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Abstract
In this article, we investigate the Sturm-Liouville boundary value problems of
fractional differential equations with p-Laplacian

{
Dβ
0+ (φp(Dα

0+u(t))) + f (t,u(t)) = 0, 0 < t < 1,

ξu(0) – ηu′(0) = 0, γ u(1) + δu′(1) = 0, Dα
0+u(0) = 0,

where 1 < α ≤ 2, 0 < β ≤ 1, Dα
0+ , D

β
0+ are the standard Caputo fractional derivatives,

φp(s) = |s|p–2s, p > 1, φ–1
p = φq, 1/p + 1/q = 1, ξ ,η,γ ,δ ≥ 0, ρ := ξγ + ξδ + ηγ > 0, and

f : [0, 1]× [0, +∞)→ [0, +∞) is continuous. By means of the properties of the Green’s
function, Leggett-Williams fixed-point theorems, and fixed-point index theory, several
new sufficient conditions for the existence of at least two or at least three positive
solutions are obtained. As an application, an example is given to demonstrate the
main result.
MSC: 34A08; 34B18; 35J05

Keywords: Sturm-Liouville boundary value problem; positive solution of fractional
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1 Introduction
During the past decades, much attention has been focused on the study of equations with
p-Laplacian differential operator. The motivation for those works stems from the applica-
tions in the modeling of different physical and natural phenomena: non-Newtonian me-
chanics [], system ofMonge-Kantorovich partial differential equations [], population bi-
ology [], nonlinear flow laws [], combustion theory []. There exist a very large number
of papers devoted to the existence of solutions for the equation with p-Laplacian operator.
The ordinary differential equation with p-Laplacian operator

(
φp

(
u′(t)

))′ + f
(
t,u(t)

)
= ,  < t < ,

subject to various boundary conditions, has been studied by many authors, see [, ] and
the references therein.
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The existence of positive solutions of the differential equationwith p-Laplacian operator

(
φp

(
u′(t)

))′ + q(t)f
(
t,u(t),u′(t)

)
= ,  < t < ,

satisfying different boundary conditions have been established by using fixed-point theo-
rems and monotone iterative technique, see [, ] and the references therein.
In [], Hai considered the existence of positive solutions for the boundary value prob-

lem ⎧⎨
⎩(q(t)φ(u′))′ + λf (t,u(t)) = , r < t < R,

au(r) – bφ–(q(r))u′(r) = , cu(R) + dφ–(q(R))u′(R) = ,

where φ(u′) = |u′|p–u′, p > , f : (r,R) × (,∞) → R and λ is a positive parameter, f is
p-superlinear or p-sublinear at ∞ and maybe singular at u = .
However, few papers can be found in the literature on the existence of multiple positive

solutions for the third-order Sturm-Liouville boundary value problem with p-Laplacian.
In [], Zhai and Guo studied the third-order Sturm-Liouville boundary value problem

with p-Laplacian
⎧⎨
⎩(φp(u′′(t)))′ + f (t,u(t)) = ,  < t < ,

αu() – βu′() = , γu() + δu′() = , u′′() = ,

where φp(s) = |s|p–s, p > , (φp)– = φq, /p + /q = , α,β ,γ , δ ≥ , f ∈ C([, ] ×
[,∞), [,∞)). By means of the Leggett-Williams fixed-point theorems, some existence
andmultiplicity results of positive solutions are obtained. In later work, Yang and Yan []
also studied the above problem by means of the fixed-point index method.
Recently, fractional differential equations have been of great interest. Themotivation for

thoseworks stems fromboth the intensive development of the theory of fractional calculus
itself and the applications such as economics, engineering and other fields [–]. Much
attention has been focused on the study of the existence and multiplicity of solutions or
positive solutions for boundary value problems of fractional differential equations by the
use of techniques of nonlinear analysis (fixed-point theorems [–], upper and lower
solutions method [], fixed-point index theory [, ], coincidence theory [], etc.).
Although the boundary value problems of fractional differential equation with p-

Laplacian have been studied in many literature, only few papers can be found in the lit-
erature on the existence of multiple positive solutions for the Sturm-Liouville boundary
value problems of fractional differential equations with p-Laplacian. As the extension and
supplement of some results in [, ], in this article, we investigate the Sturm-Liouville
boundary value problems of fractional differential equations with p-Laplacian subject
Robin boundary value conditions

⎧⎨
⎩Dβ

+(φp(Dα
+u(t))) + f (t,u(t)) = ,  < t < ,

ξu() – ηu′() = , γu() + δu′() = , Dα
+u() = ,

(.)

where  < α ≤ ,  < β ≤ , Dα
+ , D

β

+ are the standard Caputo fractional derivatives,
φp(s) = |s|p–s, p > , φ–

p = φq, /p + /q = , ξ ,η,γ , δ ≥ , ρ := ξγ + ξδ + ηγ > , and
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f : [, ] × [, +∞) → [, +∞) is continuous. By means of the properties of the Green’s
function, Leggett-Williams fixed-point theorems and fixed-point index theory, we estab-
lish the existence of at least two or at least three positive solutions for the Sturm-Liouville
boundary value problem (.). As an application, an example is given to demonstrate the
main result.
The rest of this paper is organized as follows. In Section , we shall introduce some def-

initions and lemmas to prove our main results. In Section , we state our main results. We
prove our main results by Leggett-Williams fixed-point theorems and fixed-point index
theory in Section . As an application, an example is presented to illustrate ourmain result
in Section .

2 Preliminaries and lemmas
For the convenience of the reader, we give some background materials from fractional
calculus theory to facilitate analysis of problem (.). These materials can be found in the
recent literature, see [, , , –].

Definition . ([]) The Riemann-Liouville fractional integral of order α >  of a func-
tion y : (, +∞)→R is given by

Iα+y(t) =


�(α)

∫ t


(t – s)α–y(s)ds

provided the right side is pointwise defined on (,+∞).

Definition. ([]) TheCaputo fractional derivative of order α >  of a continuous func-
tion y : (, +∞)→R is given by

Dα
+y(t) =


�(n – α)

∫ t



y(n)(s)
(t – s)α–n+

ds,

where n is the smallest integer greater than or equal to α, provided that the right side is
pointwise defined on (,+∞).

Remark . ([]) By Definition ., under natural conditions on the function f (t), as
α → n the Caputo derivative becomes a conventional nth derivative of the function f (t).

Remark . ([]) As a basic example, we have

Dα
+ t

μ = μ(μ – ) · · · (μ – n + )
�( +μ – n)
�( +μ – α)

tμ–α , for t ∈ (, +∞),

given in particular that Dα
+ tμ = , μ = , , . . . ,n – , where Dα

+ is the Caputo fractional
derivative, and n is the smallest integer greater than or equal to α.

From the definition of theCaputo derivative andRemark ., we can obtain the following
statement.

Lemma . ([]) Let α > . Then the fractional differential equation

Dα
+u(t) = 

http://www.boundaryvalueproblems.com/content/2014/1/26
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has

u(t) = c + ct + ct + · · · + cn–tn–, ci ∈R, i = , , , . . . ,n – 

as the unique solution, where n is the smallest integer greater than or equal to α.

Lemma . ([]) Let α > . Assume that u,Dα
+u ∈ L(, ). Then the following equality

holds:

Iα+D
α
+u(t) = u(t) + c + ct + ct + · · · + cn–tn–,

for some ci ∈ R, i = , , , . . . ,n – , where n is the smallest integer greater than or equal
to α.

Lemma . Let y ∈ C[, ] and  < α ≤ . Then the boundary value problem of the frac-
tional differential equation

⎧⎨
⎩Dα

+u(t) + y(t) = ,  < t < ,

ξu() – ηu′() = , γu() + δu′() = 
(.)

has a unique solution,

u(t) =
∫ 


G(t, s)y(s)ds,

where

G(t, s) =

⎧⎨
⎩–(t–s)α–

�(α) + η+ξ t
ρ

[ γ

�(α) ( – s)α– + δ
�(α–) ( – s)α–], s ≤ t,

η+ξ t
ρ

[ γ

�(α) ( – s)α– + δ
�(α–) ( – s)α–], t ≤ s.

(.)

Proof By the Lemma ., we can reduce the equation of problem (.) to an equivalent
integral equation

u(t) = –Iα+y(t) – c – ct = –
∫ t



(t – s)α–

�(α)
y(s)ds – c – ct,

for some constants c, c ∈R. Moreover, we have

u′(t) = –


�(α – )

∫ t


(t – s)α–y(s)ds – c.

From the boundary conditions ξu() – ηu′() = , γu() + δu′() = , we have

ξc = ηc, γ
(
–Iα+y() – c – c

)
+ δ

(
–Iα–+ y() – c

)
= .

So,

c = –
η

ρ

(
γ Iα+y() + δIα–+ y()

)
, c = –

ξ

ρ

(
γ Iα+y() + δIα–+ y()

)
.
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Hence, the unique solution of (.) is

u(t) = –
∫ t



(t – s)α–

�(α)
y(s)ds +

η

ρ

(
γ

∫ 



( – s)α–

�(α)
y(s)ds + δ

∫ 



( – s)α–

�(α – )
y(s)ds

)

+
ξ t
ρ

(
γ

∫ 



( – s)α–

�(α)
y(s)ds + δ

∫ 



( – s)α–

�(α – )
y(s)ds

)

=
∫ t



(
–
(t – s)α–

�(α)
+

ηγ + ξγ t
ρ�(α)

( – s)α– +
ηδ + ξδt
ρ�(α – )

( – s)α–
)
y(s)ds

+
∫ 

t

(
ηγ + ξγ t
ρ�(α)

( – s)α– +
ηδ + ξδt
ρ�(α – )

( – s)α–
)
y(s)ds

=
∫ 


G(t, s)y(s)ds,

which completes the proof. �

Lemma . Let  < α ≤ ,  < β ≤ . Then the boundary value problem of the fractional
differential equation

⎧⎨
⎩Dβ

+(φp(Dα
+u(t))) + f (t,u(t)) = ,  < t < ,

ξu() – ηu′() = , γu() + δu′() = , Dα
+u() = 

(.)

has a unique solution,

u(t) =
∫ 


G(t, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds,

where G(t, s) is defined as (.).

Proof From Lemma . and the boundary value problem (.), we have

Iβ+D
β

+
(
φp

(
Dα

+u(t)
))

= –Iβ+ f
(
t,u(t)

)
= φp

(
Dα

+u(t)
)
+ c, for c ∈R,

that is

φp
(
Dα

+u(t)
)
= –

∫ t



(t – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ – c, for c ∈ R.

By Dα
+u() = , we have c = . So, Dα

+u(t) + φq(
∫ t


(t–τ )β–
�(β) f (τ ,u(τ ))dτ ) = . Thus, the

boundary value problem (.) is equivalent to the following problem:

Dα
+u(t) + φq

(∫ t



(t – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
= ,  < t < ,

ξu() – ηu′() = , γu() + δu′() = .
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Lemma . implies that boundary value problem (.) has a unique solution,

u(t) =
∫ 


G(t, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds,

which completes the proof. �

Lemma . The Green’s function G(t, s) defined by (.) is continuous on [, ]× [, ].
Assume η > –α

α– ξ , then G(t, s) also has the following properties:
() G(t, s) > , for t, s ∈ [, ];
() G(t, s) ≤G(s, s), for t, s ∈ (, );
() there exists a positive number λ such that G(t, s)≥ λG(s, s), for t, s ∈ [, ], where

λ =min{ ξγ δ((α–)ξ+(α–)η)
((α–)ξδ+ξγ–ηγ )+ξγ ((α–)ηδ+ηγ ) ,

ξηγ δ((α–)ξ+(α–)η)
((α–)ξδ+ξγ–ηγ )+ξγ ((α–)ηδ+ηγ ) } < .

The method of proof is similar to Lemma . in [], and we omit it here.

Definition . ([]) Let E be a real Banach space and P be a nonempty, convex closed
set in E. We say that P is a cone if it satisfies the following properties:

(i) λu ∈ P for u ∈ P, λ ≥ ;
(ii) u, –u ∈ P implies u = θ , where θ denotes the null element of E.

If P ⊂ E is a cone, we denote the order induced by P on E by ≤. For u, v ∈ P, we write
u≤ v if v – u ∈ P.

Definition. ([]) Themapϕ is said to be a nonnegative continuous concave functional
on P of a real Banach space E provided that ϕ : P → [,∞) is continuous and

ϕ
(
tx + ( – t)y

) ≥ tϕ(x) + ( – t)ϕ(y),

for all x, y ∈ P and  ≤ t ≤ .

Definition . ([]) Let  < a < b be given and let ϕ be a nonnegative continuous concave
functional on the cone P. Define the convex sets Pr , P̄r and P(ϕ,a,b) by Pr = {y ∈ P|‖y‖ < r},
P̄r = {y ∈ P|‖y‖ ≤ r}, P(ϕ,a,b) = {y ∈ P|a ≤ ϕ(y),‖y‖ ≤ b}.

Lemma . (Leggett-Williams []) Let T : P̄c → P̄c be a completely continuous operator
and let ϕ be a nonnegative continuous concave functional on P such that ϕ(y) ≤ ‖y‖ for all
y ∈ P̄c. Suppose that there exist  < a < b < d ≤ c such that

(A) {y ∈ P(ϕ,b,d)|ϕ(y) > b} 
= ∅ and ϕ(Ty) > b for y ∈ P(ϕ,b,d);
(A) ‖Ty‖ < a for ‖y‖ ≤ a;
(A) ϕ(Ty) > b for y ∈ P(ϕ,b, c) with ‖Ty‖ > d.

Then T has at least three fixed points y, y, and y in P̄c satisfying ‖y‖ < a, ϕ(y) > b,
‖y‖ > a, and ϕ(y) < b.

Lemma . ([]) Let T : P̄c → P be a completely continuous operator and let ϕ be a non-
negative continuous concave functional on P such that ϕ(y) ≤ ‖y‖ for all y ∈ P̄c. Suppose
that there exist  < a < b < c such that

http://www.boundaryvalueproblems.com/content/2014/1/26
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(B) {y ∈ P(ϕ,b, c)|ϕ(y) > b} 
= ∅, and ϕ(Ty) > b for y ∈ P(ϕ,b, c);
(B) ‖Ty‖ < a for ‖y‖ ≤ a;
(B) ϕ(Ty) > b

c ‖Ty‖ for y ∈ P̄c with ‖Ty‖ > c.

Then T has at least two fixed points y and y in P̄c satisfying ‖y‖ < a, ‖y‖ > a and
ϕ(y) < b.

Lemma . ([]) Let P be a closed convex set in a Banach space E and let � be a bounded
open set such that �p :=� ∩ P 
= ∅. Let T : �̄p → P be a compact map. Suppose that x 
= Tx
for all x ∈ ∂�p.

(C) (Existence) If i(T ,�p,P) 
= , then T has a fixed point in �p.
(C) (Normalization) If u ∈ �p, then i(û,�p,P) = , where û(x) = u for x ∈ �̄p.
(C) (Homotopy) Let ν : [, ]× �̄p → P be a compact map such that x 
= ν(t,x) for x ∈ ∂�p

and t ∈ [, ]. Then i(ν(, ·),�p,P) = i(ν(, ·),�p,P).
(C) (Additivity) If U, U are disjoint relatively open subsets of �p such that x 
= Tx for

x ∈ �̄p \ (U ∪ U), then i(T ,�p,P) = i(T ,U,P) + i(T ,U,P), where i(T ,Uj,P) =
i(T |Ūj ,Uj,P) (j = , ).

Lemma . ([]) Let P be a cone in a Banach space E. For q > , define �q = {x ∈ p|‖x‖ <
q}. Assume that T : �̄q → P is a compact map such that x 
= Tx for x ∈ ∂�q. Thus, one has
the following conclusions:

(D) if ‖x‖ ≤ ‖Tx‖ for x ∈ ∂�q , then i(T ,�q,P) = ;
(D) if ‖x‖ ≥ ‖Tx‖ for x ∈ ∂�q , then i(T ,�q,P) = .

3 Main theorems
In this section, let E = C[, ] be the Banach space of continuous functions endowed with
‖u‖ =max≤t≤ |u(t)|, and the ordering x ≤ y if x(t)≤ y(t) for all t ∈ [, ]. Define the cone
P ⊂ E by

P =
{
u ∈ E

∣∣u(t) ≥ , min
/≤t≤/

u(t) ≥ λ‖u‖
}
,

where λ is given as in Lemma ..
For convenience of the reader, we denote

M = φq
(
�(β + )

)(∫ 


G(s, s)ds

)–

, N =

λ

φq
(
β�(β + )

)(∫ 





G
(


, s

)
ds

)–

,

f := lim
u→+

min
≤t≤

f (t,u)
φp(u)

, f∞ := lim
u→+∞ max

≤t≤

f (t,u)
φp(u)

.

Lemma . Let T : P → E be the operator defined by

Tu(t) :=
∫ 


G(t, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds.

Then T : P → P is completely continuous.

http://www.boundaryvalueproblems.com/content/2014/1/26
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Proof By Lemma ., we have

∥∥Tu(t)∥∥ ≤
∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds,

min
/≤t≤/

(Tu)(t) = min
/≤t≤/

∫ 


G(t, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≥ λ

∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≥ λ‖Tu‖.

Thus, T(P) ⊂ P. In view of non-negativity and continuity of G(t, s), (s–τ )β–
�(β) and f (t,u(t)),

we find that T : P → P is continuous.
Let � ⊂ P be bounded, i.e., there exists a positive constant M such that ‖u‖ ≤ M, for

all u ∈ �. Let L =max≤t≤,≤u≤M |f (t,u)| + , then, for u ∈ �, we have

∣∣Tu(t)∣∣ = ∣∣∣∣
∫ 


G(t, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

∣∣∣∣
≤

∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≤
∫ 


G(s, s)φq

(∫ s


L
(s – τ )β–

�(β)
dτ

)
ds

= φq

(
L

�(β + )

)∫ 


G(s, s)φq

(
sβ

)
ds.

Hence, T(�) is uniformly bounded. Further for any u ∈ � and t ∈ [, ], we have

∣∣(Tu)′(t)∣∣ ≤
∣∣∣∣
∫ t



(
–(α – )(t – s)α–

�(α)
+

ξγ

ρ�(α)
( – s)α– +

ξδ

ρ�(α – )
( – s)α–

)
φq

×
(∫ s


L
(s – τ )β–

�(β)
dτ

)
ds

+
∫ 

t

(
ξγ

ρ�(α)
( – s)α– +

ξδ

ρ�(α – )
( – s)α–

)
φq

(∫ s


L
(s – τ )β–

�(β)
dτ

)
ds

∣∣∣∣
≤ ξ

ρ

∫ 



(
γ

�(α)
( – s)α– +

δ

�(α – )
( – s)α–

)
φq

(∫ s


L
(s – τ )β–

�(β)
dτ

)
ds

+
∫ t



(α – )(t – s)α–

�(α)
φq

(∫ s


L
(s – τ )β–

�(β)
dτ

)
ds

≤ ξ

ρ

∫ 



(
γ

�(α)
( – s)α– +

δ

�(α – )
( – s)α–

)
φq

(
Lsβ

�(β + )

)
ds

+
∫ t



(α – )(t – s)α–

�(α)
φq

(
Lsβ

�(β + )

)
ds

≤ φq

(
L

�(β + )

)
ξγ + αξδ + αρ

ρ�(α + )
.

http://www.boundaryvalueproblems.com/content/2014/1/26
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Hence, ‖(Tu)′‖ ≤ φq( L
�(β+) )

ξγ+αξδ+αρ

ρ�(α+) . For any  ≤ t ≤ t ≤  and u ∈ �, we have

∣∣Tu(t) – Tu(t)
∣∣ = ∣∣∣∣

∫ t

t
(Tu)′(t)dt

∣∣∣∣
≤

∫ t

t

∣∣(Tu)′(t)∣∣dt ≤ φq

(
L

�(β + )

)
ξγ + αξδ + αρ

ρ�(α + )
|t – t|.

That is to say,T(�) is equicontinuous. By theArzela-Ascoli theorem,we see thatT : P → P
is completely continuous. The proof is completed. �

We are now ready to prove our main results.

Theorem . Let f (t,u) be nonnegative continuous on [, ]× [, +∞). Assume that there
exist constants a, b with b > a >  such that

(H) f (t,u)≥ φp(Nb), for (t,u) ∈ [  ,

 ]× [b, b

λ
];

(H) f (t,u) < φp(Ma), for (t,u) ∈ [, ]× [,a].

Then the boundary value problem (.) has at least two positive solutions u and u satis-
fying ‖u‖ < a, min 

≤t≤ 

u(t) < b and ‖u‖ > a, where λ is given as in Lemma ..

Proof Let θ : P → [, +∞) be the nonnegative continuous concave functional defined by

θ (u) = min

≤t≤ 



u(t), u ∈ P.

Evidently, for each u ∈ P, we have θ (u) ≤ ‖u‖.
It’s easy to see that T : P̄ b

λ
→ P is completely continuous and b

λ
> b > a > . We choose

u(t) = b
λ
, then

u ∈ P
(

θ ,b,
b
λ

)
, θ (u) =

b
λ > b.

So {u ∈ P(θ ,b, b
λ
)|θ (u) > b} 
= ∅. Hence, if u ∈ P(θ ,b, b

λ
), then b ≤ u(t) ≤ b

λ
for t ∈ [  ,


 ].

Thus for t ∈ [  ,

 ], from assumption (H), we have

Tu
(



)
=

∫ 


G

(


, s

)
φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≥
∫ 






G
(


, s

)
φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≥
∫ 






G
(


, s

)
Nbφq

(∫ s



(s – τ )β–

�(β)
dτ

)
ds

≥Nbφq

(


β�(β + )

)∫ 





G
(


, s

)
ds =

b
λ

>
b
λ
.

Consequently,

min

≤t≤ 



Tu(t) ≥ λ‖Tu‖ > λ × b
λ
= b for




≤ t ≤ 

,b≤ u(t) ≤ b

λ .
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That is,

θ (Tu) > b, for all u ∈ P
(

θ ,b,
b
λ

)
.

Therefore, condition (B) of Lemma . is satisfied. Now if u ∈ P̄a, then ‖u‖ ≤ a. By as-
sumption (H), we have

‖Tu‖ = max
≤t≤

∣∣Tu(t)∣∣ = max
≤t≤

∫ 


G(t, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

<Ma max
≤t≤

∫ 


G(t, s)φq

(
sβ

�(β + )

)
ds

≤Maφq

(


�(β + )

)∫ 


G(s, s)ds = a,

which shows that T : P̄a → Pa, that is, ‖Tu‖ < a for u ∈ P̄a. This shows that condition (B)
of Lemma . is satisfied. Finally, we show that (B) of Lemma . also holds. Assume that
u ∈ P̄ b

λ
with ‖Tu‖ > b

λ
, then by the definition of cone P, we have

θ (Tu) = min

≤t≤ 



Tu(t) ≥ λ‖Tu‖ > λ‖Tu‖ = b/
b
λ ‖Tu‖.

So condition (B) of Lemma . is satisfied. Thus using Lemma ., T has at least two
fixed points. Consequently, the boundary value problem (.) has at least two positive so-
lutions u and u in P̄ b

λ
satisfying ‖u‖ < a, min 

≤t≤ 

u(t) < b and ‖u‖ > a. The proof is

completed. �

Theorem . Let f (t,u) be nonnegative continuous on [, ]× [, +∞). Assume that there
exist constants a, b, c with λc > b > a >  such that

(H) f (t,u) < φp(Ma), for (t,u) ∈ [, ]× [,a];
(H) f (t,u) ≥ φp(Nb), for (t,u) ∈ [  ,


 ]× [b, b

λ
];

(H) f (t,u) ≤ φp(Mc), for (t,u) ∈ [, ]× [, c].

Then the boundary value problem (.) has at least three positive solutions u, u and u
with ‖u‖ < a, min 

≤t≤ 

u(t) > b, ‖u‖ > a and min 

≤t≤ 

u(t) < b, where λ is given as in

Lemma ..

Proof If u ∈ P̄c, then ‖u‖ ≤ c. By assumption (H), we have

‖Tu‖ = max
≤t≤

∣∣Tu(t)∣∣ = max
≤t≤

∫ 


G(t, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≤Mc max
≤t≤

∫ 


G(t, s)φq

(
sβ

�(β + )

)
ds

≤Mcφq

(


�(β + )

)∫ 


G(s, s)ds = c.

This shows that T : P̄c → P̄c. Using the same arguments as in the proof of Lemma .,
we can show that T : P̄c → P̄c is a completely continuous operator. It follows from the
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conditions (H) and (H) in Theorem . that c > b
λ

> b > a. Similarly with the proof of
Theorem ., we have T : P̄a → Pa and

{
u ∈ P

(
θ ,b,

b
λ

)∣∣∣θ (u) > b
}


= ∅, θ (Tu) > b, for all u ∈ P
(

θ ,b,
b
λ

)
.

Moreover, for u ∈ P(θ ,b, c) and ‖Tu‖ > b
λ
, we have

θ (Tu) = min

≤t≤ 



Tu(t) ≥ λ‖Tu‖ > b
λ
> b.

So all the conditions of Lemma . are satisfied. Thus using Lemma .,T has at least three
fixed points. So, the boundary value problem (.) has at least three positive solutions u,
u and u with ‖u‖ < a,min 

≤t≤ 

u(t) > b, ‖u‖ > a andmin 

≤t≤ 

u(t) < b. The proof is

completed. �

Theorem . Let f (t,u) be nonnegative continuous on [, ] × [, +∞). If the following
assumptions are satisfied:

(H) f = f∞ = +∞;
(H) there exists a constant μ >  such that

f (t,u) < φp(Mμ), for (t,u) ∈ [, ]× [,μ],

then the boundary value problem (.) has at least two positive solutions u and u such
that  < ‖u‖ < μ < ‖u‖.

Proof FromLemma ., we obtainT : P → P is completely continuous. In view of f = +∞,
there exists σ ∈ (,μ) such that

f (t,u) ≥ φp(γu), for ≤ t ≤ ,  < u≤ σ,

where γ ∈ (N , +∞).
Let �σ = {u ∈ P|‖u‖ < σ}. Then, for any u ∈ ∂�σ , we have

Tu
(



)
=

∫ 


G

(


, s

)
φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≥
∫ 






G
(


, s

)
φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≥
∫ 






G
(


, s

)
φq

(∫ s



(s – τ )β–

�(β)
φp(γu)dτ

)
ds

≥
∫ 






G
(


, s

)
φq

(∫ s



(s – τ )β–

�(β)
φp

(
γλ‖u‖)dτ

)
ds

≥ γλ‖u‖φq

(


β�(β + )

)∫ 





G
(


, s

)
ds

= γλ‖u‖ 
λN

=
γ
N

‖u‖ > ‖u‖,
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which implies ‖Tu‖ > ‖u‖ for u ∈ ∂�σ . Hence, Lemma . implies

i(T ,�σ ,P) = . (.)

On the other hand, since f∞ = +∞, there exists σ > μ such that

f (t,u) ≥ φp(γu), for u≥ σ,

where γ ∈ (N , +∞).
Let σ > max{ σ

λ
,μ} and �σ = {u ∈ P|‖u‖ < σ}. Then min 

≤t≤ 

u(t) ≥ λ‖u‖ > σ, for

any u ∈ ∂�σ . By using the method to get (.), we obtain

Tu
(



)
>
γ
N

‖u‖ > ‖u‖,

which implies ‖Tu‖ > ‖u‖ for u ∈ ∂�σ . Thus, from Lemma ., we have

i(T ,�σ ,P) = . (.)

Finally, let �μ = {u ∈ P|‖u‖ < μ}. Then, for any u ∈ ∂�μ , by (H), we then get

Tu(t) =
∫ 


G(t, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≤
∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

<
∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
φp(Mμ)dτ

)
ds

≤Mμφq

(


�(β + )

)∫ 


G(s, s)ds = μ = ‖u‖,

which implies ‖Tu‖ < ‖u‖ for u ∈ ∂�μ . Using Lemma . again, we get

i(T ,�μ ,P) = . (.)

Note that σ < μ < σ, by the additivity of fixed-point index and (.)-(.), we obtain

i(T ,�μ\�̄σ ,P) = i(T ,�μ ,P) – i(T ,�σ ,P) = 

and

i(T ,�σ\�̄μ ,P) = i(T ,�σ ,P) – i(T ,�μ ,P) = –.

Hence, T has a fixed point u in �μ\�̄σ , and has a fixed point u in �σ\�̄μ . Clearly, u
and u are positive solutions of the boundary value problem (.) and  < ‖u‖ < μ < ‖u‖.
The proof is completed. �

http://www.boundaryvalueproblems.com/content/2014/1/26


Lu et al. Boundary Value Problems 2014, 2014:26 Page 13 of 17
http://www.boundaryvalueproblems.com/content/2014/1/26

Theorem . Let f (t,u) be nonnegative continuous on [, ] × [, +∞). If the following
assumptions are satisfied:

(H) f = f∞ = ;
(H) there exists a constant μ >  such that

f (t,u) > φp(Nμ), for (t,u) ∈
[


,



]
× [λμ,μ].

Then the boundary value problem (.) has at least two positive solutions u and u such
that  < ‖u‖ < μ < ‖u‖.

Proof From Lemma ., we obtain T : P → P is completely continuous. In view of f = ,
there exists δ ∈ (,μ) such that

f (t,u) ≤ φp(κu), for  ≤ t ≤ ,  < u ≤ δ,

where κ ∈ (,M).
Let �δ = {u ∈ P|‖u‖ < δ}. Then, for any u ∈ ∂�δ , we have

Tu(t) ≤
∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≤
∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
φp(κu)dτ

)
ds

≤
∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
φp

(
κ‖u‖)dτ

)
ds

≤ κ‖u‖φq

(


�(β + )

)∫ 


G(s, s)ds =

κ

M
‖u‖ < ‖u‖,

which implies ‖Tu‖ < ‖u‖ for u ∈ ∂�δ . Hence, Lemma . implies

i(T ,�δ ,P) = . (.)

Next, since f∞ = , there exists δ > μ such that

f (t,u) ≤ φp(κu), for u ≥ δ,

where κ ∈ (,M). We consider two cases.
Case : Suppose that f is bounded, which implies that there exists M∗ >  such that

f (t,u) ≤ φp(M∗) for all t ∈ [, ] and u ∈ [, +∞).
Take δ >max{M∗

M , δ}. Then, for u ∈ P with ‖u‖ = δ, we get

Tu(t) ≤
∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≤
∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
φp

(
M∗)dτ

)
ds

≤M∗φq

(


�(β + )

)∫ 


G(s, s)ds =

M∗

M
< δ = ‖u‖.
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Case : Suppose that f is unbounded. In view of f : [, ] × [, +∞) → [, +∞) being
continuous, there exist t∗ ∈ [, ] and δ >max{ δ

λ
,μ} such that

f (t,u) ≤ f
(
t∗, δ

)
, for ≤ t ≤ , ≤ u≤ δ.

Then, for u ∈ P with ‖u‖ = δ, we obtain

Tu(t) ≤
∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≤
∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
f
(
t∗, δ

)
dτ

)
ds

≤
∫ 


G(s, s)φq

(∫ s



(s – τ )β–

�(β)
φp

(
κ‖u‖)dτ

)
ds

≤ κδφq

(


�(β + )

)∫ 


G(s, s)ds =

κδ

M
< δ = ‖u‖.

So, in either case, if we always choose �δ = {u ∈ E|‖u‖ < δ =max{δ, δ}}, then we have

‖Tu‖ < ‖u‖, for u ∈ ∂�δ .

Thus, from Lemma ., we have

i(T ,�δ ,P) = . (.)

Finally, Let �μ = {u ∈ P|‖u‖ < μ}. Then, for any u ∈ ∂�μ , min 
≤t≤ 


u(t) ≥ λ‖u‖ =

λμ, by (H), and we then obtain

Tu
(



)
=

∫ 


G

(


, s

)
φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≥
∫ 






G
(


, s

)
φq

(∫ s



(s – τ )β–

�(β)
f
(
τ ,u(τ )

)
dτ

)
ds

≥
∫ 






G
(


, s

)
φq

(∫ s



(s – τ )β–

�(β)
φp(Nμ)dτ

)
ds

≥Nμφq

(


β�(β + )

)∫ 





G
(


, s

)
ds =

μ

λ
> μ = ‖u‖,

which implies ‖Tu‖ > ‖u‖ for u ∈ ∂�μ . An application of Lemma . again shows that

i(T ,�μ ,P) = . (.)

Note that δ < μ < δ; by the additivity of fixed-point index and (.)-(.), we obtain

i(T ,�μ\�̄δ ,P) = i(T ,�μ ,P) – i(T ,�δ ,P) = –

and

i(T ,�δ\�̄μ ,P) = i(T ,�δ ,P) – i(T ,�μ ,P) = .
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Hence, T has a fixed point u in �μ\�̄δ , and it has a fixed point u in �δ\�̄μ . Con-
sequently, u and u are positive solutions of the boundary value problem (.) and  <
‖u‖ < μ < ‖u‖. The proof is completed. �

4 Example
In this section, we present an example to illustrate the main result.

Example . We consider the boundary value problem of the fractional differential equa-
tion

⎧⎨
⎩D



+ (φp(D



+u(t))) + f (t,u(t)) = ,  < t < ,


u() – u′() = , 

u() +

u

′() = , Dα
+u() = ,

(.)

where

f (t,u) =

⎧⎨
⎩

t
 + u, for u≤ ,
t

 + u + , for u > .

Let p = . We note that α = 
 , β = 

 , ξ = γ = δ = 
 , η = . By a simple calculation, we

obtain ρ = , λ = 
 <  and

M = φq
(
�(β + )

)(∫ 


G(s, s)ds

)–

= .,

N =

λ

φq
(
β�(β + )

)(∫ 





G
(


, s

)
ds

)–

= ..

Choosing a = ., b = , c = , evidently, λc > b > a >  and

f (t,u) =
t


+ u ≤ . < φ(Ma) = ., for (t,u) ∈ [, ]× [, .],

f (t,u) =
t


+ u + ≥ . > φ(Nb)≈ ., for (t,u) ∈

[


,



]
× [, ],

f (t,u) =
t


+ u + ≤ . < φ(Mc) = ., for (t,u) ∈ [, ]× [, ].

Consequently, all the conditions of Theorem. are satisfied.With the use of Theorem.,
the boundary value problem (.) has at least three positive solutions u, u, and u with

‖u‖ < ., min

≤t≤ 



u(t) > , ‖u‖ > ., and min

≤t≤ 



u(t) < .

5 Conclusion
In this paper, the Sturm-Liouville boundary value problems of fractional differential equa-
tions with p-Laplacian are investigated, the existence of at least two or at least three posi-
tive solutions for the fractional differential equations with Robin boundary conditions are
given by using Leggett-Williams fixed-point theorems and the fixed-point index theory,
respectively.
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It is worth emphasizing that our work presented in this article has the following features:
Firstly, the boundary conditions in (.) are important Robin boundary conditions. Sec-
ondly, our results improve and extend the main results of [, ] for the Sturm-Liouville
boundary value problems of integer-order differential equations with p-Laplacian. For ex-
ample, if α = , β = , then the problem (.) reduces to

⎧⎨
⎩(φp(u′′(t))′ + f (t,u(t)) = ,  < t < ,

ξu() – ηu′() = , γu() + δu′() = , u′′() = ,
(.)

which is studied in [, ]. Furthermore, if we take p = , problem (.) is the usual form
of third-order Sturm-Liouville boundary value problem

⎧⎨
⎩u′′′(t)) + f (t,u(t)) = ,  < t < ,

ξu() – ηu′() = , γu() + δu′() = , u′′() = .
(.)

The method can be applied on the Sturm-Liouville boundary value problems of higher-
order fractional differential equations with p-Laplacian and boundary conditions involv-
ing fractional derivatives

⎧⎨
⎩Dβ

+(φp(Dα
+u(t))) + f (t,u(t)) = ,  < t < ,

ξu() – ηDγu() = , γu() + δDγu() = , Dα
+u() = .

(.)

Based on this paper, one can consider boundary value problems of fractional differential
equations with parameters, and also one can do further research on eigenvalue problems
of fractional differential equations with p-Laplacian.
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