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Abstract
Hartman-type conditions are presented for the solvability of a multivalued Dirichlet
problem in a Banach space by means of topological degree arguments, bounding
functions, and a Scorza-Dragoni approximation technique. The required transversality
conditions are strictly localized on the boundaries of given bound sets. The main
existence and localization result is applied to a partial integro-differential equation
involving possible discontinuities in state variables. Two illustrative examples are
supplied. The comparison with classical single-valued results in this field is also made.
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1 Introduction
In this paper, we will establish sufficient conditions for the existence and localization of
strong solutions to a multivalued Dirichlet problem in a Banach space via degree argu-
ments combined with a bound sets technique. More precisely, Hartman-type conditions
(cf. []), i.e. sign conditions w.r.t. the first state variable and growth conditions w.r.t. the
second state variable, will be presented, provided the right-hand side is a multivalued
upper-Carathéodory mapping which is γ -regular w.r.t. the Hausdorff measure of non-
compactness γ .
Themain aimwill be two-fold: (i) strict localization of sign conditions on the boundaries

of bound sets by means of a technique originated by Scorza-Dragoni [], and (ii) the ap-
plication of the obtained abstract result (see Theorem . below) to an integro-differential
equation involving possible discontinuities in a state variable. The first aim allows us, un-
der some additional restrictions, to extend our earlier results obtained for globally upper
semicontinuous right-hand sides and partly improve those for upper-Carathéodory right-
hand sides (see []). Aswe shall see, the latter aim justifies such an abstract setting, because
the problem can be transformed into the form of a differential inclusion in a Hilbert L-
space. Roughly speaking, problems of this type naturally require such an abstract setting.
In order to understand in a deeper way what we did and why, let us briefly recall classical
results in this field and some of their extensions.
Hence, consider firstly the Dirichlet problem in the simplest vector form:

ẍ(t) = f (t,x(t), ẋ(t)), t ∈ [, ],
x() = x() = ,

}
()
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where f : [, ] × R
n × R

n → R
n is, for the sake of simplicity allowing the comparison of

the related results, a continuous function.
The first existence results, for a bounded f in (), are due to Scorza-Dragoni [, ]. Let

us note that his name in the title is nevertheless related to the technique developed in []
rather than to the existence results in [, ].
It is well known (see e.g. [, –]) that the problem () is solvable on various levels of

generality provided:

(isign) ∃R >  such that 〈f (t,x, y),x〉 > , for (t,x, y) ∈ [, ]×R
n ×R

n with ‖x‖ = R,
(iigrowth) ∃C ≥ ,C ≥  such that CR <  and ‖f (t,x, y)‖ ≤ C‖y‖ + C, for (t,x, y) ∈

[, ]×R
n ×R

n with ‖x‖ ≤ R.

Let us note that the existence of the same constant R >  in (isign) and (iigrowth) can be
assumed either explicitly as in [, , , , ] or it follows from the assumptions as those
in [, , ].
() Hartmann [] (cf. also []) generalized both conditions as follows:

(iH) ∃R >  such that 〈f (t,x, y),x〉 + ‖y‖ > , for t ∈ [, ] and (x, y) ∈ R
n × R

n such that
‖x‖ = R and 〈x, y〉 = ,

(iH) the well-known Bernstein-Nagumo-Hartman condition (for its definition and more
details, see e.g. [, ]).

Let us note that the strict inequality in (iH) can be replaced by a non-strict one (see e.g.
[, Chapter XII,II,], [, Corollary .]).
() Lasota and Yorke [] improved condition (isign) with suitable constants K ≥  and

K >  in the following way:

(iLY) 〈f (t,x, y),x〉 + ‖y‖ ≥ –K( + ‖x‖ + 〈x, y〉) +K‖y‖,
but for t ∈ [, ], (x, y) ∈ R

n × R
n, and replaced (iigrowth) by the Bernstein-Nagumo-

Hartman condition.
Since (iLY) implies (cf. []) the existence of a constant K ≥  such that

〈
f (t,x, y),x

〉
+ ‖y‖ ≥ –K

(
 + ‖x‖ + ∣∣〈x, y〉∣∣),

for (t,x, y) ∈ [, ]×R
n ×R

n, the sign condition (iLY) is obviously more liberal than (isign)
as well as than (iH), on the intersection of their domains.
If K >  in (iLY), then constant K can be even equal to zero, i.e. K = , in (iLY) (see

e.g. [, Corollary V. on p.]). Moreover, the related Bernstein-Nagumo-Hartman con-
dition can only hold for x in a suitable convex, closed, bounded subset of Rn (see again
e.g. []).
() Following the ideas of Mawhin in [, , ], Amster and Haddad [] demonstrated

that an open, bounded subset of Rn, say D ⊂ R
n, need not be convex, provided it has a

C-boundary ∂D such that condition (iH) can be generalized as follows:

(iAH) 〈f (t,x, y),nx〉 ≥ Ix(y), (t,x, y) ∈ [, ]× T∂D×R
n, with 〈nx, y〉 = ,

where nx is the outer-pointing normal unit vector field, T∂D denotes the tangent vector
bundle and Ix(y) stands for the second fundamental form of the hypersurface.
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Since for the ball D := B(,R), R > , we can have

Ix(y) = –
‖y‖
R

and nx =
x
R
,

condition (iAH) is obviously more general than the original Hartman condition (iH).
Nevertheless, the growth condition takes there only the form (iigrowth), namely with

‖x‖ ≤ R replaced by x ∈D, where R denotes, this time, the radius of D.
For a convex, open, bounded subset D ⊂ R

n, the particular case of (iAH) can read as
follows:

(iconv) 〈f (t,x, y),nx〉 > , for (t,x, y) ∈ [, ]×R
n ×R

n with x ∈ ∂D and 〈nx, y〉 = ,

which is another well-known generalization of (isign).
() In aHilbert spaceH , for a completely continuousmapping f , Mawhin [] has shown

that, for real constants a, b, c such that a + b < , condition (isign) can be replaced in par-
ticular by

(iM) 〈f (t,x, y),x〉 ≥ –(a‖x‖ + b‖x‖‖y‖ + c‖x‖), (t,x, y) ∈ [, ]×H ×H ,

and (iigrowth) by an appropriate version of the Bernstein-Nagumo-Hartman condition.
() In a Banach space E, Schmitt and Thompson [] improved, for a completely con-

tinuous mapping f , condition (iconv) in the sense that the strict inequality in (iconv) can
be replaced by a non-strict one. More concretely, if there exists a convex, open, bounded
subset D ⊂ E of E with  ∈D such that

(iST) 〈f (t,x, y),nx〉 ≥ , for (t,x, y) ∈ [, ]× E × E, with x ∈ ∂D and 〈nx, y〉 = ,

where 〈·, ·〉 denotes this time the pairing between E and its dual E′, jointly with the ap-
propriate Bernstein-Nagumo-Hartman condition, then the problem () admits a solution
whose values are located in D (see [, Theorem .]).
In the Carathéodory case of f : [, ] × R

n × R
n → R

n in (), for instance, the strict in-
equality in condition (isign) can be replaced, according to [, Theorem .], by a non-strict
one and the constantsC,C can be replacedwithout the requirementCR < , but globally
in [, ]×R

n×R
n, by functions c(t,x), c(t,x) which are bounded on bounded sets.More-

over, system () can be additively perturbed, for the same goal, by another Carathéodory
function which is sublinear in both states variables x and y.
On the other hand, the Carathéodory case brings about some obstructions in a strict

localization of sign conditions on the boundaries of bound sets (see e.g. [, ]). The same
is also true for other boundary value problems (for Floquet problems, see e.g. [–]).
Therefore, there naturally exist some extensions of classical results in this way. Further
extensions concern problems in abstract spaces, functional problems, multivalued prob-
lems, etc. For the panorama of results in abstract spaces, see e.g. [], where multivalued
problems are also considered.
Nevertheless, let us note that in abstract spaces, it is extremely difficult (if not impossi-

ble) to avoid the convexity of given bound sets, provided the degree arguments are applied
for non-compact maps (for more details, see []).
In this light, we would like to modify in the present paper the Hartman-type conditions

(isign), (iigrowth) at least in the following way:

http://www.boundaryvalueproblems.com/content/2014/1/23
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• the given space E to be Banach (or, more practically, Hilbert),
• the right-hand side to be a multivalued upper-Carathéodory mapping F which is

γ -regular w.r.t. (x, y) ∈ E × E and either globally measurable or globally
quasi-compact,

• the inequality in (isign) to hold w.r.t. x strictly on the boundary ∂D of a convex,
bounded subset D⊂ E (or, more practically, of the ball B(,R)⊂ E),

• condition (iigrowth) to be replaced by a suitable growth condition which would allow us
reasonable applications (the usage of the Bernstein-Nagumo-Hartman-type condition
will be employed in this context by ourselves elsewhere).

Hence, let E be a separable Banach space (with the norm ‖ · ‖) satisfying the Radon-
Nikodym property (e.g. reflexivity, see e.g. [, pp.-]) and let us consider the
Dirichlet boundary value problem (b.v.p.)

ẍ(t) ∈ F(t,x(t), ẋ(t)), for a.a. t ∈ [,T],
x(T) = x() = ,

}
()

where F : [,T]× E × E� E is an upper-Carathéodory multivalued mapping.
Let us note that in the entire paper all derivatives will be always understood in the

sense of Fréchet and, by the measurability, we mean the one with respect to the Lebesgue
σ -algebra in [,T] and the Borel σ -algebra in E.
The notion of a solution will be understood in a strong (i.e. Carathéodory) sense.

Namely, by a solution of problem () we mean a function x : [,T] → E whose first deriva-
tive ẋ(·) is absolutely continuous and satisfies (), for almost all t ∈ [,T].
The solution of the b.v.p. () will be obtained as the limit of a sequence of solutions of

approximating problems that we construct by means of a Scorza-Dragoni-type result de-
veloped in []. The approximating problems will be treated bymeans of the continuation
principle developed in [].

2 Preliminaries
Let E be as above and [,T]⊂R be a closed interval. By the symbol L([,T],E), we shall
mean the set of all Bochner integrable functions x : [,T] → E. For the definition and
properties of Bochner integrals, see e.g. [, pp.-]. The symbol AC([,T],E) will
be reserved for the set of functions x : [,T] → E whose first derivative ẋ(·) is absolutely
continuous. Then ẍ ∈ L([,T],E) and the fundamental theorem of calculus (the Newton-
Leibniz formula) holds (see e.g. [, pp.-], [, pp.-]). In the sequel, we shall
always consider AC([,T],E) as a subspace of the Banach space C([,T],E) and by the
symbol L(E) we shall mean the Banach space of all linear, bounded transformations L :
E → E endowed with the sup-norm.
Given C ⊂ E and ε > , the symbol B(C, ε) will denote, as usually, the set C + εB, where

B is the open unit ball in E centered at , i.e. B = {x ∈ E | ‖x‖ < }. In what follows, the
symbol μ will denote the Lebesgue measure on R.
Let E′ be the Banach space dual to E and let us denote by 〈·, ·〉 the pairing (the duality

relation) between E and E′, i.e., for all � ∈ E′ and x ∈ E, we put �(x) =: 〈�,x〉.
We recall also the Pettis measurability theorem which will be used in Section  and

which we state here in the form of proposition.

http://www.boundaryvalueproblems.com/content/2014/1/23
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Proposition . [, p.] Let (X,�) be ameasure space, E be a separable Banach space.
Then f : X → E is measurable if and only if for every e ∈ E′ the function e ◦ f : X → R is
measurable with respect to � and the Borel σ -algebra in R.

We shall also need the following definitions and notions from multivalued analysis. Let
X, Y be two metric spaces. We say that F is amultivalued mapping from X to Y (written
F : X � Y ) if, for every x ∈ X, a non-empty subset F(x) of Y is given. We associate with F
its graph �F , the subset of X × Y , defined by �F := {(x, y) ∈ X × Y | y ∈ F(x)}.
A multivalued mapping F : X � Y is called upper semicontinuous (shortly, u.s.c.) if, for

each open subset U ⊂ Y , the set {x ∈ X | F(x)⊂ U} is open in X.
Let J ⊂ R be a compact interval. A mapping F : J � Y , where Y is a separable metric

space, is calledmeasurable if, for each open subsetU ⊂ Y , the set {t ∈ J | F(t)⊂U} belongs
to a σ -algebra of subsets of J .
A multivalued mapping F : X � Y is called compact if the set F(X) =

⋃
x∈X F(x) is con-

tained in a compact subset of Y and it is called quasi-compact if it maps compact sets onto
relatively compact sets.
Let J ⊂ R be a given compact interval. A multivalued mapping F : J × X � Y , where Y

is a separable Banach space, is called an upper-Carathéodory mapping if the map F(·,x) :
J � Y is measurable, for all x ∈ X, the map F(t, ·) : X � Y is u.s.c., for almost all t ∈ J , and
the set F(t,x) is compact and convex, for all (t,x) ∈ J ×X.
The technique that will be used for proving the existence and localization result consists

in constructing a sequence of approximating problems. This construction will bemade on
the basis of the Scorza-Dragoni-type result developed in [] (cf. also []).
For more details concerning multivalued analysis, see e.g. [, , ].

Definition . An upper-Carathéodory mapping F : [,T] × X × X � X is said to have
the Scorza-Dragoni property if there exists a multivalued mapping F : [,T]× X × X �
X ∪ {∅} with compact, convex values having the following properties:

(i) F(t,x, y)⊂ F(t,x, y), for all (t,x, y) ∈ [,T]×X ×X ,
(ii) if u, v : [,T] → X are measurable functions with v(t) ∈ F(t,u(t), u̇(t)), for a.a.

t ∈ [,T], then also v(t) ∈ F(t,u(t), u̇(t)), for a.a. t ∈ [,T],
(iii) for every ε > , there exists a closed Iε ⊂ [,T] such that μ([,T] \ Iε) < ε,

F(t,x, y) �= ∅, for all (t,x, y) ∈ Iε ×X ×X , and F is u.s.c. on Iε ×X ×X .

The following two propositions are crucial in our investigation. The first one is almost a
direct consequence of the main result in [] (cf. [] and [, Proposition ]). The second
one allows us to construct a sequence of approximating problems of ().

Proposition . Let E be a separable Banach space and F : [,T] × E × E � E be an
upper-Carathéodory mapping. If F is globally measurable or quasi-compact, then F has
the Scorza-Dragoni property.

Proposition . (cf. [, Theorem .]) Let E be a Banach space and K ⊂ E a non-empty,
open, convex, bounded set such that  ∈ K .Moreover, let ε >  and V : E →R be a Fréchet
differentiable function with V̇ Lipschitzian in B(∂K , ε) satisfying
(H) V |∂K = ,
(H) V (x)≤ , for all x ∈ K ,
(H) ‖V̇ (x)‖ ≥ δ, for all x ∈ ∂K , where δ >  is given.

http://www.boundaryvalueproblems.com/content/2014/1/23
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Then there exist k ∈ (, ε] and a bounded Lipschitzian function φ : B(∂K ,k) → E such that
〈V̇x,φ(x)〉 = , for every x ∈ B(∂K ,k).

Remark . Let us note that the function x → φ(x)‖V̇x‖, where φ and V̇x are the same
as in Proposition ., is Lipschitzian and bounded in B(∂K ,k). The symbol V̇x denotes as
usually the first Fréchet derivative of V at x.

Example . If V satisfies all the assumptions of Proposition ., then it is easy to prove
the existence of σ ∈ (, ε] such that ‖V̇x‖ ≥ δ

 , for all x ∈ B(∂K ,σ ). Consequently, when E
is an arbitrary Hilbert space, we can define φ : B(∂K ,σ )→ E by the formula

φ(x) :=
∇V (x)

‖∇V (x)‖

which satisfies all the properties mentioned in Proposition ..

Definition . Let N be a partially ordered set, E be a Banach space and let P(E) denote
the family of all non-empty bounded subsets of E. A function β : P(E) → N is called a
measure of non-compactness (m.n.c.) in E if β(co�) = β(�), for all � ∈ P(E), where co�

denotes the closed convex hull of �.
A m.n.c. β is called:
(i) monotone if β(�) ≤ β(�), for all � ⊂ � ⊂ E,
(ii) non-singular if β({x} ∪ �) = β(�), for all x ∈ E and � ⊂ E.

If N is a cone in a Banach space, then a m.n.c. β is called:
(iii) semi-homogeneous if β(t�) = |t|β(�), for every t ∈R and every � ⊂ E,
(iv) regular when β(�) =  if and only if � is relatively compact,
(v) algebraically subadditive if γ (� +�) ≤ γ (�) + γ (�), for all �,� ⊂ E.

The typical example of anm.n.c. is theHausdorffmeasure of non-compactness γ defined,
for all � ⊂ E by

γ (�) := inf

{
ε >  : ∃n≥  ∃x, . . . ,xn ∈ E :� ⊂

n⋃
i=

B
({xi}, ε)

}
.

The Hausdorff m.n.c. is monotone, non-singular, semi-homogeneous and regular. More-
over, ifM ∈L(E) and � ⊂ E, then (see, e.g., [])

γ (M�) ≤ ‖M‖L(E)γ (�). ()

Let E be a separable Banach space and {fn}n ⊂ L([,T],E) be such that ‖fn(t)‖ ≤ α(t),
γ ({fn(t)}n) ≤ c(t), for a.a. t ∈ [,T], all n ∈ N and suitable α, c ∈ L([,T],R), then (cf. [])

γ

({∫ T


fn(t)dt

}
n

)
≤

∫ T


c(t)dt. ()

Moreover, if h : E� E is L-Lipschitzian, then

γ
(
h(�)

) ≤ Lγ (�), ()

for all bounded � ⊂ E.

http://www.boundaryvalueproblems.com/content/2014/1/23
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Furthermore, for all subsets � of E (see e.g. []),

γ

( ⋃
λ∈[,]

λ�

)
= γ (�). ()

Let us now introduce the function

α(�) := max
{wn}n⊂�

(
sup

t∈[,T]

[
γ
({
wn(t)

}
n

)
+ γ

({
ẇn(t)

}
n

)]
,

modC
({wn}n

)
+modC

({ẇn}n
))
, ()

defined on the bounded � ⊂ C([,T],E), where the ordering is induced by the pos-
itive cone in R

 and where modC(�) denotes the modulus of continuity of a subset
� ⊂ C([,T],E).a It was proved in [] that the function α given by () is an m.n.c. in
C([,T],E) that is monotone, non-singular and regular.

Definition . Let E be a Banach space and X ⊂ E. A multivalued mapping F : X � E
with compact values is called condensingwith respect to anm.n.c. β (shortly, β-condensing)
if, for every bounded� ⊂ X such that β(F(�))≥ β(�), we see that� is relatively compact.
A family of mappings G : X × [, ]� E with compact values is called β-condensing if,

for every bounded � ⊂ X such that β(G(� × [, ])) ≥ β(�), we see that � is relatively
compact.

The proof of the main result (cf. Theorem . below) will be based on the following
slight modification of the continuation principle developed in []. Since the proof of this
modified version differs from the one in [] only slightly in technical details, we omit it
here.

Proposition . Let us consider the b.v.p.

ẍ(t) ∈ ϕ(t,x(t), ẋ(t)), for a.a. t ∈ [,T],
x ∈ S,

}
()

where ϕ : [,T] × E × E � E is an upper-Carathéodory mapping and S ⊂ AC([,T],E).
Let H : [,T]× E × E × E × E × [, ]� E be an upper-Carathéodory mapping such that

H(t, c,d, c,d, )⊂ ϕ(t, c,d), for all (t, c,d) ∈ [,T]× E × E.

Moreover, assume that the following conditions hold:
(i) There exist a closed set S ⊂ S and a closed, convex set Q ⊂ C([,T],E) with a

non-empty interior IntQ such that each associated problem

P(q,λ)
ẍ(t) ∈ H(t,x(t), ẋ(t),q(t), q̇(t),λ), for a.a. t ∈ [,T],
x ∈ S,

}

where q ∈Q and λ ∈ [, ], has a non-empty, convex set of solutions (denoted by
T(q,λ)).

http://www.boundaryvalueproblems.com/content/2014/1/23
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(ii) For every non-empty, bounded set � ⊂ E × E × E × E, there exists
ν� ∈ L([,T], [,∞)) such that

∥∥H(t,x, y,u, v,λ)
∥∥ ≤ ν�(t),

for a.a. t ∈ [,T] and all (x, y,u, v) ∈ � and λ ∈ [, ].
(iii) The solution mapping T is quasi-compact and μ-condensing with respect to a

monotone and non-singular m.n.c. μ defined on C([,T],E).
(iv) For each q ∈Q, the set of solutions of problem P(q, ) is a subset of IntQ, i.e.

T(q, ) ⊂ IntQ, for all q ∈Q.
(v) For each λ ∈ (, ), the solution mapping T(·,λ) has no fixed points on the boundary

∂Q of Q.
Then the b.v.p. () has a solution in Q.

3 Main result
Combining the foregoing continuation principle with the Scorza-Dragoni-type technique
(cf. Proposition .), we are ready to state the main result of the paper concerning the
solvability and localization of a solution of the multivalued Dirichlet problem ().

Theorem . Consider the Dirichlet b.v.p. (). Suppose that F : [,T] × E × E � E is an
upper-Carathéodory mapping which is either globally measurable or quasi-compact. Fur-
thermore, let K ⊂ E be a non-empty, open, convex, bounded subset containing  of a sepa-
rable Banach space E satisfying the Radon-Nikodym property. Let the following conditions
(i)-(iii) be satisfied:

(i) γ (F(t,� × �)) ≤ g(t)(γ (�) + γ (�)), for a.a. t ∈ [,T] and each � ⊂ K , and each
bounded � ⊂ E, where g ∈ L([,T], [,∞)) and γ is the Hausdorff m.n.c. in E.

(ii) For every non-empty, bounded � ⊂ E, there exists ν� ∈ L([,T], [,∞)) such that

∥∥F(t,x, y)∥∥ ≤ ν�(t), ()

for a.a. t ∈ [,T] and all (x, y) ∈ � × E.
(iii)

(T + )‖g‖L([,T],R) < .

Furthermore, let there exist ε >  and a function V ∈ C(E,R), i.e. a twice continuously
differentiable function in the sense of Fréchet, satisfying (H)-(H) (cf. Proposition .)with
Fréchet derivative V̇ Lipschitzian in B(∂K , ε).b Let there still exist h >  such that

〈
V̈x(v), v

〉 ≥ , for all x ∈ B(∂K ,h), v ∈ E, ()

where V̈x(v) denotes the second Fréchet derivative of V at x in the direction (v, v) ∈ E × E.
Finally, let

〈V̇x,w〉 > , ()

for a.a. t ∈ (,T) and all x ∈ ∂K , v ∈ E, and w ∈ F(t,x, v).

http://www.boundaryvalueproblems.com/content/2014/1/23
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Then the Dirichlet b.v.p. () admits a solution whose values are located in K . If,moreover,
 /∈ F(t, , ), for a.a. t ∈ [,T], then the obtained solution is non-trivial.

Proof Since the proof of this result is rather technical, it will be divided into several steps.
At first, let us define the sequence of approximating problems. For this purpose, let k be
as in Proposition . and consider a continuous function τ : E → [, ] such that τ (x) = ,
for all x ∈ E \B(∂K ,k), and τ (x) = , for all x ∈ B(∂K , k ). According to Proposition . (see
also Remark .), the function φ̂ : E → E, where

φ̂(x) =

{
τ (x) · φ(x) · ‖V̇x‖, for all x ∈ B(∂K ,k),
, for all x ∈ E \ B(∂K ,k),

is well defined, continuous and bounded.
Since the mapping (t,x, y) � F(t,x, y) has, according to Proposition ., the Scorza-

Dragoni property, we are able to find a decreasing sequence {Jm}m of subsets of [,T]
and a mapping F : [,T] × E × E � E ∪ {∅} with compact, convex values such that, for
allm ∈N,
• μ(Jm) < 

m ,
• [,T] \ Jm is closed,
• (t,x, y)� F(t,x, y) is u.s.c. on [,T] \ Jm × E × E,
• ν�K is continuous in [,T] \ Jm (cf. e.g. []).

If we put J =
⋂∞

m= Jm, then μ(J) = , F(t,x, y) �= ∅, for all t ∈ [,T] \ J , the mapping
(t,x, y)� F(t,x, y) is u.s.c. on [,T] \ J × E × E and ν�K is continuous in [,T] \ J .
For eachm ∈N, let us define themapping Fm : [,T]×E×E� E with compact, convex

values by the formula

Fm(t,x, y) :=

{
F(t,x, y) + ν�K (t)(χJm (t) + 

m )φ̂(x), for all (t,x, y) ∈ [,T] \ J × E × E,
ν�K (t)(χJm (t) + 

m )φ̂(x), for all (t,x, y) ∈ J × E × E.

Let us consider the b.v.p.

(Pm)
ẍ(t) ∈ Fm(t,x(t), ẋ(t)), for a.a. t ∈ [,T],
x(T) = x() = .

}

Now, let us verify the solvability of problems (Pm). Let m ∈ N be fixed. Since F is glob-
ally u.s.c. on [,T] \ J × E × E, Fm(·,x, y) is measurable, for each (x, y) ∈ E × E, and,
due to the continuity of φ̂, Fm(t, ·, ·) is u.s.c., for all t ∈ [,T] \ J . Therefore, Fm is an
upper-Carathéodory mapping. Moreover, let us define the upper-Carathéodory mapping
Hm : [,T]× E × E × E × E × [, ]� E by the formula

Hm(t,x, y,u, v,λ)

≡ Hm(t,u, v,λ)

:=

⎧⎪⎨
⎪⎩

λF(t,u, v) + ν�K (t)(χJm (t) + 
m )φ̂(u), for all (t,x, y,u, v,λ) ∈ [,T] \ J

× E × [, ],
ν�K (t)(χJm (t) + 

m )φ̂(u), for all (t,x, y,u, v,λ) ∈ J × E × [, ].

http://www.boundaryvalueproblems.com/content/2014/1/23


Andres et al. Boundary Value Problems 2014, 2014:23 Page 10 of 24
http://www.boundaryvalueproblems.com/content/2014/1/23

Let us show that, when m ∈ N is sufficiently large, all assumptions of Proposition .
(for ϕ(t,x, ẋ) := Fm(t,x, ẋ)) are satisfied.
For this purpose, let us define the closed set S = S by

S :=
{
x ∈ AC([,T],E)

: x(T) = x() = 
}

and let the set Q of candidate solutions be defined as Q := C([,T],K ). Because of the
convexity of K , the set Q is closed and convex.
For all q ∈Q and λ ∈ [, ], consider still the associated fully linearized problem

Pm(q,λ)
ẍ(t) ∈Hm(t,q(t), q̇(t),λ), for a.a. t ∈ [,T],
x(T) = x() = ,

}

and denote by Tm the solution mapping which assigns to each (q,λ) ∈ Q× [, ] the set of
solutions of Pm(q,λ).
ad (i) In order to verify condition (i) in Proposition ., we need to show that, for each

(q,λ) ∈ Q × [, ], the problem Pm(q,λ) is solvable with a convex set of solutions. So, let
(q,λ) ∈Q× [, ] be arbitrary and let fq,λ(·) be a measurable selection of Hm(·,q(·), q̇(·),λ),
which surely exists (see, e.g., [, Theorem ..]). According to (ii) and the definition of
Hm, it is also easy to see that fq,λ ∈ L([,T],E). The homogeneous problem corresponding
to b.v.p. Pm(q,λ),

ẍ(t) = , for a.a. t ∈ [,T],
x(T) = x() = ,

}
()

has only the trivial solution, and therefore the single-valued Dirichlet problem

ẍ(t) = fq,λ(t), for a.a. t ∈ [,T],
x(T) = x() = 

}

admits a unique solution xq,λ(·) which is one of solutions of Pm(q,λ). This is given, for
a.a. t ∈ [,T], by xq,λ(t) =

∫ T
 G(t, s)fq,λ(s)ds, where G is the Green function associated to

the homogeneous problem (). The Green function G and its partial derivative ∂
∂t G are

defined by (cf. e.g. [, pp.-])

G(t, s) =

{
(s–T)t
T , for all  ≤ t ≤ s ≤ T ,

(t–T)s
T , for all  ≤ s ≤ t ≤ T ,

∂

∂t
G(t, s) =

{
(s–T)
T , for all  ≤ t < s≤ T ,

s
T , for all  ≤ s < t ≤ T .

Thus, the set of solutions of Pm(q,λ) is non-empty. The convexity of the solution sets fol-
lows immediately from the definition of Hm and the fact that problems Pm(q,λ) are fully
linearized.
ad (ii) Let � ⊂ E × E × E × E be bounded. Then, there exists a bounded � ⊂ E such

that � ⊂ � × � × � × � and, according to (ii) and the definition of Hm, there exists

http://www.boundaryvalueproblems.com/content/2014/1/23
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Ĵ ⊂ [,T] with μ(Ĵ) =  such that, for all t ∈ [,T] \ (J ∪ Ĵ), (x, y,u, v) ∈ � and λ ∈ [, ],

∥∥Hm(t,u, v,λ)
∥∥ ≤ ν� (t) + ν�K (t) · max

x∈B(∂K ,k)

∥∥φ̂(x)
∥∥.

Therefore, the mapping Hm(t,q(t), q̇(t),λ) satisfies condition (ii) from Proposition ..
ad (iii) Since the verification of condition (iii) in Proposition . is technically the most

complicated, it will be split into two parts: (iii) the quasi-compactness of the solution
operator Tm, (iii) the condensity of Tm w.r.t. the monotone and non-singular m.n.c. α

defined by ().
ad (iii) Let us firstly prove that the solution mapping Tm is quasi-compact. Since

C([,T],E) is a complete metric space, it is sufficient to prove the sequential quasi-
compactness of Tm. Hence, let us consider the sequences {qn}, {λn}, qn ∈ Q, λn ∈ [, ],
for all n ∈ N, such that qn → q in C([,T],E) and λn → λ. Moreover, let xn ∈ Tm(qn,λn),
for all n ∈N. Then there exists, for all n ∈N, kn(·) ∈ F(·,qn(·), q̇n(·)) such that

ẍn(t) = fn(t), for a.a. t ∈ [,T], ()

where

fn(t) = λnkn(t) + ν�K (t)
(

χJm (t) +

m

)
φ̂
(
qn(t)

)
, ()

and that

xn(T) = xn() = .

Since qn → q and q̇n → q̇ in C([,T],E), there exists a bounded � × � ⊂ E × E such that
(qn(t), q̇n(t)) ∈ � × �, for all t ∈ [,T] and n ∈ N. Therefore, there exists, according to
condition (ii), ν� ∈ L([,T], [,∞)) such that ‖fn(t)‖ ≤ � (t), for every n ∈ N and a.a.
t ∈ [,T], where � (t) := ν�(t) + ν�K (t) ·maxx∈B(∂K ,ε) ‖φ̂(x)‖.
Moreover, for every n ∈N and a.a. t ∈ [,T],

xn(t) =
∫ T


G(t, s)fn(s)ds ()

and

ẋn(t) =
∫ T



∂

∂t
G(t, s)fn(s)ds. ()

Thus, xn satisfies, for every n ∈N and a.a. t ∈ [,T], ‖xn(t)‖ ≤ a and ‖ẋn(t)‖ ≤ b, where

a :=
T


∫ T


� (s)ds and b :=

∫ T


� (s)ds.

Furthermore, for every n ∈N and a.a. t ∈ [,T], we have

∥∥ẍn(t)∥∥ ≤ � (t).

Hence, the sequences {xn} and {ẋn} are bounded and {ẍn} is uniformly integrable.

http://www.boundaryvalueproblems.com/content/2014/1/23


Andres et al. Boundary Value Problems 2014, 2014:23 Page 12 of 24
http://www.boundaryvalueproblems.com/content/2014/1/23

For each t ∈ [,T], the properties of the Hausdorff m.n.c. yield

γ
({
fn(t)

}
n

) ≤ γ
({

λnkn(t)
}
n

)
+ ν�K (t)

(
χJm (t) +


m

)
γ
({

φ̂
(
qn(t)

)}
n

)

≤ γ
({
kn(t)

}
n

)
+ ν�K (t)

(
χJm (t) +


m

)

× γ
({

φ
(
qn(t)

)‖V̇qn(t)‖ : qn(t) ∈ B(∂K , ε)
})
.

Since qn(t) ∈ K , for all t ∈ [,T] and all n ∈ N, it follows from condition (i) that, for a.a.
t ∈ [,T],

γ
({
fn(t)

}
n

) ≤ g(t)
(
γ
({
qn(t)

}
n

)
+ γ

({
q̇n(t)

}
n

))
+ ν�K (t)

(
χJm (t) +


m

)
γ
({

φ
(
qn(t)

)‖V̇qn(t)‖ : qn(t) ∈ B(∂K , ε)
})

≤ g(t) sup
t∈[,T]

(
γ
({
qn(t)

}
n

)
+ γ

({
q̇n(t)

}
n

))

+ ν�K (t)
(

χJm (t) +

m

)
γ
({

φ
(
qn(t)

)‖V̇qn(t)‖ : qn(t) ∈ B(∂K , ε)
})
.

Since the function x → φ(x)‖V̇x‖ is Lipschitzian on B(∂K , ε) with some Lipschitz constant
L̂ >  (see Remark .), we get

γ
({
fn(t)

}
n

) ≤
(
g(t) + L̂ν�K (t)

(
χJm (t) +


m

))
sup

t∈[,T]

(
γ
({
qn(t)

}
n

)
+ γ

({
q̇n(t)

}
n

))
. ()

Since qn → q and q̇n → q̇ inC([,T],E), we get, for all t ∈ [,T], γ ({qn(t)}n) = γ ({q̇n(t)}n) =
, which implies that γ ({fn(t)}n) = , for all t ∈ [,T].
For all (t, s) ∈ [,T]× [,T], the sequence {G(t, s)fn(s)} is relatively compact as well since,

according to the semi-homogeneity of the Hausdorff m.n.c.,

γ
({
G(t, s)fn(s)

}) ≤ ∣∣G(t, s)∣∣γ ({
fn(s)

})
= , for all (t, s) ∈ [,T]× [,T]. ()

Moreover, by means of () and (),

γ
({
xn(t)

})
= γ

({∫ T


G(t, s)fn(s)ds

})
= , for all t ∈ [,T].

By similar reasoning, we also get

γ
({
ẋn(t)

})
= , for all t ∈ [,T],

by which {xn(t)}, {ẋn(t)} are relatively compact, for all t ∈ [,T].
Moreover, since xn satisfies for all n ∈ N (), {ẍn(t)} is relatively compact, for a.a. t ∈

[,T]. Thus, according to [, Lemma III..], there exist a subsequence of {ẋn}, for the
sake of simplicity denoted in the same way as the sequence, and x ∈ C([,T],E) such that
{ẋn} converges to ẋ inC([,T],E) and {ẍn} converges weakly to ẍ in L([,T],E). According

http://www.boundaryvalueproblems.com/content/2014/1/23
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to the classical closure results (cf. e.g. [, Lemma ..]), x ∈ Tm(q,λ), which implies the
quasi-compactness of Tm.
ad (iii) In order to show that, for m ∈ N sufficiently large, Tm is α-condensing with

respect to the m.n.c. α defined by (), let us consider a bounded subset � ⊂ Q such that
α(Tm(� × [, ]))≥ α(�). Let {xn} ⊂ Tm(� × [, ]) be a sequence such that

α
(
Tm

(
� × [, ]

))
=

(
sup

t∈[,T]

[
γ
({
xn(t)

}
n

)
+ γ

({
ẋn(t)

}
n

)]
,modC

({xn}n) +modC
({ẋn}n)).

At first, let us show that the set Tm(�× [, ]) is bounded. If x ∈ Tm(�× [, ]), then there
exist q ∈ �, λ ∈ [, ] and k(·) ∈ F(·,q(·), q̇(·)) such that

x(t) =
∫ T


G(t, s)f (s)ds, ẋ(t) =

∫ T



∂G(t, s)
∂t

f (s)ds, for all t ∈ [,T],

with f (t) = λk(t) + ν�K (t)(χJm (t) + 
m )φ̂(q(t)), for a.a. t ∈ [,T].

Since � is bounded, there exists � ⊂ E such that q(t) ∈ �, for all q ∈ � and all t ∈ [,T].
Hence, according to (ii), there exists ν� ∈ L([,T]) such that ‖k(t)‖ ≤ ν�(t), for a.a. t ∈
[,T]. Consequently

∥∥x(t)∥∥E ≤ max
(t,s)∈[,]×[,]

∣∣G(t, s)∣∣[∫ T


ν�(s)ds +  max

x∈B(∂K ,k)

∥∥φ̂(x)
∥∥∫ T


ν�K (t)

]

≤ T


‖ν�‖ +  max
x∈B(∂K ,k)

∥∥φ̂(x)
∥∥ · ‖ν�K‖.

Similarly,

∥∥ẋ(t)∥∥E ≤ max
(t,s)∈[,]×[,]

∣∣∣∣∂G(t, s)∂

∣∣∣∣
[∫ T



∥∥k(s)∥∥ds +  max
x∈B(∂K ,k)

∥∥φ̂(x)
∥∥∫ T


ν�K (t)

]

≤ ‖ν�‖ +  max
x∈B(∂K ,k)

∥∥φ̂(x)
∥∥ · ‖ν�K‖.

Thus, the set Tm(� × [, ]) is bounded.
Moreover, we can find {qn} ⊂ �, {λn} ⊂ [, ] and {kn} satisfying, for a.a. t ∈ [,T],

kn(t) ∈ F(t,qn(t), q̇n(t)), such that, for all t ∈ [,T], xn(t) and ẋn(t) are defined by () and
(), respectively, where fn(t) is defined by ().
By similar reasoning as in the part ad (iii), we obtain

γ
({
fn(t)

}
n

) ≤
(
g(t) + L̂ν�K (t)

(
χJm (t) +


m

))
sup

t∈[,T]

(
γ
({
qn(t)

}
n

)
+ γ

({
q̇n(t)

}
n

))
,

for a.a. t ∈ [,T], and that

∥∥fn(t)∥∥ ≤ ∥∥kn(t)∥∥ +  · max
x∈B(∂K ,ε)

∥∥φ̂(x)
∥∥ · ν�K (t), for a.a. t ∈ [,T] and all n ∈N.

Since kn(t) ∈ F(t,qn(t), q̇n(t)), for a.a. t ∈ [,T], and qn ∈ �, for all n ∈ N, where � is a
bounded subset of C([,T],E), there exists � ⊂ K such that qn(t) ∈ �, for all n ∈ N and

http://www.boundaryvalueproblems.com/content/2014/1/23
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t ∈ [,T]. Hence, it follows from condition (ii) that

∥∥fn(t)∥∥ ≤ ν�(t) +  · ν�K (t) · max
x∈B(∂K ,ε)

∥∥φ̂(x)
∥∥, for a.a. t ∈ [,T]. ()

This implies ‖G(t, s)fn(t)‖ ≤ |G(t, s)|(ν�(t) +  · ν�K (t) · maxx∈B(∂K ,ε)‖φ̂(x)‖), for a.a. t, s ∈
[,T] and all n ∈ N.
Moreover, by virtue of the semi-homogeneity of the Hausdorff m.n.c., for all (t, s) ∈

[,T]× [,T], we have

γ
({
G(t, s)fn(s)

}
n

) ≤ ∣∣G(t, s)∣∣γ ({
fn(s)

}
n

) ≤ T


γ
({
fn(s)

}
n

)
≤ T



(
g(t) + L̂ν�K (t)

(
χJm (t) +


m

))

× sup
t∈[,T]

(
γ
({
qn(t)

}
n

)
+ γ

({
q̇n(t)

}
n

))
.

Let us denote

S := sup
t∈[,T]

(
γ
({
qn(t)

}
n

)
+ γ

({
q̇n(t)

}
n

))

and

S∗ := sup
t∈[,T]

(
γ
({
xn(t)

}
n

)
+ γ

({
ẋn(t)

}
n

))
.

According to () and () we thus obtain for each t ∈ [,T],

γ
({
xn(t)

}
n

)
= γ

({∫ T


G(t, s)fn(s)ds

}
n

)

≤ T


(
‖g‖L + L̂

(
‖ν�K‖L(Jm) +


m

‖ν�K‖L
))

S .

By similar reasonings, we can see that, for each t ∈ [,T],

γ
({
ẋn(t)

}
n

) ≤
(

‖g‖L + L̂
(

‖ν�K‖L(Jm) +

m

‖ν�K‖L
))

S ,

when starting from condition (). Subsequently,

S∗ ≤ T + 


(
‖g‖L + L̂

(
‖ν�K‖L(Jm) +


m

‖ν�K‖L
))

S . ()

Since we assume that α(Tm(� × [, ]))≥ α(�) and {qn}n ⊂ �, we get

S ≤ S∗ ≤ T + 


(
‖g‖L + L̂

(
‖ν�K‖L(Jm) +


m

‖ν�K‖L
))

S .

Since we have, according to (iii), T+
 ‖g‖L < , we can choose m ∈ N such that, for all

m ∈N,m ≥m, we have

T + 


(
‖g‖L + L̂

(
‖ν�K‖L(Jm) +


m

‖ν�K‖L
))

< .
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Therefore, we get, for sufficiently largem ∈N, the contradiction S < S which ensures the
validity of condition (iii) in Proposition ..
ad (iv) For all q ∈ Q, the set Tm(q, ) coincides with the unique solution xm of the linear

system

ẍ(t) = ν�K (t)(χJm (t) + 
m )φ̂(q(t)), for a.a. t ∈ [,T],

x(T) = x() = .

}

According to () and (), for all t ∈ [,T],

xm(t) =
∫ T


G(t, s)ϕm(s)ds

and

ẋm(t) =
∫ T



∂

∂t
G(t, s)ϕm(s)ds,

where ϕm(t) := ν�K (t)(χJm (t) + 
m )φ̂(q(t)).

Since

‖ϕm‖L ≤ max
x∈B(∂K ,ε)

∥∥φ̂(x)
∥∥ ·

(
‖ν�K‖L(Jm) +

‖ν�K‖L
m

)
,

we have, for all t ∈ [,T],

∥∥xm(t)∥∥ ≤ T


· max
x∈B(∂K ,ε)

∥∥φ̂(x)
∥∥ ·

(
‖ν�K‖L(Jm) +

‖ν�K‖L
m

)
. ()

Let us now consider r >  such that rB ⊂ K . Then it follows from () that we are able to
find m ∈ N such that, for all m ∈ N, m ≥ m, and t ∈ [,T], ‖xm‖ ≤ r. Therefore, for all
m ∈N,m ≥m, Tm(q, ) ⊂ IntQ, for all q ∈Q, which ensures the validity of condition (iv)
in Proposition ..
ad (v) The validity of the transversality condition (v) in Proposition . can be proven

quite analogously as in [] (see pp.- in []) with the following differences:
- due to the Dirichlet boundary conditions, t belongs to the open interval (,T),
- since A(t) = B(t) = , we have p(t) = –ν�K (t).

In this way, we can prove that there exists m ∈ N such that every problem (Pm), where
m ≥m, satisfies all the assumptions of Proposition .. This implies that every such (Pm)
admits a solution, denoted by xm, with xm(t) ∈ K , for all t ∈ [,T]. By similar arguments
as in [], but with the expression Z(Zk + ) replaced by T

 , according to condition (ii),
we can obtain the result that there exists a subsequence, denoted as the sequence, and a
function x ∈ AC([,T],E) such that xm → x and ẋm → ẋ in C([,T],E) and also ẍm ⇀ x
in L([,T],E), when m → ∞. Thus, a classical closure result (see e.g. [, Lemma ..])
guarantees that x is a solution of () satisfying x(t) ∈ K , for all t ∈ [,T], and the sketch of
proof is so complete. �

The case when F = F + F, with F(t, ·, ·) to be completely continuous and F(t, ·, ·) to be
Lipschitzian, for a.a. t ∈ [,T], represents the most classical example of a map which is
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γ -regular w.r.t. the Hausdorff measure of non-compactness γ . The following corollary of
Theorem . can be proved quite analogously as in [, Example . and Remark .].

Corollary . Let E = H be a separable Hilbert space and let us consider the Dirichlet
b.v.p.:

ẍ(t) ∈ F(t,x(t), ẋ(t)) + F(t,x(t), ẋ(t)), for a.a. t ∈ [,T],
x() = x(T) = ,

}
()

where
(i) F : [,T]×H ×H �H is an upper-Carathéodory, globally measurable,

multivalued mapping and F(t, ·, ·) :H ×H �H is completely continuous, for a.a.
t ∈ [,T], such that

∥∥F(t,x, y)∥∥ ≤ ν(t,D),

for a.a. t ∈ [,T], all x ∈H with ‖x‖ ≤ D, where D >  is an arbitrary constant,
ν ∈ L([,T], [,∞)), and all y ∈ H ,

(ii) F : [,T]×H ×H �H is a Carathéodory multivalued mapping such that

∥∥F(t, , )∥∥ ≤ ν(t), for a.a. t ∈ [,T],

where ν ∈ L([,T], [,∞)), and F(t, ·, ·) :H ×H �H is Lipschitzian, for a.a.
t ∈ [,T], with the Lipschitz constant

L <


T(T + )
.

Moreover, suppose that
(iii) there exists R >  such that, for all x ∈ H with ‖x‖ = R, t ∈ (,T), y ∈H and

w ∈ F(t,x, y) + F(t,x, y), we have

〈x,w〉 > .

Then the Dirichlet problem () admits, according to Theorem ., a solution x(·) such
that ‖x(t)‖ ≤ R, for all t ∈ [,T].

Remark . For F(t,x, y) ≡ , the completely continuous mapping F(t,x, y) allows us to
make a comparison with classical single-valued results recalled in the Introduction. Un-
fortunately, our F in (i) (see also (ii) in Theorem .) is the only mapping which is (unlike
in [, Example . and Remark .], where under some additional restrictions quite lib-
eral growth restrictions were permitted) globally bounded w.r.t. y ∈ H . Furthermore, our
sign condition in (iii) is also (unlike again in [, Example . and Remark .], where un-
der some additional restrictions the Hartman-type condition like (iH) in the Introduction
was employed) the most restrictive among their analogies in [–]. On the other hand,
because of multivalued upper-Carathéodory maps F + F in a Hilbert space which are
γ -regular, our result has still, as far as we know, no analogy at all.
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4 Illustrative examples
The first illustrative example of the application of Theorem . concerns the integro-
differential equation

utt(t,x) + ϕ
(
t,x,ut(t,x)

)
= b(t)u(t,x) +

∫
R

k(x, y)u(t, y)dy + p
(∫

R

ψ(x)u(t,x)dx
)
f
(
u(t,x)

)
,

t ∈ [,T],x ∈R, ()

involving discontinuities in a state variable. In this equation, the non-local diffusion term∫
R
k(x, y)u(t, y)dy replaces the classical diffusion behavior given by uxx(t,x). In dispersal

models such an integral term takes into account the long-distance interactions between
individuals (see e.g. []). Moreover, when ϕ is linear in ut , () can be considered as
an alternative version of the classical telegraph equation (see e.g. [] and the references
therein), where the classical diffusivity is replaced by the present non-local diffusivity.
Telegraph equations appear in many fields such as modeling of an anomalous diffusion,

a wave propagation phenomenon, sub-diffusive systems or modeling of a pulsate blood
flow in arteries (see e.g. [, ]).
For the sake of simplicity, we will discuss here only the case when ϕ is globally bounded

w.r.t. ut . On the other hand, for non-strictly localized transversality conditions as in [],
for instance, a suitable linear growth estimate w.r.t. ut can be permitted.

Example . Let us consider the integro-differential equation () with ϕ : [,T] × R ×
R →R, b : [,T]→R, k :R×R →R, ψ :R→R and p :R →R. We assume that
(a) ϕ is Carathéodory, i.e. ϕ(·,x, y) is measurable, for all x, y ∈R, and ϕ(t, ·, ·) is

continuous, for a.a. t ∈ [,T]; ϕ(t,x, ·) is L(t)-Lipschitzian with L ∈ L([,T]);
|ϕ(t,x, y)| ≤ ϕ(t)ϕ(x), for a.a. t ∈ [,T] and all x, y ∈R, where ϕ ∈ L([,T]) and
ϕ ∈ L(R); ϕ(t,x, ) �= , for all a.a. t ∈ [,T] and all x ∈ R,

(b) b ∈ L([,T]) and satisfies b(t)≥ b > , for a.a. t ∈ [,T],
(c) k ∈ L(R×R) with ‖k‖L(R×R) = ,
(d) p(r) ≥ , for all r ∈R; and there can exist r < r < · · · < rk such that p(·) is

continuous, for r �= ri, and p(·) has discontinuities at ri, for i = , . . . ,k, with
p(r∓i ) := limr→r∓i

p(r) ∈R,
(e) f is L-Lipschitzian; L > ; f () = ; and xf (x) > , for all x �= ,
(f ) ψ ∈ L(R) with ‖ψ‖L(R) = .
Since the function p can have some discontinuities, a solution of () satisfying the

Dirichlet conditions

u(,x) = u(T ,x) = , for all x ∈ R, ()

will be appropriately interpreted in the sense of Filippov. More precisely, let us define P :
R�R by the formula

P(r) :=

{
p(r) if r �= ri,
[min{p(ri),p(r–i ),p(r+i )},max{p(ri),p(r–i ),p(r+i )}] if r = ri, i = , , . . . ,k.
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A function u(t,x) is said to be a solution of (), () if u(t, ·) ∈ L(R), for all t ∈ [,T],
the map [,T]→ L(R) defined by t → u(t, ·) is C if it is a solution of the inclusion

utt(t,x) + ϕ
(
t,x,ut(t,x)

)
∈

∫
R

k(x, y)u(t, y)dy + b(t)u(t,x) + P
(∫

R

ψ(x)u(t,x)dx
)
f
(
u(t,x)

)
()

and if it satisfies ().
If we further assume the existence of R >  such that

R >
ϕ(t)
b – 

‖ϕ‖L(R), for a.a. t ∈ [,T], ()

and that

∥∥L(t) + b(t)
∥∥
L([,T]) + ( +mL)T <


T + 

, ()

where

m := max
r∈[–R,R]

max
{
p(r),p

(
r–

)
,p

(
r+

)}
, ()

then the problem (), () has a solution, in the sense of Filippov, satisfying ‖u(t, ·)‖L(R) ≤
R, for a.a. t ∈ [,T].
In fact, problem (), () can be transformed into the abstract setting

{
ÿ(t) ∈ F(t, y(t), ẏ(t)), t ∈ [,T],
y(T) = y() = ,

()

where y(t) := u(t, ·) ∈ L(R), for all t ∈ [,T], and F : [,T] × L(R) × L(R) � L(R) is
defined by

F(t, y,w) := –ϕ̂(t,w) + b(t)y +K (y) + F̂(y),

where ϕ̂ : [,T] × L(R) → L(R), (t, y) �→ (x �→ ϕ(t,x, y(x))), K : L(R) → L(R), w �→
(x �→ ∫

R
k(x, y)w(y)dy), f̂ : L(R) → L(R), y �→ (x �→ f (y(x))) and F̂ : L(R)� L(R), y�

{pf̂ (y) : p ∈ P(
∫
R
ψ(x)y(x)dx)}.

Let us now examine the properties of F . According to (a), ϕ̂ is well defined. Given
y ∈ L(R), let us show that ϕ̂(·, y) is measurable. For this purpose, let � be an arbitrary
element in the dual space (L(R))′ of L(R). Hence, there existsψ ∈ L(R) such that�(z) =∫
R

ψ(x)z(x)dx, for all z ∈ L(R), and consequently the composition � ◦ ϕ̂(·, y) : [,T] →R

is such that t → ∫
R

ψ(x)ϕ(t,x, y(x))dx. Since ϕ is Carathéodory, it is globally measurable,
and so the mapping (t,x) → ψ(x)ϕ(t,x, y(x)) is globally measurable as well. This implies
that, according to the Fubini Theorem, the mapping � ◦ ϕ̂(·, y) is measurable, too. Finally,
since� was arbitrary, according to the Pettis Theorem (see Proposition .), ϕ̂(·, y) is mea-
surable.
Furthermore, let us show that F̂ is u.s.c. For this purpose, let y ∈ L(R) be fixed.
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(i) If r :=
∫
R

ψ(x)y(x)dx �= ri, i = , , . . . ,k, then it is possible to find δ >  such that
F̂ : B(y, δ) → L(R) is single-valued, i.e. F̂(y) = p(r)f̂ (y),
r :=

∫
R

ψ(x)y(x)dx ∈ [r – δ, r + δ], for all y ∈ B(y, δ) and ri /∈ [r – δ, r + δ], for
i = , , . . . ,k. Since p is continuous in [r – δ, r + δ] and f̂ is Lipschitzian, F̂ is
continuous in B(y, δ).

(ii) Let r = rj, for some j ∈ {i = , , . . . ,k} and let U ⊂ L(R) be open and such that
F̂(y) ⊂U . Moreover, let σ >  be such that r :=

∫
R

ψ(x)y(x)dx �= ri, i �= j, for any
y ∈ B(y,σ ). This implies that F̂(y) is equal either to p(r)f̂ (y) or to P(rj)f̂ (y), for all
y ∈ B(y,σ ). If r < rj is such that F̂(y) = p(r)f̂ (y), then

∥∥F̂(y) – p
(
r–j

)
f̂ (y)

∥∥
L(R) =

∥∥p(r)f̂ (y) – p
(
r–j

)
f̂ (y)

∥∥
L(R)

≤ ∣∣p(r) – p
(
r–j

)∣∣ · ∥∥f̂ (y)∥∥ + p
(
r–j

) · ∥∥f̂ (y) – f̂ (y)
∥∥,

which implies that it is possible to find σ >  such that F(y) ⊂U , for all y ∈ B(y,σ).
Similarly, we would obtain the same when assuming r > rj.
If F̂(y) = P(rj)f̂ (y) then, for every p ∈ P(rj),

∥∥pf̂ (y) – pf̂ (y)
∥∥
L(R) = |p| · ∥∥f̂ (y) – f̂ (y)

∥∥ ≤m
∥∥f̂ (y) – f̂ (y)

∥∥,
which implies that also in this case it is possible to find σ >  such that F(y) ⊂U ,
for all y ∈ B(y,σ).

Moreover, according to (a) and (c), ϕ̂ is a Carathéodory mapping such that ϕ̂(t, ·) is L(t)-
Lipschitzian, for all t ∈ [,T], andK is well defined and -Lipschitzian. It can also be shown
that, according to (d) and (e), F̂ has compact and convex values. Therefore, the mapping
F is globally measurable, and so has the Scorza-Dragoni property (cf. Proposition .).
Let us now verify particular assumptions of Theorem ..
Let � ⊂ {y ∈ L(R) | ‖y‖L(R) ≤ R}. Then, according to (f ),

∫
R

ψ(x)y(x)dx ∈ [–R,R],

for all y ∈ �. Hence,

F̂(�) =
{
pf̂ (y) : p ∈ P

(∫
R

ψ(x)y(x)dx
)
, y ∈ �

}
⊂ {

pf̂ (�) : p ∈ [,m]
}

=
{
m · α · f̂ (�) : α ∈ [, ]

}
,

wherem is defined by ().
Thus,

γ
(
F̂(�)

) ≤mγ
({

α · f̂ (�) : α ∈ [, ]
}) ≤m · L · γ (�),

according to the Lipschitzianity of f̂ and property (). For a.a. t ∈ [,T] and all� ⊂ L(R),
we have

γ
(
F(t,� × �)

) ≤ γ
(
ϕ̂(t,�)

)
+ γ

(
b(t)�

)
+ γ

(
K (�)

)
+ γ

(
F̂(�)

)
≤ L(t)γ (�) + b(t)γ (�) + γ (�) +m · L · γ (�),
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and so condition (i) is satisfied with g(t) = L(t) +b(t) + +m ·L. The obtained form of g(t)
together with assumption () directly guarantee the condition (iii). It can also be easily
shown that properties of F ensure the validity of condition (ii).
In order to verify conditions imposed on a bounding function, let us define V : L(R) →

R, α → 
 (‖α‖L(R) – R). The function V ∈ C(L(R),R) with V̇x : h → 〈x,h〉 obviously

satisfies (), so it is only necessary to check condition (). Thus, let α ∈ L(R), ‖α‖L(R) =
R, t ∈ (,T), v ∈ L(R) and z ∈ F(t,α, v). Then there exists p∗ ∈ P(

∫
R

ψ(x)α(x)dx) such that

z = –ϕ̂(t, v) + b(t)α +K (α) + p∗ f̂ (α).

Moreover, since p∗ ≥  and
∫
R

α(x)f (α(x))dx≥ , we see that

p∗
∫
R

α(x)f
(
α(x)

)
dx ≥ , ()

and since∣∣∣∣
∫
R

α(x)
∫
R

k(x, y)α(y)dydx
∣∣∣∣ ≤ R

∫
R

∣∣α(x)∣∣ · ∥∥k(x, y)∥∥L(R) dx≤ R,

we see that∫
R

α(x)
∫
R

k(x, y)α(y)dydx≥ –R. ()

The properties (a)-(f ) together with the well-known Hölder inequality then yield

〈V̇α , z〉 = 〈α, z〉
= –

∫
R

α(x)ϕ
(
t,x, v(x)

)
dx + b(t)

∫
R

α(x)dx

+
∫
R

α(x)
∫
R

k(x, y)α(y)dydx + p∗
∫
R

α(x)f
(
α(x)

)
dx

≥ –Rϕ(t)‖ϕ‖L(R) + bR – R > ,

in view of condition (), (), and ().
Hence, the Dirichlet problem () admits, according to Theorem ., a solution y satis-

fying ‖y(t)‖L(R) ≤ R, for a.a. t ∈ (,T). If u(t,x) := y(t)(x), then u is a solution of (), ()
which is the Filippov solution of the original problem (), ().

Finally, we can sum up the above result in the form of the following theorem.

Theorem . Let the assumptions (a)-(f) be satisfied. If still conditions (), () hold,
then the problem (), () admits a non-trivial solution u in the sense of Fillippov such
that ‖u(t, ·)‖L(R) ≤ R.

Remark. In [, Example .], the following formally simpler integro-differential equa-
tion in R:

utt(t,x) =
∫ 


k̃(x, y)u(t, y)dy, t ∈ (, ),x ∈ [, ],
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with non-homogeneous Dirichlet conditions

u(,x) = u(x), u(,x) = u(x), x ∈ [, ],u,u ∈ L
(
[, ]

)
,

was solved provided k̃ : [, ]× [, ]→ (,∞) is a positive kernel of the Hilbert-Schmidt-
type and the norms ‖u‖L([,]) and ‖u‖L([,]) are finite.
After the homogenization of boundary conditions, the Dirichlet problem takes the form

utt(t,x) = ϕ̃(t,x) +
∫ 


k̃(x, y)u(t, y)dy, t ∈ (, ),x ∈ [, ],

u(,x) = u(,x) = ,

where ϕ̃(t,x) :=
∫ 
 k̃(x, y){[u(y) – u(y)]t + u(y)}dy.

Thus, it can be naturally extended onto the infinite strip [, ] × R, into the form (),
(), where

ϕ(t,x, y)≡ ϕ(t,x) :=

{
–ϕ̃(t,x) if (t,x) ∈ (, )× [, ],
 otherwise,

k(t, z) :=

{
k̃(x, z) if (x, z) ∈ [, ]× [, ],
 otherwise,

and b(t) ≡ , p(r) ≡  or f (s)≡ .
The result in [, Example .] cannot be, however, deduced fromTheorem ., because

condition (b) in Example . cannot be satisfied in this way.
On the other hand, the linear term with coefficient b could not be implemented in their

equation, because it is not completely continuous in () below, as required in [].

In view of the arguments in Remark ., we can conclude by the second illustrative ex-
ample.

Example . Consider the following non-homogeneous Dirichlet problem in R:

utt(t,x) = b(t)u(t,x) +
∫ 
 k̃(x, y)u(t, y)dy, t ∈ (, ),x ∈ [, ],

u(,x) = u(x), u(,x) = u(x), x ∈ [, ],u,u ∈ L([, ]),

}
()

where k̃ : [, ]× [, ]→ (,∞) is a positive kernel of the Hilbert-Schmidt-type such that

k := ‖k̃‖L([,]×[,]) < ∞

and b ∈ L((, )) is such that b(t)≥ b > , for a.a. t ∈ (, ).
Furthermore, let there exist a constant L < 

 such that

ess sup
t∈(,)

b(t)≤ L. ()

The properties of u and u guarantee that there exists B≥  such that

‖u – u‖L([,]) + ‖u‖L([,]) ≤ B. ()
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We will show that, under () and (), problem () is solvable, in the abstract setting,
by means of Corollary ..
Problem () can be homogenized as follows:

ûtt(t,x) = ϕ(t,x) + b(t)û(t,x) +
∫ 
 k̃(x, y)û(t, y)dy, t ∈ (, ),x ∈ [, ],

û(,x) = û(,x) = ,

}
()

where

ϕ(t,x) := b(t)
{[
u(x) – u(x)

]
t + u(x)

}
+w(t,x), t ∈ (, ),x ∈ [, ],

with w(t,x) :=
∫ 
 k̃(x, y){[u(y) – u(y)]t + u(y)}dy.

Since the Hilbert-Schmidt operator

∫ 


k(y)(·)dy : L([, ]) → L

(
[, ]

)
,

where k(y)(·) := k̃(x, y) is well known to be completely continuous (cf. [, Example .])
and b(t)(·) : L([, ]) → L([, ]) is, according to (), L-Lipschitzian with L < 

 , condi-
tions (i), (ii) in Corollary . can be easily satisfied, for u(t) := u(t,x), u ∈ L([, ]),

F(t,u, v) ≡ F(t,u) := ϕ(t) + f (u),

where ϕ(t) := b(t){[u – u]t + u} +w(t), w(t) := w(t,x),

f (u) :=
∫ 


k(y)u(y)dy

and

F(t,u, v) ≡ F(t,u) := b(t)u.

In this setting, problem () takes the abstract form as (), namely

ü(t) = f (u(t)) + b(t)u(t) + ϕ(t), for a.a. t ∈ (, ),
u() = u() = .

}
()

Since 〈f (u),u〉 ≥  holds, for all u ∈ L([, ]) (see [, Example .]) one can check that
the strict inequality in (iii) in Corollary . can be easily satisfied, for (), whenever

R >
B(L + k)

b
. ()

Hence, applying Corollary ., problem () admits a solution, say û(·), such that

‖û‖L([,]) ≤ R,
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where R satisfies (), and subsequently the same is true for (), i.e.

max
t∈[,]

∥∥û(t, ·)∥∥L([,]) ≤ R, ()

as claimed.
After all, we can sum up the sufficient conditions for the existence of a solution û of ()

satisfying () as follows:
• k̃ is a positive kernel of the Hilbert-Schmidt operator with the finite norm

k := ‖k̃‖L([,]×[,]) < ∞,

• there exists b > , L < 
 : b ≤ b(t) ≤ L, for a.a. t ∈ (, ),

• condition () holds.
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