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1 Introduction
In this paper, we investigate the following fast diffusion equation with a nonlocal source
and an absorption term:

⎧⎪⎪⎨
⎪⎪⎩
ut =�um + a

∫
�
uq(y, t) dy – bur , x ∈ �, t > ,

u(x, t) = , x ∈ ∂�, t > ,

u(x, ) = u(x), x ∈ �,

(.)

where  <m < , a,b,q, r > ,� is a bounded domain in RN (N ≥ ) with smooth boundary
∂�, and u ∈ L∞(�) is a nonnegative nontrivial function.
The equation in (.) is a fast diffusion equation perturbed by both a nonlocal source

term and an absorption term, which describes the diffusion of concentration of some
Newtonian fluids or the density of some biological species (see [, ] and the references
therein). What we are interested in here is the extinction in finite time of the nonnega-
tive solutions u(x, t) of (.), i.e. there exists a finite time T >  such that the solution is
nontrivial for  < t < T , but u(x, t) ≡  for almost every (x, t) ∈ � × [T ,∞). In this case,
T is called the extinction time. As one of the most important properties of solutions of
evolutionary equations, extinction in finite time of solutions has been intensively studied
by several authors (see [–] and the references therein). In particular, in a recent paper
by Xu et al. [], the authors investigated the extinction and non-extinction phenomena
of solutions of Problem (.) and obtained the following result.
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Theorem . (Theorems - in []) Suppose N ≥ . If  < r <  and  <m = q < , then
the nonnegative nontrivial weak solution of Problem (.) vanishes in finite time for any
nonnegative initial data provided that either |�| or a is sufficiently small; If  < r < , then
the nonnegative nontrivial weak solution of Problem (.) vanishes in finite time provided
that u, |�| or a is sufficiently small, and q > C with C being a positive constant depending
only onN , r andm; If  < r <  andm > q ≥ r, then the nonnegative nontrivial weak solution
of Problem (.) vanishes in finite time for any nonnegative initial data provided that b is
sufficiently large.

It can be seen from the above theorem that the extinction of nonnegative nontrivial
weak solutions to Problem (.) occurs when the absorption term is in some sense strong.
However, when the absorption term is suitably weak, whether Problem (.) admits non-
extinction solutions or not is not answered in []. On the other hand, it can be seen from
[] that q = m is the critical extinction exponent when there is no absorption term. An
interesting problem is whether the absorption term can change the critical extinction ex-
ponent.We know froma recent paper [] by Liu et al. that the critical extinction exponent
is not changed (at least when the source is local) when r = .However, when the absorption
term is nonlinear, i.e. when r �= , the problem is open.
Motivated by the works mentioned above, we investigate the critical extinction expo-

nents for Problem (.) by constructing suitable super and sub-solutions and give a more
complete classification of exponents and coefficients for the solutions to vanish in finite
time or not.
Let ϕ(x) be the unique positive solution of the following linear elliptic problem:

–�ϕ(x) = , x ∈ �; ϕ(x) = , x ∈ ∂�. (.)

Throughout this paper, we denote

M =max
x∈�

ϕ(x) and μ =
∫

�

ϕ(x) dx. (.)

By the strongmaximum principle we know thatM,μ > . Ourmain results are the follow-
ing theorems.

Theorem . If q >m, then all the solutions u(x, t) vanish in finite time for suitably small
initial data u(x). If q =m and aμ < , then all the solutions u(x, t) vanish in finite time for
any nonnegative bounded initial data.

Theorem . If r < min{q, } or r = q <  with a|�| < b, then all the solutions u(x, t) of
Problem (.) vanish in finite time for appropriately small initial data u(x).

Theorem . If q <min{r,m} or r = q <m with aγ > b, then Problem (.) admits at least
one non-extinction solution for any nonnegative initial data.

Here γ >  will be given in the proof of Theorem ..

Theorem . If q = m < r with aμ > , then Problem (.) admits at least one non-
extinction solution for any nonnegative initial data.
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Theorem . If q = m <  ≤ r with aμ = , then (.) admits at least one non-extinction
solution u(x, t) for any strictly positive initial data u(x). If q = m < r <  with aμ = ,
then Problem (.) admits at least one extinction solution u(x, t) for any nonnegative
initial data. If q = m < r <  and a|�| ≤ λ, then u(x, t) vanishes in the sense that
limt→+∞ ‖u(·, t)‖m+ = .

Remark . Comparing Theorems .-. with Theorem . we can see that our results
complement those obtained in [] since the case r ≥  is also considered in our paper.
Moreover, according to Theorems ., . and the first part of Theorem . it is easy to
see that q =m is the critical extinction exponent for Problem (.) when r = , which is the
same as the problems with local reaction terms (see []). However, when r =  and q =m,
for the nonlocal problem under consideration, the first eigenvalue λ of –� in� no longer
plays the same role as it does in the local case.

2 Proof of themain results
It is well known that the equation in (.) is degenerate if m >  and singular if  <m < ,
and therefore there is no classical solution in general. To state the definition of the weak
solution, we first define the class of nonnegative testing functions

F =
{
ξ : ξ ∈ C(QT )∩C,(QT ), ξt ,�ξ ∈ L(QT ); ξ ≥ , ξ |∂�×(,T) = 

}
,

where QT =� × (,T).

Definition . A function u ∈ L∞(QT ) is called a sub-solution (super-solution) of Prob-
lem (.) in QT if the following conditions hold:

(i) u(x, ) ≤ (≥)u(x) in �,
(ii) u(x, t) ≤ (≥) on ∂� × (,T),
(iii) for almost every t ∈ (,T) and every ξ ∈ F ,

∫
�

u(x, t)ξ (x, t) dx –
∫

�

u(x)ξ (x, ) dx + b
∫ t



∫
�

ur(x, s)ξ (x, s) dxds

≤ (≥)
∫ t



∫
�

{
uξs + um�ξ + a

∫
�

uq(y, s) dyξ (x, s)
}
dxds. (.)

A function u(x, t) is called a local solution of (.) if it is both a sub-solution and a super-
solution for some T >  and u(x, t) is called a solution of (.) if it is a local solution of (.)
in QT for any T > .

Local existence of weak solutions of (.) can be obtained by utilizing the methods of
standard regularization (see []) and the continuity of the solutions can be derived by the
arguments similar to that in []. Moreover, Problem (.) admits global solutions when
the initial data are small (see []). Since the regularization procedure is crucial in what
follows, we shall sketch the outline. Consider the regularized problem

⎧⎪⎪⎨
⎪⎪⎩
ut =�um + a

∫
�
uq(y, t) dy – bur , x ∈ �,  < t < T ,

u(x, t) = /k, x ∈ ∂�,  < t < T ,

u(x, ) = u(x) + /k, x ∈ �,

(.)
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where T >  may be chosen sufficiently small in such a way that there exists a solution uk
of (.) on QT for every k ∈ N, and ‖uk‖∞ is bounded independently of k. Furthermore,
/l ≤ ul ≤ uk for k < l, and a super-solution (sub-solution) comparison theory holds for
(.) (see [, ]).
Since uk is monotone in k, we may define U(x, t) ≡ limk→∞ uk(x, t), and it is easy to see

that U(x, t) is a solution of (.). Furthermore, if u is a solution of (.), then we have
∫

�

(u – uk)ξ (x, t) dx

=
∫ t



∫
�

{
(u – uk)ξs +

(
um – umk

)
�ξ + a

∫
�

(
uq(y, s) – uqk(y, s)

)
dyξ (x, s)

}
dxds

– b
∫ t



∫
�

(
ur(x, s) – urk(x, s)

)
ξ (x, s) dxds +


km

∫ t



∫
�

∂ξ

∂n
dSx ds –


k

∫
�

ξ (x, ) dx

≤
∫ t



∫
�

{
(u – uk)ξs +

(
um – umk

)
�ξ + a

∫
�

(
uq(y, s) – uqk(y, s)

)
dyξ (x, s)

}
dxds,

where we use the fact ∂ξ /∂n ≤  on ∂� to derive this inequality. With 	k and Fk defined
so that

(u – uk)	k = um – umk , (u – uk)Rk = ur – urk

and

(u – uk)Fk = uq – uqk ,

we have
∫

�

(u – uk)ξ (x, t) dx ≤
∫ t



∫
�

(u – uk){ξs +	k�ξ – bRkξ}dxds

+ a
∫ t



∫
�

ξ (x, s)
{∫

�

(u – uk)Fk(y, s) dy
}
dxds.

Thus, we can choose the appropriate test function ξ as in [, ] to obtain u≤ uk . If u is a
sub-solution of (.), the above argument shows that u ≤ uk . Thus U(x, t) is the maximal
solution of (.), and this solution satisfies a sub-solution comparison principle.
Before proving ourmain results, we give a comparison principle for the solution of Prob-

lem (.), which is similar to Proposition . in [] and can be proved by modifying the
above arguments (see also [, , ]).

Proposition . Let u and v be a nonnegative bounded sub-solution and a nonnegative
super-solution of (.), respectively. If either q ≥  and u is bounded from the above or  <
q <  and v has a positive lower bound, then u(x, t)≤ v(x, t) in QT if u(x)≤ v(x) in �.

Proof of Theorem . Case (i): q = m with aμ < . For any bounded smooth domain �′

such that �′ ⊃⊃ �, let φ(x) be the unique solution of the following elliptic problem:
⎧⎨
⎩–�φ(x) = , x ∈ �′,

φ(x) = , x ∈ ∂�′.
(.)

http://www.boundaryvalueproblems.com/content/2014/1/24
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By the comparison principle for linear elliptic problem we know ϕ(x) ≤ φ(x) in �. Set
μ =

∫
�

φ(x) dx, M = maxx∈�
′ φ(x) and δ = minx∈� φ(x). It is well known from the strong

maximum principle that δ > .
By continuity, we can choose a suitable domain �′ with �′ ⊃⊃ � such that aμ < .

Define v(x, t) = g(t)φ 
m (x), where g(t) satisfies

⎧⎨
⎩g ′(t)M


m
 + ( – aμ)gm(t) = , t > ,

g() = A ≥ δ–

m ‖u‖L∞(�).

(.)

Since  <m < , it follows from the theory in ODEs that g(t) is nonincreasing and g(t) = 
for all

t ≥ T∗ =
M


m


( – aμ)( –m)
A–m.

Then it can be verified that v(x, t) is a super-solution of (.). In fact, because q =m and
g ′(t)≤ , we know that v(x, t) satisfies the following inequalities (in the weak sense):

∂v
∂t

–�vm – a
∫

�

vm(y, t) dy + bvr

= g ′(t)φ

m (x) + gm(t) – aμgm(t) + bgr(t)φ

r
m (x)

≥ g ′(t)M

m
 + ( – aμ)gm(t)

= . (.)

In addition, v(x, t)≥  on ∂�× (,T), for any  < T < T∗, and v(x, )≥ u(x) by the choice
of A. Moreover, there exists a positive constant C such that v(x, t)≥ C in QT . Therefore,
by applying Proposition . to (.) we see that u(x, t) ≤ v(x, t) for (x, t) ∈ QT , which implies
u(x,T) ≤ v(x,T). The arbitrariness of T < T∗ and v(x,T∗) =  ensure that u(x,T∗) = .
Furthermore, let ũ(x, t) = u(x, t + T∗), then ũ(x, t) satisfies (.) with the initial condition
ũ(x, ) = . By the aforementioned proof, we see that ũ(x, t)≤ v(x, t) with any A > . From
the relation of the extinction time T∗ of v(x, t) to A, it follows that ũ(x, t) =  for any t > ,
i.e. u(x, t) =  for any t ≥ T∗.

Case (ii): q >m. Let φ,M be the same as Case (i) and denote k =max{, M
q–m
m

 μ∫
� φ

q
m (x) dx

}. Set
v(x, t) = kφ 

m (x) with k = ( 
ak

∫
� φ

q
m (x) dx

)


q–m , then it is easy to verify that v(x, t) is a super-

solution of (.) when u(x) is sufficiently small such that u(x) ≤ kφ 
m (x) in �. Applying

Proposition . to Problem (.) inQT for any T >  we obtain u(x, t) ≤ v(x, t) inQT , which
implies that u(x, t)≤ kM


m
 . Therefore, u(x, t) satisfies

ut –�um + bur ≤ a
(
kM


m


)q–m ∫
�

um(y, t) dy, x ∈ �, t > .

By the choice of k and k it is easily verified that a(kM

m
 )q–mμ ≤ 

 < . Thus, by the results
of Case (i), we can conclude that the solution u(x, t) vanishes in finite time when the initial
data are suitably small. The proof of this theorem is complete. �

http://www.boundaryvalueproblems.com/content/2014/1/24
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Proof of Theorem . We first prove the case r = q <  with b > a|�|. Set v(x, t) = g(t) where
g(t) satisfies the following ordinary differential equation:

⎧⎨
⎩g ′(t) + (b – a|�|)gq(t) = , t > ,

g() = ‖u‖L∞(�).
(.)

Since  < q <  and b > a|�|, we know by integrating the ODE that g(t) vanishes at some
finite time T∗. Moreover, as in the proof of Theorem ., it can be verified that g(t) is a
super-solution of (.). Thus, by applying Proposition . to u(x, t) and g(t) for any  < T <
T∗ we know that u(x, t) also vanishes at T∗.
In the case r <min{q, }, let g(t) satisfy the following ODE:

⎧⎨
⎩g ′(t) + (b – a|�|gq–r(t))gr(t) = , t > ,

g() = g,
(.)

where  < g < ( b
a|�| )


q–m . Similar to the first case, it is well known that g(t) vanishes in finite

time since r <  and g(t) is a super-solution of (.) provided that u(x) is small enough such
that ‖u‖L∞(�) ≤ g. Applying Proposition . to u(x, t) and g(t) guarantees the finite time
extinction of u(x, t). This completes the proof of Theorem .. �

Proof of Theorem . (i) Consider first the case q < r ≤m. Let λ be the first eigenvalue of
the following eigenvalue problem:

⎧⎨
⎩–�ψ(x) = λψ(x), x ∈ �,

ψ(x) = , x ∈ ∂�,
(.)

and ψ(x) >  (x ∈ �) be the corresponding eigenfunction. We may normalize ψ(x) such
that ‖ψ‖L∞(�) = . Denote γ =

∫
�

ψ
q
m
 (x) dx and let g(t) satisfy the ODE problem

⎧⎪⎪⎨
⎪⎪⎩
g ′(t) = –λgm(t) + aγ gq(t) – bgr(t), t > ,

g() = ,

g(t) > , t > .

(.)

It is easy to check that g(t) is nondecreasing and bounded from above by min{( aγ
λ
)


m–q ,

( aγb )


r–q }. Set v(x, t) = ρg(t)ψ

m
 (x). We shall show that v(x, t) is a sub-solution of (.) when

ρ >  is sufficiently small. In fact, simple computations show that

∂v
∂t

= ρ
(
–λgm(t) + aγ gq(t) – bgr(t)

)
ψ


m
 (x)

and

�vm + a
∫

�

vq(y, t) dy – bvr

= –λρ
mgmψ + aγρqgq – bρrgrψ

r
m
 .

http://www.boundaryvalueproblems.com/content/2014/1/24
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For v(x, t) to be a sub-solution of (.), it suffices to show that

λgm(t)ρm + bgr(t)ρr ≤ aγ gq(t)
(
ρq – ρ

)
,

which follows from

C
(
ρm–q + ρr–q) ≤ aγ

(
 – ρ–q), (.)

where C = maxt>{λgm–q(t),bgr–q(t)} < +∞. It is easy to see that (.) is valid for suffi-
ciently small ρ >  since q < r ≤m < .
Next, we turn our attention to construct a super-solution of (.). Set w(x, t) = L, where

L =max{‖u‖L∞(�), ( a|�|
b )


r–q ,ρmaxt≥ g(t)}. Then it is not hard to see thatw(x, t) is a super-

solution and v(x, t)≤ w(x, t). Therefore, by an iteration process, one can obtain a solution
of Problem (.), which satisfies v(x, t) ≤ u(x, t) ≤ w(x, t). Indeed, define u(x, t) = w(x, t)
and {uk(x, t)}∞k= iteratively to be a solution of the problem

ukt –�umk + burk = a
∫

�

uqk–(x, t) dx, x ∈ �, t > ,

subject to the boundary and initial conditions as that in (.). By applying the comparison
technique used in the proof of Lemma . in [, ] we know that the function u(x, t) =
limk→∞ uk(x, t), for every x ∈ � and t > , is a solution of (.). Because v(x, t) does not
vanish, neither does u(x, t).
(ii) The case q <m < r can be treated similarly to Case (i).
(iii) Finally we consider the case r = q <mwith aγ > b. Let g(t) satisfy the followingODE:

⎧⎪⎪⎨
⎪⎪⎩
g ′(t) = –λgm(t) + (aγ – b)gq(t), t > ,

g() = ,

g(t) > , t > .

(.)

Then g(t) is nondecreasing and satisfies g(t) ≤ ( aγ–b
λ

)


m–q . (The upper bound of g(t) can be
obtained by contradiction arguments and the monotonicity of g(t) follows immediately as
the upper bound is derived.) As in the proof of Case (i), we can construct a non-extinction
sub-solution v(x, t) = ρg(t)ψ 

m (x) with ρ >  sufficiently small.
To construct a super-solution, consider the following eigenvalue problem:

⎧⎨
⎩–�ψ(x) = λψ(x), x ∈ �̃,

ψ(x) = , x ∈ ∂�̃,

where �̃ ⊃⊃ � is a bounded domain with smooth boundary ∂�̃. Let λ̃ and ψ̃(x) >  (x ∈
�̃) be its first eigenvalue and the corresponding eigenfunction, respectively. We may nor-
malize ψ̃(x) such that ‖ψ̃‖L∞(�̃) = . Denote γ̃ =

∫
�

ψ̃
q
m
 (x) dx and δ̃ =minx∈� ψ̃(x) > .

Set w(x, t) = kψ̃

m
 (x), then we shall show that w(x, t) is a super-solution of (.) provided

that k >  is suitably large. Indeed, if k = max{( aγ̃
λ̃ δ̃

)


m–q , δ̃– 
m ‖u‖L∞(�),ρ( aγ–bλ

)


m–q }, we

http://www.boundaryvalueproblems.com/content/2014/1/24
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know that w(x, t) ≥  on ∂� × (,∞), w(x, ) ≥ u(x) in � and w(x, t) satisfies the fol-
lowing inequalities (in the weak sense):

∂w
∂t

–�wm – a
∫

�

wq(x, t) dx + bwq

= kmλ̃ψ̃(x) – akqγ̃ + bkqψ̃
q
m
 (x)

≥ kq
(
km–q̃λ̃δ – aγ̃

)
≥ .

Moreover, v(x, t) ≤ w(x, t) by the choice of k. Therefore, by applying the monotonicity
iteration process we can obtain a non-extinction solution u(x, t) of (.) satisfying v(x, t)≤
u(x, t)≤ w(x, t). The proof of Theorem . is complete. �

Proof of Theorem . The proof of this theorem is similar to that of Theorem ., so we
only sketch the outline here. Set v(x, t) = ρg(t)ϕ 

m (x) where ϕ(x) is defined in (.) and g(t)
satisfies the following ODE problem:

⎧⎪⎪⎨
⎪⎪⎩
g ′(t) =M– 

m {(aμ – )gm(t) – bM r
m gr(t)}, t > ,

g() = ,

g(t) > , t > .

(.)

Since aμ >  and m < r, it is well known that g(t) is nondecreasing and bounded above
by ( aμ–

bM
r
m
) 
r–m . Then v(x, t) is a sub-solution of (.) if ρ >  is sufficiently small. On the

other hand, the super-solution w(x, t) can be chosen to be a large positive constant L sat-
isfying L ≥ max{‖u‖L∞(�), ( a|�|

b )


r–q ,ρM 
m maxt≥ g(t)}. It can be observed that (v,w) is a

pair of sub-solution and super-solution of (.) satisfying v(x, t) ≤ w(x, t). Therefore, by
monotonicity iteration, we know that (.) admits at least one solution u(x, t) such that
v(x, t)≤ u(x, t)≤ w(x, t). Since v(x, t) >  in � × (, +∞), u(x, t) cannot vanish at any finite
time. The proof of Theorem . is complete. �

Proof of Theorem . (i) Let u(x, t) be any solution of (.). It can be verified that, for the
case m = q < r < , a sufficiently large constant L is a super-solution of (.). Therefore,
we know that u(x, t) ≤ L in � × (, +∞). For convenience, in the following proof, we as-
sume that the weak solution is appropriately smooth; otherwise, we can consider the cor-
responding regularized problem, and the same result can also be obtained through an
approximate process (see []). Multiplying equation (.) by um and integrating by parts
over � yield the identity


m + 

d
dt

∫
�

um+ dx +
∫

�

∣∣∇um
∣∣ dx + b

∫
�

um+r dx = a
(∫

�

um dx
)

. (.)

Recall the embedding theorem

∫
�

∣∣∇um
∣∣ dx ≥ λ

∫
�

um dx.

http://www.boundaryvalueproblems.com/content/2014/1/24
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Combining this result with (.) and using Hölder’s inequality on the right hand side of
(.) one obtains


m + 

d
dt

∫
�

um+ dx + λ

∫
�

um dx + b
∫

�

um+r dx≤ a|�|
∫

�

um dx. (.)

Noticing that a|�| ≤ λ and u(x, t)≤ L, we see from (.) that

d
dt

∫
�

um+ dx + b(m + )Lr–
∫

�

um+ dx ≤ ,

which implies

∫
�

um+ dx ≤ e–b(m+)Lr–t
∫

�

um+
 dx.

This shows that ‖u(·, t)‖m+ tends to  exponentially as t → +∞.
(ii) Let w(x, t) = g(t)ϕ 

m (x), where g(t) satisfies

⎧⎨
⎩g ′(t) + bM– –r

m gr(t) = , t > ,

g() = A > .
(.)

Since  < r < , g(t) is nonincreasing and g(t) =  for t ≥ T∗ = A–r

bM– –r
m (–r)

. Noticing m =

q and aμ = , one can see that w(x, t) is a super-solution of (.) provided that u(x) ≤
Aϕ


m (x) in�. By using the arguments similar to that of the proof of Case (i) of Theorem .

we can show that any solution u(x, t) of Problem (.) vanishes in finite time.
(iii) Finally we consider the case q =m <  ≤ r. First we construct a non-extinction sub-

solution of (.). Set v(x, t) = he–αtϕ

m (x), where h, α are two positive constants to be de-

termined. Noticing that aμ = , it is easily verified that when r = , v(x, t) is a sub-solution
of (.) if α ≥ b and if h is so small such that hϕ


m (x)≤ u(x). When r > , for v(x, t) to be

sub-solution of (.) it is reasonable to choose first h so small such that hϕ

m (x) ≤ u(x)

and then α ≥ bhr– Mr–
m . Next, since r > q and v(x, t) is bounded, we can choose a suffi-

ciently large constant L ≥ v(x, t) to be a sup-solution of (.). Therefore, by monotonicity
iteration, we can obtain a solution of (.) satisfying v(x, t) ≤ u(x, t) ≤ L. Since v(x, t) does
not vanish at any finite time, neither does u(x, t). The proof of Theorem . is complete.
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