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Abstract
In this paper, we investigate Abel-type nonlinear integral equations with weakly
singular kernels. Existence and uniqueness of nontrivial solution are presented in an
order interval of a cone by using fixed point methods. As a byproduct of our method,
we improve a gap in the proof of Theorem 5 in Buckwar (Nonlinear Anal. TMA
63:88-96, 2005). As an extension, solutions in closed form of some Erdélyi-Kober-type
fractional integral equations are given. Finally theoretical results with three illustrative
examples are presented.
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1 Introduction
Abel-type integral equations are associated with a wide range of physical problems such
as heat transfer [], nonlinear diffusion [], propagation of nonlinear waves [], and they
can also be applied in the theory of neutron transport and in traffic theory. In the past 
years, many researchers investigated the existence and uniqueness of nontrivial solutions
for a large number of Abel-type integral equations by using various analysis methods (see
[–] and references therein).
Fractional calculus provides a powerful tool for the description of hereditary proper-

ties of various materials and memory processes. In particular, integral equations involv-
ing fractional integral operators (which can be regarded as an extension of Abel integral
equations) appear naturally in the fields of biophysics, viscoelasticity, electrical circuits,
and etc. There are some remarkable monographs that provide the main theoretical tools
for the qualitative analysis of fractional order differential equations, and at the same time,
show the interconnection as well as the contrast between integer order differential models
and fractional order differential models [–].
It is remarkable that many researchers pay attention to the study of the existence and

attractiveness of solutions for fractional integral equations by using functional analy-
sis methods such as the contraction principle, the Schauder fixed point theorem and a
Darboux-type fixed point theorem involving a measure of noncompactness (see [–]
and references therein).
A completely different approach is given in Buckwar [] to discussing the existence and

uniqueness of nontrivial solutions for Abel-type nonlinear integral equation with power-
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law nonlinearity on an order interval as follows:

xp(t) =


�(α)

∫ t



[
K (t, s)

(t – s)–α

]
x(s)ds, t ∈ [,T]. ()

Many analysis techniques are used to construct the suitable order interval (see Lemma ,
[]) and the spaces with suitable weighted norms.
Motivated by [, , , ], we extend to study the following Abel-type nonlinear inte-

gral equation with weakly singular kernels:

h
(
x(t)

)
=

β–α

�(α)

∫ t



[
K (t, s)sγ–

(tβ – sβ )–α

]
g
(
x(s)

)
ds, t ∈ [,T], ()

where h, g ∈ C([,M), [, +∞)) are given functions for someM ∈ (, +∞], h is increasing,
g is nondecreasing such that

a–xp– ≤ h(x)≤ a+xp+ , b–xq– ≤ g(x)≤ b+xq+ ,  ≤ x <M, ()

for some positive constants a±, b±, p±, q±,  < α < , γ ≥ β > , and  < q+ ≤ q– < p+ ≤
p–, the function K (t, s) is non-negative and it has either the form K (t, s) = k(tβ – sβ ) or
K (t, s) = k(t, s) for some function k, k specified later. �(·) is the Gamma function. Of
course, we suppose

a–Mp––p+ ≤ a+, b–Mq––q+ ≤ b+. ()

It is obvious that equation () or

xp(t) =
β–α

�(α)

∫ t



[
K (t, s)sγ–

(tβ – sβ )–α

]
xq(s)ds, t ∈ [,T], ()

are special cases of equation (), which of course all have trivial solutions.
Thus, the main purpose of this paper is to prove the existence and uniqueness of non-

trivial solutions for equation (). The key difficult comes from the weakly singular kernels
(tβ – sβ )–α and nonlinear terms in equation (). Although we are motivated by [], we
have to introduce novel techniques and results to overcome the difficult from the weakly
singular kernels and nonlinear terms h and g . For example, the first important step is how
to construct a suitable order interval to help us to apply the fixed point theorem in such an
order interval. More details of the novel techniques and results will be found in the proof.
As a byproduct of our method, we improve a gap in the proof of [, Theorem ]. So even
for equation () (or ()) we get a new result.
As an extension, we find general solutions in closed form of some Erdélyi-Kober-type

fractional integral equations (the special case of equation () if b = ):

ϕm(x) = ax
β(m–N)

N
(
EK Iα+;σ ,ηϕ

N)
(x) + bx

βm
N , x > , ()

where α,b,σ ≥ ,N �= , and η ∈R and the symbol EK Iα+;σ ,ηϕN denotes the Erdélyi-Kober-
type fractional integrals [] of the function ϕN , which is given by

(
EK I

α
+;σ ,ηϕ

N)
(x) :=

σx–σ (α+η)

�(α)

∫ x



tση+σ–ϕN (t)dt
(xσ – tσ )–α

, x > .
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The plan of this paper is as follows. In Section , some notation and preparation results
are given. Existence and uniqueness results of a nontrivial solution of equation () in an
order interval are given in Section . In Section , we find general solutions in closed form
of some Erdélyi-Kober-type fractional integral equations, and finally theoretical results
with three illustrate examples are presented in Section .

2 Preliminary
Let M be the set M := {f ∈ C[,T] : f () = } with the supremum-norm ‖f ‖M :=
sup<t≤T {|f (t)|}. Clearly, the set (M,‖ · ‖M) is a closed subspace of Banach space (C[,T],
‖ · ‖C). Thus, (M,‖ · ‖M) is a Banach space.
Let q be a continuous function on [,T] with q(t) >  for all t >  and let Mq be the set

Mq :=
{
f ∈ M : sup

<t≤T

|f (t)|
q(t)

< ∞
}

with the weighted norm

‖f ‖q := sup
<t≤T

{ |f (t)|
q(t)

}
. ()

Remark . If q() > , then the set Mq is the same as the set M, but with an equivalent
norm, and the constants can be determined in the following inequality:

c‖u – v‖g ≤ ‖u – v‖M ≤ c‖u – v‖g ,

where c =maxt∈[,T]{g(t)} and c =mint∈[,T]{g(t)}. Note that the similar inequality () of
[] is incorrect.

Consider the cone PM := {u ∈ M : u(t) ≥ , t ∈ [,T]} in M. The so-called partial or-
dering induced by the cone PM is given by u ≤ v ⇐⇒ u(t) ≤ v(t) for all u, v ∈ M and all
t ∈ [,T]. In general [, ], a set [f , g] = {h ∈ E : f ≤ h ≤ g} is called an order interval
where E is an ordered Banach space. We know that every order interval [f , g] is closed.
Moreover, if ‖f ‖E ≤ ‖g‖E for all f , g ∈ E with  ≤ f ≤ g , then every order interval [f , g] is
bounded.
We introduce some conditions on the functions K , ki, i = ,  as follows:
(i) k ∈ C(n)[,T] where n ∈ {, , , . . .}, and  �= k ∈ C[,T].
(ii) k(t) >  for all t ∈ (,T] and k(t, s)≥  for all  ≤ s≤ t ≤ T .
(iii) k() = k() () = · · · = k(n–) () = , and k(n) (t)≥ k(n) () > , for all t ∈ (,T].
• For K (t, s) = k(tβ – sβ ) and n≥ , we set

Klow = k(n) (), Kup = max
t∈[,T]

{
k(n) (t)

}
. ()

• For K (t, s) = k(t, s), we set n =  and

Klow = Kmin := min
≤s≤t≤T

{
k(t, s)

}
, Kup = Kmax := max

≤s≤t≤T

{
k(t, s)

}
. ()

Similarly for K (t, s) = k(tβ – sβ ) and n = .

http://www.boundaryvalueproblems.com/content/2014/1/20
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We note [] an important estimate on the function K , which will be used in the sequel.

Lemma . The function K (·, ·) has the following estimate:


n!

(
tβ – sβ

)n
Klow ≤ K (t, s) ≤ 

n!
(
tβ – sβ

)n
Kup, ≤ s ≤ t ≤ T . ()

Proof We only check the case of K (t, s) = k(tβ – sβ ) with n ≥ , since the other cases are
trivial.
Integrating n times step-by-step all sides of the inequality

k(n) () ≤ k(n) (t) ≤Kup

from  to t and using k() = k() () = · · · = k(n–) () =  we immediately derive

tn

n!
k(n) () ≤ k(t) ≤ tn

n!
Kup.

Replacing t by (tβ – sβ ), we obtain the desired result. �

To end this section, we collect the following basic facts, which will be used several times
in the next section.

Lemma . Let λ, γ , μ, and ν be constants such that λ > , Re(γ ) > , Re(μ) > , and
Re(ν) > . Then

∫ t



(
tλ – sλ

)ν–sμ– ds =
tλ(ν–)+μ

λ
B

(
μ

λ
,ν

)
, t ∈ [, +∞),

and

∫ t

a

(
tλ – sλ

)ν–sγ–
(
sλ – aλ

)μ ds

≥ (tλ – aλ)ν+
γ
λ
+μ–

λ
B

(
γ

λ
+μ,ν

)
, t ∈ [a, +∞),a≥ ,

where

B(ξ ,η) =
∫ 


sξ–( – s)η– ds

(
Re(ξ ) > ,Re(η) > 

)

is the well-known Beta function.

Proof The first result have been reported in [] or [, Formula .]. We only verify
the second inequality. In fact, for any t ∈ [a, +∞), a≥ , we derive

∫ t

a

(
tλ – sλ

)ν–sγ–
(
sλ – aλ

)μ ds

=

λ

∫ tλ

aλ

(
tλ – u

)ν–u
γ–
λ

(
u – aλ

)μu

λ
– du

(
set u = sλ

)

http://www.boundaryvalueproblems.com/content/2014/1/20
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=

λ

∫ tλ

aλ

(
tλ – u

)ν–u
γ
λ
–(u – aλ

)μ du

=

λ

∫ tλ–aλ



(
tλ – aλ – z

)ν–(aλ + z
) γ

λ
–zμ du

(
set u = aλ + z

)

≥ 
λ

∫ tλ–aλ



(
tλ – aλ – z

)ν–z
γ
λ
+μ– du

=
(tλ – aλ)ν+

γ
λ
+μ–

λ
B

(
γ

λ
+μ,ν

)
.

The proof is completed. �

3 Existence and uniqueness of nontrivial solution in an order interval
In this section, we will use the fixed point method to prove the existence and uniqueness
of nontrivial solution for equation () in an order interval.
For all t ∈ [,T], we introduce the following functions:

F(t) = Atτ– , G(t) = Btτ+ ,

A =
(
b–β–α

Klow

a+�(α)n!
B

(
β(n + α – )q– + γ p+

β(p+ – q–)
,n + α

)) 
p+–q–

,

B =
(
b+β–α

Kup

a–�(α)n!
B

(
β(n + α – )q+ + γ p–

β(p– – q+)
,n + α

)) 
p––q+

,

τ– =
β(n + α – ) + γ

p+ – q–
, τ+ =

β(n + α – ) + γ

p– – q+
,

where Klow and Kup are defined in equation () or ().

Remark . Note that β(n + α – )q∓ + γ p± ≥ β(α – )q∓ + βp± = β(p± – q∓) + αβq∓ > 
and β(n + α – ) + γ ≥ β(α – ) + β = αβ > . Next, τ– ≥ τ+.

The following result is clear.

Lemma . If

ATτ––τ+ ≤ B <MT–τ+ ()

then F(t) ≤ G(t) <M for all t ∈ [,T]. Consequently, the order interval [F ,G] ⊂ PM is well
defined.

Remark . If p+ = p–, q+ = q–, andM = +∞ then equation () reads

a+b+
a–b–

≥ Klow

Kup

which is satisfied, since equation () implies a+ ≥ a– > , b+ ≥ b– >  (see equation ())
and clearly Klow

Kup
≤ . This case occurs for instance when h(x) = xph̃(x) and g(x) = xqg̃(x)

with p > q and  < infR h(x)≤ sup
R
h(x) <∞,  < infR g(x)≤ sup

R
g(x) < ∞.

http://www.boundaryvalueproblems.com/content/2014/1/20
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From now on, we suppose that all above assumptions hold: equations (), (), (i)-(iii),
and ().

Lemma . Any solution x ∈ PM of equation (), with M > x(t) >  for all t ∈ (,T], satis-
fies x ∈ [F ,G].

Proof Step : We prove that x≤G for a solution x of equation ().
Set x+(t) =maxs∈[,t] x(s) = x(st). Then we obtain

a–xp–(t) ≤ h
(
x(t)

)

=
β–α

�(α)

∫ t



K (t, s)sγ–

(tβ – sβ )–α
g
(
x(s)

)
ds

≤ b+xq++ (t)
β–α

�(α)

∫ st



K (st , s)sγ–

(sβt – sβ )–α
ds

≤ b+xq++ (t)
β–α

Kup

�(α)n!

∫ st



(
sβt – sβ

)n+α–sγ– ds

= b+xq++ (t)
β–α

Kup

�(α)n!
B

(
γ

β
,n + α

)
sβ(n+α–)+γ
t

≤ b+xq++ (t)
β–α

Kup

�(α)n!
B

(
γ

β
,n + α

)
tβ(n+α–)+γ ,

which implies that

x(t)≤ x+(t) ≤
(
b+β–α

Kup

a–�(α)n!
B

(
γ

β
,n + α

)) 
p––q+

t
β(n+α–)+γ

p––q+ . ()

Next we set

 := sup
t∈(,T]

x(t)
tτ+

≤
(
b+β–α

Kup

a–�(α)n!
B

(
γ

β
,n + α

)) 
p––q+

.

Then we have

a–xp–(t) ≤ h
(
x(t)

)

=
β–α

�(α)

∫ t



K (t, s)sγ–

(tβ – sβ )–α
g
(
x(s)

)
ds

≤ b+q+ β–α
Kup

�(α)n!

∫ t



(
tβ – sβ

)n+α–sγ–sq+τ+ ds

= b+q+ β–α
Kup

�(α)n!
B

(
γ + q+τ+

β
,n + α

)
tβ(n+α–)+γ+q+τ+

≤ b+q+ β–α
Kup

�(α)n!
B

(
β(n + α – )q+ + γ p–

β(p– – q+)
,n + α

)
tp–τ+ ,

and so

x(t)
tτ+

≤ 
q+
p–

(
b+β–α

Kup

a–�(α)n!
B

(
β(n + α – )q+ + γ p–

β(p– – q+)
,n + α

)) 
p–
,

http://www.boundaryvalueproblems.com/content/2014/1/20
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hence

 ≤ 
q+
p–

(
b+β–α

Kup

a–�(α)n!
B

(
β(n + α – )q+ + γ p–

β(p– – q+)
,n + α

)) 
p–
,

thus

 ≤
(
b+β–α

Kup

a–�(α)n!
B

(
β(n + α – )q+ + γ p–

β(p– – q+)
,n + α

)) 
p––q+

,

consequently

x(t)≤
(
b+β–α

Kup

a–�(α)n!
B

(
β(n + α – )q+ + γ p–

β(p– – q+)
,n + α

)) 
p––q+

tτ+ =G(t). ()

Since β(n+α–)q++γ p–
β(p––q+) > γ

β
implies B( β(n+α–)q++γ p–

β(p––q+) ,n + α) < B( γ

β
,n + α), estimate () is an

improvement of equation ().
Step : We prove that x≥ F . Fix a ∈ (,T) and set

ϒa := inf
t∈(a,T]

x(t)
(tβ – aβ )�

> 

for � := β(n+α–)+γ

β(p+–q–) > . Then like above, for t ∈ (a,T], we get

a+xp+ (t) ≥ h
(
x(t)

)

=
β–α

�(α)

∫ t



K (t, s)sγ–

(tβ – sβ )–α
g
(
x(s)

)
ds

≥ b–ϒq–
a

β–α

�(α)

∫ t

a

K (t, s)sγ–

(tβ – sβ )–α

(
sβ – aβ

)q–� ds

≥ b–ϒq–
a

β–α
Klow

�(α)n!

∫ t

a

(
tβ – sβ

)n+α–sγ–
(
sβ – aβ

)q–� ds

≥ b–ϒq–
a

β–α
Klow

�(α)n!
B

(
γ

β
+ q–�,n + α

)(
tβ – aβ

)n+α–+ γ
β
+q–�

= b–ϒq–
a

β–α
Klow

�(α)n!
B

(
β(n + α – )q– + γ p+

β(p+ – q–)
,n + α

)(
tβ – aβ

)p+�,

which implies

(
x(t)

(tβ – aβ )�

)p+
≥ ϒq–

a
b–β–α

Klow

a+�(α)n!
B

(
β(n + α – )q– + γ p+

β(p+ – q–)
,n + α

)
.

Hence

ϒp+
a ≥ ϒq–

a
b–β–α

Klow

a+�(α)n!
B

(
β(n + α – )q– + γ p+

β(p+ – q–)
,n + α

)
,

and so

ϒa ≥
(
b–β–α

Klow

a+�(α)n!
B

(
β(n + α – )q– + γ p+

β(p+ – q–)
,n + α

)) 
p+–q–

.

http://www.boundaryvalueproblems.com/content/2014/1/20
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Consequently, we arrive at

x(t) ≥ ϒa
(
tβ – aβ

)�

≥
(
b–β–α

Klow

a+�(α)n!
B

(
β(n + α – )q– + γ p+

β(p+ – q–)
,n + α

)) 
p+–q– (

tβ – aβ
)�.

Since a ∈ (,T) is arbitrarily, we have

x(t)≥
(
b–β–α

Klow

a+�(α)n!
B

(
β(n + α – )q– + γ p+

β(p+ – q–)
,n + α

)) 
p+–q–

tβ� = F(t).

Hence we can complete the proof. �

To solve equation (), we introduce an operator Sh,g : [F ,G] ⊂ PM → C[,T] by

Sh,g(x)(t) = h–
(

β–α

�(α)

∫ t



[
K (t, s)sγ–

(tβ – sβ )–α

]
g
(
x(s)

)
ds

)
, t ∈ [,T]. ()

Lemma . The operator Sh,g maps the order interval [F ,G] into itself.

Proof To achieve our aim, we only need to verify that SF ≥ F and SG ≤G:

h
(
F(t)

) ≤ β–α

�(α)

∫ t



[
K (t, s)sγ–

(tβ – sβ )–α

]
g
(
F(s)

)
ds, t ∈ [,T], ()

h
(
G(t)

) ≥ β–α

�(α)

∫ t



[
K (t, s)sγ–

(tβ – sβ )–α

]
g
(
G(s)

)
ds, t ∈ [,T]. ()

First we show equation ():

β–α

�(α)

∫ t



[
K (t, s)sγ–

(tβ – sβ )–α

]
g
(
F(s)

)
ds

≥ b–β–αAq–Klow

�(α)n!

∫ t



(
tβ – sβ

)n+α–sq–τ–+γ– ds

=
b–β–αAq–Klow

�(α)n!
B

(
q–τ– + γ

β
,n + α

)
tβ(n+α–)+q–τ–+γ

= a+Ap+ tp+τ– ≥ h
(
F(t)

)
.

Secondly we derive equation ():

β–α

�(α)

∫ t



[
K (t, s)sγ–

(tβ – sβ )–α

]
g
(
G(s)

)
ds

≤ b+β–αBq+Kup

�(α)n!

∫ t



(
tβ – sβ

)n+α–sq+τ++γ– ds,

=
b+β–αBq+Kup

�(α)n!
B

(
q+b + γ

β
,n + α

)
tβ(n+α–)+q+τ++γ

= a–Bp– tp–τ+ ≤ h
(
G(t)

)
.

http://www.boundaryvalueproblems.com/content/2014/1/20
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Since obviously, the operator S is strictly increasing in [F ,G] and if x ∈ [F ,G] then F(t) ≤
x(t)≤G(t) <M, t ∈ [,T]. Hence

h
(
F(t)

) ≤ β–α

�(α)

∫ t



[
K (t, s)sγ–

(tβ – sβ )–α

]
g
(
F(s)

)
ds

≤ β–α

�(α)

∫ t



[
K (t, s)sγ–

(tβ – sβ )–α

]
g
(
x(s)

)
ds

≤ β–α

�(α)

∫ t



[
K (t, s)sγ–

(tβ – sβ )–α

]
g
(
G(s)

)
ds

≤ h
(
G(t)

)
,

so

β–α

�(α)

∫ t



[
K (t, s)sγ–

(tβ – sβ )–α

]
g
(
x(s)

)
ds ∈ [

,h
(
G(t)

)]
= h

([
,G(t)

])
.

Consequently, Sh,g is well defined and Sh,g([F ,G])⊂ [F ,G]. The proof is completed. �

From the Arzela-Ascoli theorem and since Sh,g : [F ,G] → [F ,G] is nondecreasing, it fol-
lows that Sh,g is compact, so the Schauder fixed point theorem implies the following exis-
tence result [, , ].

Theorem . Equation () has a solution in [F ,G].Moreover,

lim
n→∞Snh,g(F) = x– and lim

n→∞Snh,g(G) = x+

are fixed points of Sh,g with

F ≤ x– ≤ x+ ≤G.

Now we are ready to state the following uniqueness result. But first we note that the
above considerations can be repeated for any  < T ≤ T , so we get Klow(T), Kup(T),
A(T), B(T), FT , and GT as continuous functions of T. Note Klow(T) is nonincreasing,
Kup(T) is nondecreasing, and Klow(T), Kup(T) can be continuously extended to T = .
Then Klow() = Kup(). We still keep the notation Klow =Klow(T), Kup =Kup(T), F = FT ,
and G =GT .

Theorem . If there are constants ψ , χ and continuous functions ag(t) >  and ah(t) > 
on [,T] such that

ah(T)tψ
∣∣x(t) – y(t)

∣∣ ≤ ∣∣h(x(t)) – h
(
y(t)

)∣∣,
∣∣g(x(t)) – g

(
y(t)

)∣∣ ≤ ag(T)tχ
∣∣x(t) – y(t)

∣∣, ()

for all T ∈ (,T], t ∈ (,T], x, y ∈ [FT ,GT ] then equation () has a unique solution in
[F ,G] provided we have

β(n + α – ) + χ + γ ≥ ψ , ()
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and

� :=
ag()β–α

Kup()
ah()�(α)n!

B

(
χ + γ + τ+

β
,n + α

)
β(n+α–)+χ+γ–ψ < , ()

where we set  = .

Proof For any x, y ∈ [F ,G] we set x = Sh,g(x) and y = Sh,g(y). Clearly, we have

‖x – y‖q := sup
t∈(,T]

|x(t) – y(t)|
tτ+ ( + ιt� )

≤ B

for q(t) = tτ+ ( + ιt� ) with � >  and ι >  specified below, so [F ,G] ⊂ Mq. Then for any
t ∈ (,T], we derive

ah(t)tψ
∣∣x(t) – y(t)

∣∣ ≤ ∣∣h(x(t)) – h
(
y(t)

)∣∣
≤ β–α

�(α)

∫ t



[
K (t, s)sγ–

(tβ – sβ )–α

]∣∣g(x(s)) – g
(
y(s)

)∣∣ds

≤ ag(t)β–α
Kup(t)

�(α)n!

∫ t



(
tβ – sβ

)n+α–sχ+γ–∣∣x(s) – y(s)
∣∣ds

≤ ag(t)β–α
Kup(t)

�(α)n!

[∫ t



(
tβ – sβ

)n+α–sχ+γ+τ+– ds

+ ι

∫ t



(
tβ – sβ

)n+α–sχ+γ+τ++�– ds
]
‖x – y‖q

=
ag(t)β–α

Kup(t)
�(α)n!

[
B

(
χ + γ + τ+

β
,n + α

)
tβ(n+α–)+χ+γ+τ+

+ ιB

(
χ + γ + τ+ +�

β
,n + α

)
tβ(n+α–)+χ+γ+τ++�

]
‖x – y‖q,

which implies

|x(t) – y(t)|
tτ+ ( + ιt� )

≤ ag(t)β–α
Kup(t)

ah(t)�(α)n!( + ιt� )

[
B

(
χ + γ + τ+

β
,n + α

)
tβ(n+α–)+χ+γ–ψ

+ ιB

(
χ + γ + τ+ +�

β
,n + α

)
tβ(n+α–)+χ+γ+�–ψ

]
‖x – y‖q,

consequently, we obtain

∥∥Sh,g(x) – Sh,g(y)
∥∥
q ≤ L‖x – y‖q ∀x, y ∈ [F ,G] ()

with

L := sup
t∈(,T]

L(t), L(t) = L(t) + L(t),

L(t) :=
ag(t)β–α

Kup(t)
ah(t)�(α)n!( + ιt� )

B

(
χ + γ + τ+

β
,n + α

)
tβ(n+α–)+χ+γ–ψ ,

L(t) :=
ιag(t)β–α

Kup(t)
ah(t)�(α)n!( + ιt� )

B

(
χ + γ + τ+ +�

β
,n + α

)
tβ(n+α–)+χ+γ+�–ψ .

http://www.boundaryvalueproblems.com/content/2014/1/20


Wang et al. Boundary Value Problems 2014, 2014:20 Page 11 of 16
http://www.boundaryvalueproblems.com/content/2014/1/20

Since (note equation ())

L(t) ≤ ιt�ag(t)β–α
Kup

ah(t)�(α)n!( + ιt� )
B

(
χ + γ + τ+ +�

β
,n + α

)
Tβ(n+α–)+χ+γ–ψ

≤ ag(t)β–α
Kup

ah(t)�(α)n!
B

(
χ + γ + τ+ +�

β
,n + α

)
Tβ(n+α–)+χ+γ–ψ

and B(χ+γ+τ++�

β
,n + α) →  as � → +∞, we see that

sup
t∈(,T]

L(t) <
 –�



for any � >  sufficiently large uniformly for any ι > . So we take and fix such a � . Next,
by equation () there is a t ∈ (,T] so that

L(t)≤ ag(t)β–α
Kup(t)

ah(t)�(α)n!
B

(
χ + γ + τ+

β
,n + α

)
tβ(n+α–)+χ+γ–ψ <

 +�


< 

for any t ∈ (, t]. Furthermore, for t ∈ [t,T], we have (note equation ())

L(t) ≤ maxt∈[t,T] ag(t)β–α
Kup

ah(t)�(α)n!
B

(
χ + γ + τ+

β
,n + α

)
Tβ(n+α–)+χ+γ–ψ

 + ιt�

≤  +�


< 

for any ι >  sufficiently large, so we fix such ι > . Consequently we get

sup
t∈(,T]

L(t) ≤  +�


.

Summarizing we see that there is � >  and ι >  so that

L ≤  +�


+
 –�


=
 +�


< .

This shows that Sh,g : [F ,G] → [F ,G] is a contraction with respect to the norm ‖ · ‖q with a
constant L. By the contraction mapping principle, one can obtain the result immediately.

�

Remark . Consider equation (). Of course, we can suppose p >  = q. Then p± = p,
q± = , a± = b± = , and τ± = τ := β(n+α–)+γ

p– . Moreover, Remark . can be applied to get
an existence result. If in addition Klow >  then B ≥ A > , and it is not difficult to see that
ψ = (p – )τ , χ = , ag(T) = , and

ah(T) = pAp–(T) = p
β–α

Klow(T)
�(α)n!

B

(
β(n + α – ) + γ p

β(p – )
,n + α

)
.

Then β(n + α – ) + χ + γ =ψ , so equation () holds. Next, we derive

� =
Kup()
pKlow()

B( γ+τ

β
,n + α)

B( β(n+α–)+γ p
β(p–) ,n + α)

=
Kup()
pKlow()

=

p
< .

http://www.boundaryvalueproblems.com/content/2014/1/20
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Hence condition () is satisfied and thenwe get a uniqueness result by Theorem .. Note
there is gap in the proof of [, Theorem ]. So here we give its correct proof.

4 General solutions of Erdélyi-Kober-type integral equations
This section is devoted to a derivation of explicit solutions of some Erdélyi-Kober-type
integral equations. In order to establish this, we introduce the following useful result.

Lemma . Let ση + β > –σ and α,σ > . Then

(
EK I

α
+;σ ,ηt

β
)
(x) =

�(η +  + β

σ
)

�(η +  + α + β

σ
)
xβ .

Proof Set t = xy. By using Lemma ., we have

(
EK I

α
+;σ ,ηt

β
)
(x) =

σx–σ (α+η)

�(α)

∫ x



tση+σ–tβ dt
(xσ – tσ )–α

=
σxβ

�(α)

σ
B

(
ση + σ + β

σ
,α

)

=
�(η +  + β

σ
)

�(η +  + α + β

σ
)
xβ .

This completes the proof. �

Now we are ready to present our main result of this section.

Theorem . Let α > , σ > , β

σ
+ η +  > , m,b,β ∈ R, and a,N ,m �= . Then equation

() is solvable and its solution ϕ(x) can be written as

ϕ(x) = C

N x

β
N , ()

where the constant C satisfies the following equation:

C
m
N = aC

�(η +  + β

σ
)

�(η +  + α + β

σ
)
+ b. ()

Proof With the help of Lemma ., substituting equation () into (), we find that C sat-
isfies equation () which completes the proof. �

5 Illustrative examples
In this section, we pay our attention to show three numerical performance results.

Example . We consider the problem

x(t) =
(  )




�(  )

∫ t



[
ts– 



(t 
 – s 

 ) 

]
x(s)ds, t ∈ [, ]. ()

http://www.boundaryvalueproblems.com/content/2014/1/20
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Figure 1 Solution of equation (23) and the boundaries F and G for Example 5.1 coincide with the
unique solution.

First, Theorem . gives the exact solution x(t) = ,
√

π t



,
.= .t. of equation

(). Next, by changing x(t) = z(t)t we get

z(t) =
(  )




�(  )

∫ t



[
s 


(t 
 – s 

 ) 

]
z(s)ds, t ∈ [, ]. ()

Of course, we get a solution z(t) = ,
√

π t



, . In equation () for (), we set K (t, s) = ,
α = 

 , γ = 
 , β = 

 , n = , T = , p = , and q = . After some computation, we find that

F(t) =G(t) =


�(  )
B

(


,



)
t

 =

,
√

π t 
,

.

Obviously, all the assumptions in Theorem . are satisfied. Numerical result is given in
Figure .

Example . In equation (), we set K (t, s) = et , α = 
 , β = γ = 

 , n = , T = , p = , and
q = . Now, we turn to consider the following homogeneous Abel-type integral equation
with weakly singular kernels and power-law nonlinearity:

x(t) =
(  )




�(  )

∫ t



[
ets– 



(t 
 – s 

 ) 

]
x(s)ds, t ∈ [, ]. ()

After some computation, we find that

F(t) =
(  )

– 


�(  )
B

(


,



)
t

 =

 
 �(  )

√

π
t


.= .t.,

G(t) =
e(  )

– 


�(  )
B

(
,



)
t

 =

 
 e

�(  )
t


.= .t..

Obviously, all the assumptions in Theorem . are satisfied. Then, the problem (.) has a
unique solution in [F ,G]. Numerical results are given in Figure .

http://www.boundaryvalueproblems.com/content/2014/1/20


Wang et al. Boundary Value Problems 2014, 2014:20 Page 14 of 16
http://www.boundaryvalueproblems.com/content/2014/1/20

Figure 2 Solution (black line) of equation (25) and the boundaries F (red line) and G (blue line) for
Example 5.2.

Figure 3 Solution (black line) of equation (26) and the boundaries F (red line) and G (blue line) for
Example 5.3.

Example . In equation (), we set K (t, s) = et , α = 
 , β = γ = 

 , n = , T = , p± = ,
q± = , h(x) = x( – 

x), g(x) = x, andM = . Now, we turn to considering the follow-
ing homogeneous Abel-type integral equation with weakly singular kernels and polyno-
mial law nonlinearity:

x(t)
(
 –




x(t)
)
=
(  )




�(  )

∫ t



[
ets– 



(t 
 – s 

 ) 

]
x(s)ds, t ∈ [, ]. ()

http://www.boundaryvalueproblems.com/content/2014/1/20
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It is clear that now a+ = , a– = 
 , and b± = , so equation () holds. After some computa-

tion, we find that

F(t) =
(  )

– 


�(  )
B

(


,



)
t

 =

 
 �(  )

√

π
t


.= .t.,

G(t) =
e(  )

– 


�(  )
B

(


,



)
t

 =

 
 e�(  )√

π
t


.= .t..

Since now A .= . < . .= B < M = , obviously, all the assumptions in Theo-
rem . are satisfied. Then, the problem (.) has a solution in [F ,G]. Numerical results
are given in Figure .
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