=∇ · T + J × B + ρf , (.)

where u is the velocity vector, ∇ denotes the material time derivative, T is the Cauchy
stress tensor,

T = –pI +μA

and

A =∇u + uT ,

Figure 1 A steady squeezing axisymmetric fluid flow between two parallel plates [38].
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J is the electric current density, B is the total magnetic field and

B = B + b,

B represents the imposed magnetic field and b denotes the induced magnetic field. In
the absence of displacement currents, the modified Ohm law and Maxwell’s equations
(see [] and the references therein) are given by []

J = σ [E + u× B] (.)

and

divB = , ∇ × B = μmJ , curlE =
∂B
∂t

, (.)

in which σ is the electrical conductivity, E is the electric field and μm is the magnetic
permeability.
The following assumptions are needed [].
(a) The density ρ , magnetic permeability μm and electric field conductivity σ are

assumed to be constant throughout the flow field region.
(b) The electrical conductivity σ of the fluid is considered to be finite.
(c) Total magnetic field B is perpendicular to the velocity field V and the induced

magnetic field b is negligible compared with the applied magnetic field B so that
the magnetic Reynolds number is small (see [] and the references therein).

(d) We assume a situation where no energy is added or extracted from the fluid by the
electric field, which implies that there is no electric field present in the fluid flow
region.

Under these assumptions, the magnetohydrodynamic force involved in Eq. (.) can be
put into the form

J × B = –σB
u. (.)

An axisymmetric flow in cylindrical coordinates r, θ , z with z-axis perpendicular to
plates and z =±H at the plates. Since we have axial symmetry, u is represented by

u =
(
ur(r, z), ,uz(r, z)

)
,

when body forces are negligible, Navier-Stokes Eqs. (.)-(.) in cylindrical coordinates,
where there is no tangential velocity (uθ = ), are given as []

ρ

(
ur

∂ur
∂r

+ uz
∂ur
∂z

)
= –

∂p
∂r

+
(

∂ur
∂r

+

r
∂ur
∂r

–
ur
r

+
∂ur
∂z

)
+ σB

u (.)

and

ρ

(
uz

∂uz
∂r

+ uz
∂uz
∂z

)
= –

∂p
∂r

+
(

∂uz
∂r

+

r
∂uz
∂r

+
∂uz
∂z

)
, (.)
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where p is the pressure, and the equation of continuity is given by []


r

∂

∂r
(rur) +

∂uz
∂z

= . (.)

The boundary conditions require

ur = , uz = –V at z =H ,

∂ur
∂z

= , uz =  at z = .
(.)

Let us introduce the axisymmetric Stokes stream function � as

ur =

r
∂�

∂z
, uz = –


r
∂�

∂r
. (.)

The continuity equation is satisfied using Eq. (.). Substituting Eqs. (.)-(.) and Eq.
(.) into Eqs. (.)-(.), we obtain

–
ρ

r
∂�

∂r
E� = –

∂p
∂r

+
μ

r
∂E�

∂z
–

σB


r
∂�

∂z
(.)

and

–
ρ

r
∂�

∂z
E� = –

∂p
∂z

+
μ

r
∂E�

∂r
. (.)

Eliminating the pressure from Eqs. (.) and (.) by the integrability condition, we get
the compatibility equation as []

–ρ

[
∂(� , E�r )

∂(r, z)

]
=

μ

r
E� –

σB


r
∂�

∂z
, (.)

where

E =
∂

∂r
–

r

∂

∂r
+

∂

∂z
.

The stream function can be expressed as [, ]

�(r, z) = rF(z). (.)

In view of Eq. (.), the compatibility equation (.) and the boundary conditions (.)
take the form

F (iv)(z) –
σB


r

F ′′(z) + 
ρ

μ
F(z)F ′′′(z) = , (.)

subject to

F() = , F ′′() = ,

F(H) =
V

, F ′(H) = .

(.)

http://www.boundaryvalueproblems.com/content/2014/1/18
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Non-dimensional parameters are given as []

F∗ = 
F
V
, z∗ =

z
H
, Re =

ρHV
μ

, m = BH
√

σ

μ
.

For simplicity omitting the ∗, the boundary value problem (.)-(.) becomes []

F (iv)(z) –mF ′′(z) +ReF(z)F ′′′(z) = , (.)

with the boundary conditions

F() = , F ′′() = ,

F() = , F ′() = ,
(.)

where Re is the Reynolds number andm is the Hartmann number.

3 Reproducing kernel spaces
In this section, we define some useful reproducing kernel spaces.

Definition . (Reproducing kernel) Let E be a nonempty abstract set. A function K :
E × E −→ C is a reproducing kernel of the Hilbert space H if and only if

{
∀t ∈ E, K (·, t) ∈H ,
∀t ∈ E,∀ϕ ∈H , 〈ϕ(·), K (·, t)〉 = ϕ(t).

(.)

The last condition is called ‘the reproducing property’: the value of the function ϕ at the
point t is reproduced by the inner product of ϕ with K (·, t).

Definition . We define the spaceW 
 [, ] by

W 
 [, ] =

{
u|u,u′,u′′,u′′′,u() are absolutely continuous in [, ],
u() ∈ L[, ],x ∈ [, ],u() = u() = u′() = u′′() = 

}
.

The fifth derivative of u exists almost everywhere since u() is absolutely continuous. The
inner product and the norm inW 

 [, ] are defined respectively by

〈u, v〉W

=

∑
i=

u(i)()v(i)() +
∫ 


u()(x)v()(x)dx, u, v ∈W 

 [, ]

and

‖u‖W

=

√〈u,u〉
W

, u ∈W 

 [, ].

The space W 
 [, ] is a reproducing kernel space, i.e., for each fixed y ∈ [, ] and any

u ∈ W 
 [, ], there exists a function Ry such that

u = 〈u,Ry〉W

.

http://www.boundaryvalueproblems.com/content/2014/1/18
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Definition . We define the spaceW 
 [, ] by

W 
 [, ] =

{
u|u,u′,u′′,u′′′ are absolutely continuous in [, ],
u() ∈ L[, ],x ∈ [, ]

}
.

The fourth derivative of u exists almost everywhere since u() is absolutely continuous.
The inner product and the norm in W 

 [, ] are defined respectively by

〈u, v〉W

=

∑
i=

u(i)()v(i)() +
∫ 


u()(x)v()(x)dx, u, v ∈W 

 [, ]

and

‖u‖W

=

√〈u,u〉
W

, u ∈W 

 [, ].

The space W 
 [, ] is a reproducing kernel space, i.e., for each fixed y ∈ [, ] and any

u ∈ W 
 [, ], there exists a function ry such that

u = 〈u, ry〉W

.

Theorem . The space W 
 [, ] is a reproducing kernel Hilbert space whose reproducing

kernel function is given by

Ry(x) =

{∑
i= ci(y)xi–, x≤ y,∑
i= di(y)xi–, x > y,

where ci(y) and di(y) can be obtained easily by usingMaple  and the proof of Theorem .
is given in Appendix.

Remark . The reproducing kernel function ry ofW 
 [, ] is given as

ry(x) =

{
 + xy + 

y
x + 

y
x + 

y
x – 

y
x + 

yx
 – 

,x
, x≤ y,

 + yx + 
y

x + 
y

x + 
x

y – 
x

y + 
xy

 – 
,y

, x > y.

This can be proved easily as the proof of Theorem ..

4 Bounded linear operator inW5
2 [0, 1]

In this section, the solution of Eq. (.) is given in the reproducing kernel spaceW 
 [, ].

On defining the linear operator L :W 
 [, ]→W 

 [, ] as

Lu = u()(x) +Re
ex

e
(
x – x + x

)
u()(x) –mu′′(x) +Re

ex

e
(
x + x – x – 

)
u(x).

Model problem (.)-(.) changes the following problem:

{
Lu =M(x,u,u()), x ∈ [, ],
u() = , u() = , u′() = , u′′() = ,

(.)

http://www.boundaryvalueproblems.com/content/2014/1/18
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where

F(x) = u(x) +
ex

e
(
x – x + x

)
and

M
(
x,u,u()

)
= –Reu()(x)u(x) –Re

(
ex

e

)(
x – x + x

)(
x + x – x – 

)

–
ex

e
(
x + x + x – 

)
+m ex

e
(
x + x – x

)
.

Theorem . The operator L defined by (.) is a bounded linear operator.

Proof We only need to prove

‖Lu‖W


≤ P‖Lu‖W

,

where P is a positive constant. By Definition ., we have

‖u‖W

= 〈u,u〉W


=

∑
i=

[
u(i)()

] + ∫ 



[
u()(x)

] dx, u ∈W 
 [, ],

and

‖Lu‖W

= 〈Lu,Lu〉W


=

[
(Lu)()

] + [
(Lu)′()

] + [
(Lu)′′()

]
+

[
(Lu)()()

] + ∫ 



[
(Lu)()(x)

] dx.
By the reproducing property, we have

u(x) = 〈u,Rx〉W

,

and

(Lu)(x) =
〈
u, (LRx)

〉
W


, (Lu)′(x) =

〈
u, (LRx)′

〉
W


,

(Lu)′′(x) =
〈
u, (LRx)′′

〉
W


, (Lu)()(x) =

〈
u, (LRx)()

〉
W


,

(Lu)()(x) =
〈
u, (LRx)()

〉
W


.

Therefore, by the Cauchy-Schwarz inequality, we get

∣∣(Lu)(x)∣∣ ≤ ‖u‖W

‖LRx‖W


= a‖u‖W


(where a >  is a positive constant),∣∣(Lu)′(x)∣∣ ≤ ‖u‖W



∥∥(LRx)′
∥∥
W


= a‖u‖W


(where a >  is a positive constant),

∣∣(Lu)′′(x)∣∣ ≤ ‖u‖W


∥∥(LRx)′′
∥∥
W


= a‖u‖W


(where a >  is a positive constant),

∣∣(Lu)()(x)∣∣ ≤ ‖u‖W


∥∥(LRx)()
∥∥
W


= a‖u‖W


(where a >  is a positive constant).

http://www.boundaryvalueproblems.com/content/2014/1/18
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Thus

[
(Lu)()

] + [
(Lu)′()

] + [
(Lu)′′()

] + [
(Lu)()()

] ≤ (
a + a + a + a

)‖u‖W

.

Since

(Lu)() =
〈
u, (LRx)()

〉
W


,

then

∣∣(Lu)()∣∣ ≤ ‖u‖W


∥∥(LRx)()
∥∥
W


= a‖u‖W


(where a >  is a positive constant).

Therefore, we have

[
(Lu)()

] ≤ a‖u‖W


and
∫ 



[
(Lu)()(x)

] dx ≤ a‖u‖W

,

that is,

‖Lu‖W

=

[
(Lu)()

] + [
(Lu)′()

] + [
(Lu)′′()

] + [
(Lu)()()

] + ∫ 



[
(Lu)()(x)

] dx
≤ (

a + a + a + a + a
)‖u‖W


= P‖u‖W


,

where P = (a + a + a + a + a) >  is a positive constant. This completes the proof. �

5 Analysis of the solution of (2.17)-(2.18)
Let {xi}∞i= be any dense set in [, ] and �x(y) = L∗rx(y), where L∗ is the adjoint operator of
L and rx is given by Remark .. Furthermore

�i(x)
def= �xi (x) = L∗rxi (x).

Lemma . {�i(x)}∞i= is a complete system of W 
 [, ].

Proof For u ∈W 
 [, ], let

〈u,�i〉 =  (i = , , . . .),

that is,

〈
u,L∗rxi

〉
= (Lu)(xi) = .

Note that {xi}∞i= is the dense set in [, ]. Therefore (Lu)(x) = . Assume that (.) has a
unique solution. Then L is one-to-one on W 

 [, ] and thus u(x) = . This completes the
proof. �
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Lemma . The following formula holds:

�i(x) =
(
LηRx(η)

)
(xi),

where the subscript η of the operator Lη indicates that the operator L applies to a function
of η.

Proof

�i(x) =
〈
�i(ξ ),Rx(ξ )

〉
W

 [,]

=
〈
L∗rxi (ξ ),Rx(ξ )

〉
W

 [,]

=
〈
(rxi )(ξ ),

(
LηRx(η)

)
(ξ )

〉
W

 [,]

=
(
LηRx(η)

)
(xi).

This completes the proof. �

Remark . The orthonormal system {� i(x)}∞i= of W 
 [, ] can be derived from the

Gram-Schmidt orthogonalization process of {�i(x)}∞i= as

� i(x) =
i∑

k=

βik�k(x) (βii > , i = , , . . .), (.)

where βik are orthogonal coefficients.
In the following, we give the representation of the exact solution of Eq. (.) in the

reproducing kernel spaceW 
 [, ].

Theorem . If u is the exact solution of (.), then

u =
∞∑
i=

i∑
k=

βikM
(
xk ,u(xk),u()(xk)

)
� i(x),

where {xi}∞i= is a dense set in [, ].

Proof From (.) and the uniqueness of solution of (.), we have

u =
∞∑
i=

〈u,� i〉W

� i =

∞∑
i=

i∑
k=

βik
〈
u,L∗rxk

〉
W


� i

=
∞∑
i=

i∑
k=

βik〈Lu, rxk 〉W

� i =

∞∑
i=

i∑
k=

βik
〈
M

(
x,u,u()

)
, rxk

〉
W


� i

=
∞∑
i=

i∑
k=

βikM
(
xk ,u(xk),u()(xk)

)
� i(x).

This completes the proof. �
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Now the approximate solution un can be obtained by truncating the n-term of the exact
solution u as

un =
n∑
i=

i∑
k=

βikM
(
xk ,u(xk),u()(xk)

)
� i(x).

Lemma . ([]) Assume that u is the solution of (.) and rn is the error between the
approximate solution un and the exact solution u. Then the error sequence rn is monotone
decreasing in the sense of ‖ · ‖W


and ‖rn(x)‖W


→ .

6 Numerical results
In this section, comparisons of results are made through different Reynolds numbers Re
andmagnetic field effectm. All computations are performed byMaple . Figure . shows
comparisons of F(z) for a fixed Reynolds number with increasing magnetic field effect
m = , , , . From this figure, the velocity decreases due to an increase in m. Figure .
shows comparisons of F(z) for a fixedmagnetic fieldm =  with increasing Reynolds num-
bersRe = , , . It is observed thatmuch increase in Reynolds numbers affects the results.
The RKHSM does not require discretization of the variables, i.e., time and space, it is not
affected by computation round of errors and one is not faced with necessity of large com-
puter memory and time. The accuracy of the RKHSM for the MHD squeezing fluid flow
is controllable and absolute errors are small with present choice of x (see Tables - and
Figures -). The numerical results we obtained justify the advantage of thismethodology.
Generally it is not possible to find the exact solution of these problems.

Table 1 Numerical results atm = 1 and Re = 1

x OHAM Numerical solution
(RK-4)

Approximate solution
RKHSM

Absolute
error

Relative
error

Time (s)

0.1 0.150265 0.150294 0.15029400074386619072 7.43× 10–10 4.94× 10–9 2.948
0.2 0.297424 0.297481 0.29748099943286204844 5.67× 10–10 1.9× 10–9 2.980
0.3 0.438387 0.438467 0.43846699936146542481 6.38× 10–10 1.45× 10–9 2.870
0.4 0.570093 0.570189 0.57018899983086605298 1.69× 10–10 2.96× 10–10 2.792
0.5 0.68952 0.689624 0.68962399932753349664 6.72× 10–10 9.75× 10–10 2.824
0.6 0.793695 0.793796 0.79379600052975674440 5.29× 10–10 6.67× 10–10 2.902
0.7 0.879695 0.879779 0.87977900034152532706 3.41× 10–10 3.88× 10–10 2.964
0.8 0.944641 0.944696 0.94469600021478585921 2.14× 10–10 2.27× 10–10 2.808
0.9 0.985687 0.985707 0.98570699945336089741 5.46× 10–10 5.54× 10–10 2.761
1.0 1.0 1.0 1.0 0.0 0.0 2.902

Table 2 Numerical results atm = 3 and Re = 1

x OHAM Numerical solution
(RK-4)

Approximate solution
RKHSM

Absolute
error

Relative
error

Time (s)

0.1 0.13709 0.137044 0.13704399924397146430 7.56× 10–10 5.51× 10–9 3.261
0.2 0.272583 0.272494 0.27249400041809657591 4.18× 10–10 1.53× 10–9 3.542
0.3 0.404759 0.404637 0.40463699937791012358 6.22× 10–10 1.53× 10–9 2.949
0.4 0.531649 0.531508 0.53150799980699743080 1.93× 10–10 3.63× 10–10 3.541
0.5 0.650894 0.650756 0.65075599905912100256 9.4× 10–10 1.44× 10–9 3.089
0.6 0.759591 0.759478 0.75947799979255971384 2.07× 10–10 2.73× 10–10 2.996
0.7 0.854106 0.854035 0.85403499924057783299 7.59× 10–10 8.89× 10–10 3.026
0.8 0.929845 0.929817 0.92981700082221438640 8.22× 10–10 8.84× 10–10 7.582
0.9 0.980966 0.980963 0.98096299961587653980 3.84× 10–10 3.91× 10–10 3.291
1.0 1.0 1.0 1.0 0.0 0.0 2.902

http://www.boundaryvalueproblems.com/content/2014/1/18
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Table 3 Numerical results atm = 8 and Re = 1

x OHAM Numerical solution
(RK-4)

Approximate solution
RKHSM

Absolute
error

Relative
error

Time (s)

0.1 0.11507 0.114976 0.11497599095960418967 9.04× 10–9 7.86× 10–8 4.290
0.2 0.230068 0.229882 0.22988199268533318687 7.31× 10–9 3.18× 10–8 4.134
0.3 0.344866 0.344604 0.34460400584434350472 5.84× 10–9 1.69× 10–8 4.477
0.4 0.459205 0.458904 0.45890399132822355411 8.67× 10–9 1.88× 10–8 4.275
0.5 0.572545 0.572276 0.5722759999680104400 3.19× 10–11 5.58× 10–11 3.931
0.6 0.683769 0.683628 0.68362799155831029523 8.44× 10–9 1.23× 10–8 4.556
0.7 0.790543 0.790607 0.79060700783664672119 7.83× 10–9 9.91× 10–9 4.461
0.8 0.887936 0.888173 0.88817300466724146312 4.66× 10–9 5.25× 10–9 3.885
0.9 0.965381 0.965578 0.96557800220185786369 2.2× 10–9 2.28× 10–9 5.007
1.0 1.0 1.0 1.0 0.0 0.0 2.902

Table 4 Numerical results atm = 20 and Re = 1

x OHAM Numerical solution
(RK-4)

Approximate solution
RKHSM

Absolute
error

Relative
error

Time (s)

0.1 0.105312 0.105391 0.10539098947593257979 1.05× 10–8 9.98× 10–8 4.134
0.2 0.210625 0.210782 0.2107819933190829 6.68× 10–9 3.16× 10–8 5.101
0.3 0.315938 0.316173 0.3161729190893567630 8.09× 10–8 2.55× 10–7 3.010
0.4 0.421249 0.421563 0.4215629919618786430 8.03× 10–9 1.9× 10–8 3.198
0.5 0.526551 0.526952 0.5269519479728988 5.2× 10–8 9.87× 10–8 3.042
0.6 0.631824 0.632324 0.632323981769674315 1.82× 10–8 2.88× 10–8 3.074
0.7 0.736971 0.737586 0.7375860570172070642 5.7× 10–8 7.73× 10–8 3.089
0.8 0.841352 0.842051 0.84205103495023398982 3.49× 10–8 4.15× 10–8 3.073
0.9 0.94035 0.940861 0.94086101815219431313 1.81× 10–8 1.92× 10–8 3.135
1.0 1.0 1.0 1.0 0.0 0.0 2.902

Table 5 Numerical results atm = 1 and Re = 4

x OHAM Numerical solution
(RK-4)

Approximate solution
RKHSM

Absolute
error

Relative
error

Time (s)

0.1 0.156218 0.158104 0.15810400012535311729 1.25× 10–10 7.92× 10–10 5.304
0.2 0.308363 0.311962 0.31196200057873017887 5.78× 10–10 1.85× 10–9 7.332
0.3 0.452557 0.457539 0.45753900003164153289 3.16× 10–11 6.91× 10–11 5.913
0.4 0.585287 0.591193 0.59119300033029000468 3.3× 10–10 5.58× 10–10 6.272
0.5 0.703518 0.709771 0.70977100026331200670 2.63× 10–10 3.7× 10–10 5.757
0.6 0.804726 0.810642 0.81064200064720692438 6.47× 10–10 7.98× 10–10 6.256
0.7 0.886838 0.891666 0.89166599939606220359 6.03× 10–10 6.03× 10–10 6.396
0.8 0.948051 0.95112 0.95112000044608660232 4.46× 10–10 4.69× 10–10 5.101
0.9 0.986529 0.987612 0.98761199979328069240 2.06× 10–10 2.09× 10–10 5.616
1.0 1.0 1.0 1.0 0.0 0.0 2.902

Table 6 Numerical results atm = 1 and Re = 10

x OHAM Numerical solution
(RK-4)

Approximate solution
RKHSM

Absolute
error

Relative
error

Time (s)

0.1 0.175911 0.167616 0.1676160001397322991 1.39× 10–10 8.33× 10–10 5.569
0.2 0.344336 0.329031 0.32903100221406728329 2.21× 10–9 6.72× 10–9 6.365
0.3 0.498671 0.478907 0.47890699791462877619 2.08× 10–9 4.35× 10–9 7.378
0.4 0.633941 0.613252 0.61325199550552162812 4.49× 10–9 7.32× 10–9 7.254
0.5 0.747277 0.729428 0.72942799845508679063 1.54× 10–9 2.11× 10–9 6.271
0.6 0.838004 0.825843 0.82584300690485584332 6.9× 10–9 8.36× 10–9 7.425
0.7 0.907244 0.901576 0.90157600840425340903 8.4× 10–9 9.32× 10–9 6.162
0.8 0.956954 0.901576 0.90157518382496567601 8.16× 10–7 9.05× 10–7 7.410
0.9 0.988387 0.988978 0.98897799997420425356 2.57× 10–11 2.6× 10–11 7.910
1.0 1.0 1.0 1.0 0.0 0.0 2.902
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Figure 2 Comparison RKHSM, OHAM and RK-4 solutions form = Re = 1.

Figure 3 Comparison RKHSM, OHAM and RK-4 solutions form = 3 and Re = 1.

Figure 4 AE and RE form = 1 and Re = 4.
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Figure 5 AE and RE form = 1 and Re = 10.

Figure 6 Comparison of squeezing flow for a fixed Reynolds number Re = 1 and increasing magnetic
field effectm = 1,3, 8, 20.

7 Conclusion
In this paper, we introduced an algorithm for solving the MHD squeezing fluid flow. We
applied a new powerful method RKHSM to the reduced nonlinear boundary value prob-
lem. The approximate solution obtained by the present method is uniformly convergent.
Clearly, the series solutionmethodology can be applied tomuchmore complicated nonlin-
ear differential equations and boundary value problems. However, if the problem becomes
nonlinear, then the RKHSM does not require discretization or perturbation and it does
not make closure approximation. Results of numerical examples show that the present
method is an accurate and reliable analytical method for this problem.
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Figure 7 Comparison of squeezing flow for a fixedmagnetic field effectm = 1 and increasing
Reynolds numbers Re = 1,4, 10.

Appendix

Proof of Theorem . Let u ∈W 
 [, ]. By Definition . we have

〈u,Ry〉W

=

∑
i=

u(i)()R(i)
y () +

∫ 


u()(x)R()

y (x)dx. (A.)

Through several integrations by parts for (A.), we have

〈u,Ry〉W

=

∑
i=

u(i)()
[
R(i)
y () – (–)(–i)R(–i)

y ()
]

+
∑
i=

(–)(–i)u(i)()R(–i)
y ()–

∫ 


u(x)R()

y (x)dx. (A.)

Note the property of the reproducing kernel

〈u,Ry〉W

= u(y).

Now, if

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

R′
y() + R()

y () = ,
R()
y () + R()

y () = ,
R()
y () – R()

y () = ,
R()
y () = ,

R()
y () = ,

R()
y () = ,

(A.)

http://www.boundaryvalueproblems.com/content/2014/1/18


Inc and Akgül Boundary Value Problems 2014, 2014:18 Page 15 of 17
http://www.boundaryvalueproblems.com/content/2014/1/18

then (A.) implies that

R()
y (x) = –δ(x – y),

when x = y

R()
y (x) = ,

and therefore

Ry(x) =

{∑
i= ci(y)xi–, x ≤ y,∑
i= di(y)xi–, x > y.

Since

R()
y (x) = δ(x – y),

we have

R(k)
y+ (y) = R(k)

y– (y), k = , , , , , , , , , (A.)

and

R()
y+ (y) – R()

y– (y) = –. (A.)

Since Ry(x) ∈W 
 [, ], it follows that

Ry() = , Ry() = , R′
y() = , R′′

y () = . (A.)

From (A.)-(A.), the unknown coefficients ci(y) and di(y) (i = , , . . . , ) can be obtained.
This completes the proof. �
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