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Abstract
We are concerned with the following nonlinear problem

–div(φ(x, |∇u|)∇u) =μ|u|p(x)–2u + f (λ, x,u,∇u) in �

subject to Dirichlet boundary conditions, provided that μ is not an eigenvalue of the
p(x)-Laplacian. The purpose of this paper is to study the global behavior of the set of
solutions for nonlinear equations of p(x)-Laplacian type by applying a bifurcation
result for nonlinear operator equations.
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1 Introduction
Rabinowitz [] showed that the bifurcation occurring in the Krasnoselskii theorem is ac-
tually a global phenomenon by using the topological approach of Krasnoselskii []. As
regards the p-Laplacian and generalized operators, nonlinear eigenvalue and bifurcation
problems have been extensively studied by many researchers in various ways of approach;
see [–]. While most of those results considered global branches bifurcating from the
principal eigenvalue of the p-Laplacian, under suitable conditions, Väth [] introduced
another new approach to establish the existence of a global branch of solutions for the
p-Laplacian problems by using nonlinear spectral theory for homogeneous operators. Re-
cently, Kim and Väth [] proposed a new approach. They observed the asymptotic behav-
ior of an integral operator corresponding to the nonhomogeneous principal part at infinity
and established the existence of an unbounded branch of solutions for equations involving
nonhomogeneous operators of p-Laplace type.
In recent years, the study of differential equations and variational problems involving

p(x)-growth conditions has received considerable attention since they can model phys-
ical phenomena which arise in the study of elastic mechanics, electro-rheological fluid
dynamics and image processing, etc. We refer the readers to [–] and the references
therein.
In this paper, we are concerned with the existence of an unbounded branch of the set

of solutions for nonlinear elliptic equations of p(x)-Laplacian type subject to the Dirichlet

©2014 Kim; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.boundaryvalueproblems.com/content/2014/1/27
mailto:kyh1213@smu.ac.kr
http://creativecommons.org/licenses/by/2.0


Kim Boundary Value Problems 2014, 2014:27 Page 2 of 20
http://www.boundaryvalueproblems.com/content/2014/1/27

boundary condition

⎧⎨
⎩
–div(φ(x, |∇u|)∇u) = μ|u|p(x)–u + f (λ,x,u,∇u) in �,

u =  on ∂�,
(B)

when μ is not an eigenvalue of

⎧⎨
⎩
–div(|∇u|p(x)–∇u) = μ|u|p(x)–u in �,

u =  on ∂�.
(E)

Here � is a bounded domain in R
N with Lipschitz boundary ∂�, the functions φ(x, t) are

of type |t|p(x)– with a continuous function p : � → (,∞) and f : R × � × R × R
N → R

satisfies a Carathéodory condition. When p(x) is a constant function, the existence of an
unbounded branch of the set of solutions for equations of p-Laplacian type operator is ob-
tained in [] (for generalizations to unbounded domainswithweighted functions, see also
[, ]). For the case of a variable function p(x), the authors in [] obtained the global bi-
furcation result for a class of degenerate elliptic equations by observing some properties of
the corresponding integral operators in the weighted variable exponent Lebesgue-Sobolev
spaces.
In the particular case when φ(x, t) = |t|p(x)–, the operator involved in (B) is the

p(x)-Laplacian. The studies for p(x)-Laplacian problems have been extensively consid-
ered by many researchers in various ways; see [–]. As far as we know, there are no
papers concerned with the bifurcation theory for the nonlinear elliptic equations involv-
ing variable exponents except []. Noting that (B) hasmore complicated nonlinearities (it
is nonhomogeneous) than the p-Laplacian equation, we need somemore careful and new
estimates. In particular, the fact that the principal eigenvalue for problem (E) is isolated
plays a key role in obtaining the bifurcation result from the principal eigenvalue. Unfor-
tunately, under some conditions on p(x), the infimum of all positive eigenvalues for the
p(x)-Laplacian might be zero; see []. This means that there is no principal eigenvalue
for some variable exponent p(x). Even if there exists a principal eigenvalue μ∗, this may
not be isolated because μ∗ is the infimum of all positive eigenvalues. Thus we cannot in-
vestigate the existence of global branches bifurcating from the principal eigenvalue of the
p(x)-Laplacian. However, based on the work of Väth [], global behavior of solutions for
nonlinear problems involving the p(x)-Laplacian was considered in [].
This paper is organized as follows. In Section , we state some basic results for the vari-

able exponent Lebesgue-Sobolev spaces. In Section , some properties of the correspond-
ing integral operators are presented. We will prove the main result on global bifurcation
for problem (B) in Section . Finally, we give an example to illustrate our bifurcation result.

2 Preliminaries
In this section, we state some elementary properties for the variable exponent Lebesgue-
Sobolev spaces which will be used in the next sections. The basic properties of the variable
exponent Lebesgue-Sobolev spaces can be found in [, ].
To make a self-contained paper, we first recall some definitions and basic properties

of the variable exponent Lebesgue spaces Lp(x)(�) and the variable exponent Lebesgue-
Sobolev spacesW ,p(x)(�).

http://www.boundaryvalueproblems.com/content/2014/1/27
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Set

C+(�) =
{
h ∈ C(�) :min

x∈�

h(x) > 
}
.

For any h ∈ C+(�), we define

h+ = sup
x∈�

h(x) and h– = inf
x∈�

h(x).

For any p ∈ C+(�), we introduce the variable exponent Lebesgue space

Lp(x)(�) :=
{
u : u is a measurable real-valued function,

∫
�

∣∣u(x)∣∣p(x) dx <∞
}
,

endowed with the Luxemburg norm

‖u‖Lp(x)(�) = inf

{
λ >  :

∫
�

∣∣∣∣u(x)λ

∣∣∣∣
p(x)

dx ≤ 
}
.

The dual space of Lp(x)(�) is Lp′(x)(�), where /p(x) + /p′(x) = . The variable exponent
Lebesgue spaces are a special case of Orlicz-Musielak spaces treated by Musielak in [].
The variable exponent Sobolev spaceW ,p(x)(�) is defined by

W ,p(x)(�) =
{
u ∈ Lp(x)(�) : |∇u| ∈ Lp(x)(�)

}
,

where the norm is

‖u‖W ,p(x)(�) = ‖u‖Lp(x)(�) + ‖∇u‖Lp(x)(�). (.)

Definition . The exponent p(·) is said to be log-Hölder continuous if there is a constant
C such that

∣∣p(x) – p(y)
∣∣ ≤ C

– log |x – y| (.)

for every x, y ∈ � with |x – y| ≤ /.

Without additional assumptions on the exponent p(x), smooth functions are not dense
in the variable exponent Sobolev spaces. Thiswas considered byZhikov [] in connection
with Lavrentiev phenomenon. The importance of this above notion relies on the follow-
ing fact: if p(x) is log-Hölder continuous, then C∞

 (�) is dense in the variable exponent
Sobolev spacesW ,p(x)(�) (see [, ]).

Lemma . ([, ]) The space Lp(x)(�) is a separable, uniformly convex Banach space,
and its conjugate space is Lp′(x)(�), where /p(x) + /p′(x) = . For any u ∈ Lp(x)(�) and
v ∈ Lp′(x)(�), we have

∣∣∣∣
∫

�

uvdx
∣∣∣∣ ≤

(

p–

+


(p′)–

)
‖u‖Lp(x)(�)‖v‖Lp′(x)(�) ≤ ‖u‖Lp(x)(�)‖v‖Lp′(x)(�).

http://www.boundaryvalueproblems.com/content/2014/1/27
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Lemma . ([]) Denote

ρ(u) =
∫

�

|u|p(x) dx for all u ∈ Lp(x)(�).

Then
() ρ(u) >  (= ; < ) if and only if ‖u‖Lp(x)(�) >  (= ; < ), respectively;
() If ‖u‖Lp(x)(�) > , then ‖u‖p–Lp(x)(�) ≤ ρ(u) ≤ ‖u‖p+Lp(x)(�);
() If ‖u‖Lp(x)(�) < , then ‖u‖p+Lp(x)(�) ≤ ρ(u)≤ ‖u‖p–Lp(x)(�).

Lemma . ([]) Let q ∈ L∞(�) be such that  ≤ p(x)q(x) ≤ ∞ for almost all x ∈ �. If
u ∈ Lq(x)(�) with u 
= , then
() If ‖u‖Lp(x)q(x)(�) > , then ‖u‖q–Lp(x)q(x)(�) ≤ ‖|u|q(x)‖Lp(x)(�) ≤ ‖u‖q+Lp(x)q(x)(�);
() If ‖u‖Lp(x)q(x)(�) < , then ‖u‖q+Lp(x)q(x)(�) ≤ ‖|u|q(x)‖Lp(x)(�) ≤ ‖u‖q–Lp(x)q(x)(�).

Lemma . ([]) Let p ∈ C+(�) satisfy the log-Hölder continuity condition (.). Then,
for u ∈W ,p(·)

 (�), the p(·)-Poincaré inequality

‖u‖Lp(x)(�) ≤ C‖∇u‖Lp(x)(�)

holds, where the positive constant C depends on p and �.

Lemma . ([]) Let � ⊂ R
N be an open, bounded set with Lipschitz boundary and p ∈

C+(�) with  < p– ≤ p+ < ∞ satisfy the log-Hölder continuity condition (.). If q ∈ L∞(�)
with q– >  satisfies

q(x)≤ p∗(x) :=

⎧⎨
⎩

Np(x)
N–p(x) if N > p(x),

+∞ if N ≤ p(x),
(.)

for all x ∈ �, then we have

W ,p(x)(�) ↪→ Lq(x)(�)

and the imbedding is compact if infx∈�(p∗(x) – q(x)) > .

3 Properties of the integral operators
In this section, we shall give some properties of the integral operators corresponding to
problem (B) by applying the basic properties of the spaces Lp(x)(�) and W ,p(x)(�) which
were given in the previous section.
Throughout this paper, let p ∈ C+(�) satisfy the log-Hölder continuity condition (.)

and X :=W ,p(x)
 (�) with the norm

‖u‖X = inf

{
λ >  :

∫
�

∣∣∣∣∇u(x)
λ

∣∣∣∣
p(x)

dx≤ 
}
,

which is equivalent to norm (.) due to Lemma ..

http://www.boundaryvalueproblems.com/content/2014/1/27
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Denote

� =
{
x ∈ � :  < p(x) < 

}
, � =

{
x ∈ � : p(x) ≥ 

}
.

(We allow the case that one of these sets is empty.) Then it is obvious that � = � ∪ �.
We assume that
(HJ) φ : � × [,∞)→ [,∞) satisfies the following conditions: φ(·,η) is measurable

on � for all η ≥  and φ(x, ·) is locally absolutely continuous on [,∞) for almost
all x ∈ �.

(HJ) There are a function a ∈ Lp′(x)(�) and a nonnegative constant b such that

∣∣φ(
x, |v|)v∣∣ ≤ a(x) + b|v|p(x)–

for almost all x ∈ � and for all v ∈ R
N .

(HJ) There exists a positive constant c such that the following conditions are satisfied
for almost all x ∈ �:

φ(x,η)≥ cηp(x)– and η
∂φ

∂η
(x,η) + φ(x,η)≥ cηp(x)– (.)

for almost all η ∈ (, ). If x ∈ �, then condition (.) holds for almost all
η ∈ (,∞), and if x ∈ �, then assume for almost all η ∈ (,∞) instead

φ(x,η)≥ c and η
∂φ

∂η
(x,η) + φ(x,η) ≥ c. (.)

Let 〈·, ·〉 denote the usual of X and its dual X∗ or the Euclidean scalar product on R
N ,

respectively. Under hypotheses (HJ) and (HJ), we define an operator J : X → X∗ by

〈
J(u),ϕ

〉
=

∫
�

〈
φ
(
x,

∣∣∇u(x)
∣∣)∇u(x),∇ϕ(x)

〉
dx (.)

for all ϕ ∈ X.
The following estimate is a starting point for obtaining that the operator J is a homeo-

morphism. When p(x) is constant, this is a particular form of Corollary . in [] which
is based on Lemma . in []; see [, Lemma ]. In fact, the special case that φ is inde-
pendent of x is considered in []. The proof of the following proposition is essentially the
same as that in []. For convenience, we give the proof.

Proposition . Let (HJ) and (HJ) be satisfied. Then the following estimate

〈
φ
(
x, |u|)u – φ

(
x, |v|)v,u – v

〉

≥
⎧⎨
⎩
cmin{, (|u| + |v|)p(x)–}|u – v| if x ∈ � and (u, v) 
= (, ),

–p+c|u – v|p(x) if x ∈ �
(.)

holds for all u, v ∈R
N , where c is the positive constant from (HJ).

http://www.boundaryvalueproblems.com/content/2014/1/27
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Proof Let u, v ∈ R
N with (u, v) 
= (, ). Let ψi(x,u) = φ(x, |u|)ui for i = , . . . ,N and set η =

|u|. Observe that

N∑
i,j=

∂ψi(x,u)
∂uj

wiwj =

η

∂φ

∂η
(x,η)

N∑
i,j=

wiuiwjuj + φ(x,η)
N∑
i=

w
i

=

η

∂φ

∂η
(x,η)〈w,u〉 + φ(x,η)|w|

= |w|
(

η
∂φ

∂η
(x,η)

〈
w
|w| ,

u
η

〉
+ φ(x,η)

)

for all u,w ∈ R
N \ {}. We assume that x ∈ �. Setting λ = 〈w/|w|,u/η〉, it follows from

(.) that

λ

(
η
∂φ

∂η
(x,η)

)
+ φ(x,η) = ( – λ)φ(x,η) + λ

(
η
∂φ

∂η
(x,η) + φ(x,η)

)

≥ c|u|p(x)–,

and so

N∑
i,j=

∂ψi(x,u)
∂uj

wiwj ≥ c|u|p(x)–|w|. (.)

Noticing that

ψi(x,u) –ψi(x, v) =
∫ 



N∑
j=

∂ψi(x,u)
∂uj

(uj – vj)dt, (.)

where u = v + t(u – v), we have by (.) and (.) that

〈
φ
(
x, |u|)u – φ

(
x, |v|)v,u – v

〉
=

N∑
i=

(
ψi(x,u) –ψi(x, v)

)
(ui – vi)

=
∫ 



N∑
i,j=

∂ψi

∂uj

(
x, v + t(u – v)

)
(uj – vj)(ui – vi)dt

≥
∫ 


c
∣∣v + t(u – v)

∣∣p(x)–|u – v| dt.

Without loss of generality, we may suppose that |u| ≤ |v|. Then we obtain, for all t ∈
[, /],

∣∣v + t(u – v)
∣∣ ≥ |v| – 


|u – v| ≥ 


|u – v|

and

〈
φ
(
x, |u|)u – φ

(
x, |v|)v,u – v

〉 ≥
∫ 


c
∣∣v + t(u – v)

∣∣p(x)–|u – v| dt

≥ –p+c|u – v|p(x).

http://www.boundaryvalueproblems.com/content/2014/1/27
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Now assume that x ∈ �. As before, we obtain from (.) and (.) that

N∑
i,j=

∂ψi(x,u)
∂uj

wiwj ≥ cmin
{
, |u|p(x)–}|w|

for u,w ∈R
N \ {}. Using the fact that |tu + ( – t)v| ≤ |u| + |v|, we get

〈
φ
(
x, |u|)u – φ

(
x, |v|)v,u – v

〉
=

∫ 



N∑
i,j=

∂ψi

∂uj

(
x, v + t(u – v)

)
(uj – vj)(ui – vi)dt

≥
∫ 


cmin

{
,

∣∣v + t(u – v)
∣∣p(x)–}|u – v| dt

≥ cmin
{
,

(|u| + |v|)p(x)–}|u – v|.

This completes the proof. �

From Proposition ., we can obtain the following result.

Theorem. Assume that (HJ)-(HJ) hold.Then the operator J : X → X∗ is a continuous,
bounded, strictly monotone and coercive on X .

Proof In view of (HJ) and (HJ), the superposition operator

�(u)(x) := φ
(
x,

∣∣u(x)∣∣)u(x)
acts from Lp(x)(�,RN ) into Lp′(x)(�,RN ) and is continuous; see Corollary .. in [].
Hence the continuity of J follows from the fact that J is the composition of the continuous
map ∇ : X → Lp(x)(�,RN ), the map � and the bounded linear map D : Lp′(x)(�,RN )→ X∗

given by

〈Dv,w〉 =
∫

�

〈
v(x),∇w(x)

〉
dx.

Hence the operator J is bounded and continuous on X.
For any u in X with ‖u‖X > , it follows from (HJ) that

〈
J(u),u

〉 ≥ C‖u‖p–X

for some positive constant C. Thus we get that

〈J(u),u〉
‖u‖X → ∞

as ‖u‖X → ∞ and therefore the operator J is coercive on X.
Next we will show that the operator J is strictly monotone on X. Set

p = inf
x∈�

p(x), p = sup
x∈�

p(x)

http://www.boundaryvalueproblems.com/content/2014/1/27
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and

p = inf
x∈�

p(x), p = sup
x∈�

p(x).

(Of course, if the sets � and � are nonempty, then p = p =  by the continuity of p(x).)
It is clear that

〈
J(u) – J(v),u – v

〉

=
∫

�

〈
φ
(
x,

∣∣∇u(x)
∣∣)∇u(x) – φ

(
x,

∣∣∇v(x)
∣∣)∇v(x),∇u(x) –∇v(x)

〉
dx

=
∫

�

〈
φ
(
x,

∣∣∇u(x)
∣∣)∇u(x) – φ

(
x,

∣∣∇v(x)
∣∣)∇v(x),∇u(x) –∇v(x)

〉
dx

+
∫

�

〈
φ
(
x,

∣∣∇u(x)
∣∣)∇u(x) – φ

(
x,

∣∣∇v(x)
∣∣)∇v(x),∇u(x) –∇v(x)

〉
dx.

To get strict monotonicity of the operator J , without loss of generality, we divide the proof
into two cases.
Case . Let u, v be in X with ‖∇u–∇v‖Lp(x)(�i) >  for i = , . By Proposition ., we have

〈
φ
(
x,

∣∣∇u(x)
∣∣)∇u(x) – φ

(
x,

∣∣∇v(x)
∣∣)∇v(x),∇u(x) –∇v(x)

〉 ≥ –p+c
∣∣∇u(x) –∇v(x)

∣∣p(x)

for almost all x ∈ �. Integrating the above inequality over � and using Lemma ., we
assert that

〈
J(u) – J(v),u – v

〉
=

∫
�

〈
φ
(
x,

∣∣∇u(x)
∣∣)∇u(x) – φ

(
x,

∣∣∇v(x)
∣∣)∇v(x),∇u(x) –∇v(x)

〉
dx

≥ –p+c‖∇u –∇v‖pLp(x)(�)

≥ –p+c‖∇u –∇v‖
p
p
Lp(x)(�)

. (.)

For almost all x ∈ �, by Proposition ., we have

〈
J(u) – J(v),u – v

〉
=

∫
�

〈
φ
(
x,

∣∣∇u(x)
∣∣)∇u(x) – φ

(
x,

∣∣∇v(x)
∣∣)∇v(x),∇u(x) –∇v(x)

〉
dx

≥ c
∫

�

�p(x)–
∣∣∇u(x) –∇v(x)

∣∣ dx, (.)

where �(x) =min{, |∇u(x)| + |∇v(x)|}. From Hölder’s inequality in Lemma ., we obtain
that

∫
�

∣∣∇u(x) –∇v(x)
∣∣p(x) dx

=
∫

�

�
p(x)(–p(x))


(
�
p(x)(p(x)–)


∣∣∇u(x) –∇v(x)

∣∣p(x))dx
≤ 

∥∥�
p(x)(–p(x))


∥∥
L


–p(x) (�)

∥∥�
p(x)(p(x)–)

 |∇u –∇v|p(x)∥∥
L


p(x) (�)

. (.)

http://www.boundaryvalueproblems.com/content/2014/1/27
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The first term on the right-hand side in (.) is calculated by Lemma . as follows:

∥∥�
p(x)(–p(x))


∥∥
L


–p(x) (�)

≤ ‖�‖
p(–p)


Lp(x)(�)

+ ‖�‖
p(–p)


Lp(x)(�)

≤ ∥∥|∇u| + |∇v|∥∥ p(–p)


Lp(x)(�)
+

∥∥|∇u| + |∇v|∥∥ p(–p)


Lp(x)(�)

≤ (‖∇u‖Lp(x)(�) + ‖∇v‖Lp(x)(�)
) p(–p)

 +
(‖∇u‖Lp(x)(�) + ‖∇v‖Lp(x)(�)

) p(–p)


for any u, v ∈ X. Since ‖∇u –∇v‖Lp(x)(�) > , we deduce that

∥∥�
p(x)(–p(x))


∥∥
L


–p(x) (�)

≤ 
(‖u‖X + ‖v‖X

) p(–p)
 . (.)

If

∫
�

�p(x)–
∣∣∇u(x) –∇v(x)

∣∣ dx > ,

then it follows from (.), (.), Lemmas . and . that

‖∇u –∇v‖pLp(x)(�)
≤ 

(‖u‖X + ‖v‖X
) p(–p)


∥∥�

p(x)(p(x)–)
 |∇u –∇v|p(x)∥∥

L


p(x) (�)

≤ 
(‖u‖X + ‖v‖X

) p(–p)


(∫
�

�p(x)–
∣∣∇u(x) –∇v(x)

∣∣ dx
) p


.

Hence we deduce that

〈
J(u) – J(v),u – v

〉 ≥ c–

p

(‖u‖X + ‖v‖X
)p–‖∇u –∇v‖

p
p
Lp(x)(�)

≥ c–

p

(‖u‖X + ‖v‖X
) p(p–)

p ‖∇u –∇v‖
p
p
Lp(x)(�)

. (.)

On the other hand, if

∫
�

�p(x)–
∣∣∇u(x) –∇v(x)

∣∣ dx < ,

then the analogous argument implies that

〈
J(u) – J(v),u – v

〉 ≥ C
(‖u‖X + ‖v‖X

) p(p–)
p ‖∇u –∇v‖Lp(x)(�)

(.)

for some positive constant C. From the previous inequalities (.) and (.), we have
that

〈
J(u) – J(v),u – v

〉 ≥ C
(‖u‖X + ‖v‖X

) p(p–)
p ‖∇u –∇v‖

p
p
Lp(x)(�)

, (.)
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where C is a positive constant. Consequently, we obtain by (.) and (.) that

〈
J(u) – J(v),u – v

〉

=
∫

�

〈
φ
(
x,

∣∣∇u(x)
∣∣)∇u(x) – φ

(
x,

∣∣∇v(x)
∣∣)∇v(x),∇u(x) –∇v(x)

〉
dx

≥ C
(‖u‖X + ‖v‖X

) p(p–)
p ‖∇u –∇v‖

p
p
Lp(x)(�)

+ –p+c‖∇u –∇v‖
p
p
Lp(x)(�)

≥ C
(‖u‖X + ‖v‖X

) p(p–)
p ‖∇u –∇v‖

p
p
Lp(x)(�)

≥ C
(‖u‖X + ‖v‖X

) p(p–)
p ‖u – v‖

p
p
X

for some positive constants C and C.
Case . Let u, v be inX with ‖∇u–∇v‖Lp(x)(�i) <  for i = ,  and (u, v) 
= (, ). For almost

all x ∈ �, the following inequality holds:

(|∇u| + |∇v|)p(x)–|∇u –∇v| ≤ |∇u –∇v|p(x). (.)

From the above relation (.) and Lemmas . and ., we obtain that

∫
�

|∇u –∇v|p(x) dx

=
∫

�

(|∇u| + |∇v|) p(x)(–p(x))


((|∇u| + |∇v|) p(x)(p(x)–)
 |∇u –∇v|p(x))dx

≤ 
∥∥(|∇u| + |∇v|) p(x)(–p(x))


∥∥
L


–p(x) (�)

∥∥(|∇u| + |∇v|) p(x)(p(x)–)
 |∇u –∇v|p(x)∥∥

L


p(x) (�)

≤ 
(‖∇u‖Lp(x)(�) + ‖∇v‖Lp(x)(�)

)α

×
(∫

�

(|∇u| + |∇v|)p(x)–|∇u –∇v| dx
) p


, (.)

where α is either p(–p)
 or p(–p)

 . Since (|∇u|+ |∇v|)p(x)–|∇u–∇v| ≤ �p(x)–|∇u–∇v|,
we assert by (.) and Proposition . that

‖∇u –∇v‖pLp(x)(�)
≤ 

(‖u‖X + ‖v‖X
)α

(∫
�

�p(x)–|∇u –∇v| dx
) p


,

and so

〈
J(u) – J(v),u – v

〉 ≥ c–

p

(‖u‖X + ‖v‖X
)– α

p ‖∇u –∇v‖
p
p
Lp(x)(�)

(.)

for almost all x ∈ �. For almost all x ∈ �, Proposition . yields the following estimate:

〈
J(u) – J(v),u – v

〉 ≥ –p+c‖∇u –∇v‖pLp(x)(�)
. (.)
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Kim Boundary Value Problems 2014, 2014:27 Page 11 of 20
http://www.boundaryvalueproblems.com/content/2014/1/27

Consequently, it follows from (.) and (.) that

〈
J(u) – J(v),u – v

〉

≥ c–

p

(‖u‖X + ‖v‖X
)– α

p ‖∇u –∇v‖
p
p
Lp(x)(�)

+ –p+c‖∇u –∇v‖pLp(x)(�)

≥ Cmin
{
c–


p

(‖u‖X + ‖v‖X
)– α

p , –p+c
}‖u – v‖max { pp

,p}
X (.)

for some constant C > . This completes the proof. �

Using the previous result, we show the topological property of the operator J which will
be needed in the main result of the next section.

Lemma . If (HJ), (HJ) and (HJ) hold, then J : X → X∗ is a homeomorphism onto X∗.

Proof From Theorem ., we see that J : X → X∗ is strictly monotone and coercive. The
Browder-Minty theorem hence implies that the inverse operator J– : X∗ → X exists and is
bounded; see Theorem .A. in []. For each h ∈ X∗, let (hn) be any sequence in X∗ that
converges to h in X∗. Set un = J–(hn) and u = J–(h) with ‖un – u‖X < . We obtain from
(.) that

‖un – u‖X ≤ C
– 

β

 min
{
c–


p

(‖un‖X + ‖u‖X
)– α

p , –p+c
}– 

β
∥∥J(un) – J(u)

∥∥ 
β

X∗ ,

where β = max { pp
,p}. Since {un : n ∈ N} is bounded in X and J(un) → J(u) in X∗ as

n → ∞, it follows that (un) converges to u in X. Thus, J– is continuous at each h ∈ X∗.
This completes the proof. �

The main idea in obtaining our bifurcation result is to study the asymptotic behavior
of the integral operator J and then to deduce a spectral result for operators that are not
necessarily homogeneous. To do this, we consider a function φp(·) :�×R

N →R
N defined

by

φp(x)(x, v) := |v|p(x)–v

and an operator Jp(·) : X → X∗ defined by

〈
Jp(·)(u),ϕ

〉
:=

∫
�

〈
φp(x)

(
x,∇u(x)

)
,∇ϕ(x)

〉
dx

for all ϕ ∈ X.
To discuss the asymptotic behavior of J , we require the following hypothesis.
(HJ) For each ε > , there is a functionM ∈ Lp(x)(�) such that for almost all x ∈ � the

following holds:

|φ(x, |v|)v – φp(x)(x, v)|
|v|p–– ≤ ε

for all v ∈R
N with |v| > |M(x)|.
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Now we can show that the operators J and Jp(·) are asymptotic at infinity, as in Proposi-
tion . of [].

Proposition . Assume that (HJ), (HJ) and (HJ) are fulfilled. Then we have

lim‖u‖X→∞
‖J(u) – Jp(·)(u)‖X∗

‖u‖p––X
= .

Proof Given ε > , choose an M ∈ Lp(x)(�) such that for almost all x ∈ � the following
holds:

∣∣φ(
x, |v|)v – φp(x)(x, v)

∣∣ ≤ ε|v|p––

for all v ∈R
N with |v| > |M(x)|. We have by (HJ) that for almost all x ∈ � the estimate

∣∣φ(
x, |v|)v – φp(x)(x, v)

∣∣ ≤ a(x) + (b + )
∣∣M(x)

∣∣p(x)–

holds for all v ∈R
N with |v| ≤ |M(x)|. Set

αM(x) = a(x) + (b + )
∣∣M(x)

∣∣p(x)–.
Then αM belongs to Lp′(x)(�) and for almost all x ∈ �, the estimate

∣∣φ(
x, |v|)v – φp(x)(x, v)

∣∣ ≤max
{∣∣αM(x)

∣∣, ε|v|p––}

holds for all v ∈R
N . From Hölder’s inequality, we have that

∣∣〈J(u) – Jp(·)(u),ϕ
〉∣∣ =

∣∣∣∣
∫

�

〈
φ
(
x,

∣∣∇u(x)
∣∣)∇u(x) – φp(x)

(
x,∇u(x)

)
,∇ϕ(x)

〉
dx

∣∣∣∣
≤ 

∥∥φ
(
x, |∇u|)∇u – φp(x)(x,∇u)

∥∥
Lp′(x)(�)‖∇ϕ‖Lp(x)(�)

for all ϕ ∈ X, and hence for each u ∈ X, we obtain by Minkowski’s inequality and the fact
thatW ,p(x)

 (�) ↪→W ,p–
 (�) that

∥∥J(u) – Jp(·)(u)
∥∥
X∗ = sup

‖ϕ‖X≤

∣∣〈J(u) – Jp(·)(u),ϕ
〉∣∣

≤ 
(∥∥φ

(
x, |∇u|)∇u – φp(x)(x,∇u)

∥∥
Lp′(x)(�)

)

≤ 
(‖αM‖Lp′(x)(�) + ε

∥∥|∇u|p––∥∥Lp′(x)(�)

)

≤ 
(‖αM‖Lp′(x)(�) + εC

∥∥|∇u|p––∥∥L(p′)+ (�)

)

≤ 
(

‖αM‖Lp′(x)(�) + εC

(∫
�

|∇u|p– dx
) p––

p–
)

≤ 
(‖αM‖Lp′(x)(�) + εC‖u‖p––

W ,p–
 (�)

)

≤ 
(‖αM‖Lp′(x)(�) + εC‖u‖p––X

)

http://www.boundaryvalueproblems.com/content/2014/1/27
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for some positive constants C and C. From

‖J(u) – Jp(·)(u)‖X∗

‖u‖p––X
≤ 

(‖αM‖Lp′(x)(�)

‖u‖p––X
+ εC

)
,

the conclusion follows, because the right-hand side of the inequality tends to ε as
‖u‖X → ∞. This completes the proof. �

Next we deal with the properties for the superposition operator induced by the function
f in (B). In particular, we give the compactness of this operator and the behavior of that at
infinity, respectively. The ideas of the proof about these properties are completely the same
as in []. We assume that the variable exponents are subject to the following restrictions:

⎧⎨
⎩
p∗(x) := Np(x)

N–p(x) ,q(x) ∈ ( Np(x)
Np(x)–N+p(x) ,∞) if N > p(x),

p∗(x),q(x) ∈ (,∞) arbitrary if N ≤ p(x)

for almost all x ∈ �. Assume that
(F) f :R× � ×R×R

N →R satisfies the Carathéodory condition in the sense that
f (λ, ·,u, v) is measurable for all (λ,u, v) ∈R×R×R

N and f (·,x, ·, ·) is continuous
for almost all x ∈ �.

(F) For each bounded interval I ⊂R, there are a function aI ∈ Lq(x)(�) and a
nonnegative constant bI such that

∣∣f (λ,x,u, v)∣∣ ≤ aI(x) + bI
(|u| p

∗(x)
q(x) + |v| p(x)q(x)

)

for almost all x ∈ � and all (λ,u, v) ∈ I ×R×R
N .

(F) There exist a function a ∈ Lp′(x)(�) and a locally bounded function b : [,∞) →R

with limr→∞ b(r)/r =  such that

∣∣f (,x,u, v)∣∣ ≤ a(x) +
[
b
(|u| + |v|)]p––

for almost all x ∈ � and all (u, v) ∈R×R
N .

Under assumptions (F) and (F), we can define an operator F :R×X → X∗ by

〈
F(λ,u), v

〉
=

∫
�

f
(
λ,x,u(x),∇u(x)

)
v(x)dx (.)

and an operator G : X → X∗ by

〈
G(u), v

〉
=

∫
�

∣∣u(x)∣∣p(x)–u(x)v(x)dx (.)

for all v ∈ X.
In proving the following result, a key idea is to use a continuity result on the superposi-

tion operators due to Väth []. For the case that p(x) is a constant function, it has been
proved in [].
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Lemma . If (F) and (F) hold, then F :R×X → X∗ is continuous and compact.More-
over, the operator G : X → X∗ is continuous and compact.

Proof A linear operator I :R×X →R× Lp∗(x)(�)× Lp(x)(�,RN ) defined by

I(λ,u) := (λ,u,∇u) for (λ,u) ∈R×X

is clearly bounded because ‖u‖Lp∗(x)(�) ≤ C‖u‖X for some positive constant C. Set Y :=
R× Lp∗(x)(�)× Lp(x)(�,RN ). Define the superposition operator � : Y → Lq(x)(�) by

�(λ,u, v)(x) := f
(
λ,x,u(x), v(x)

)
.

If I is a bounded interval in R and aI ∈ Lq(x)(�) and bI ∈ [,∞) are chosen from (F), then
� is bounded because

∫
�

∣∣�(λ,u, v)
∣∣q(x) dx

≤
∫

�

(
max

{|aI |,bI |u| p
∗(x)
q(x) ,bI |v|

p(x)
q(x)

})q(x) dx

≤ q+
(∫

�

[|aI | + bI |u| p
∗(x)
q(x) + bI |v|

p(x)
q(x)

]q(x) dx
)

≤ q+
(∫

�

|aI |q(x) dx + ( + bI)q+
∫

�

|u|p∗(x) dx + ( + bI)q+
∫

�

|v|p(x) dx
)
.

Since Y is a generalized ideal space and Lq(x)(�) is a regular ideal space (since Lq(x)(�)
satisfies �-condition), Theorem . of [] implies that � is continuous on Y . Recalling
the fact that the conjugate function of q(x) is strictly less than p∗(x), we knowby Lemma.
that the embedding I : X ↪→ Lq′(x)(�) is continuous and compact and so is the adjoint
operator I∗ : Lq(x)(�)→ X∗ given by

〈
I∗ (u),ϕ

〉
=

∫
�

uϕ dx

for any ϕ ∈ X. From the relation F = I∗ ◦�◦ I, it follows that F is continuous and compact.
In particular, if we set f (λ,x,u, v) = |u|p(x)–u, then G is continuous and compact. This
completes the proof. �

We observe the behavior of F(, ·) at infinity.

Lemma . Under assumptions (F) and (F), the operator F(, ·) : X → X∗ has the fol-
lowing property:

lim‖u‖X→∞
‖F(,u)‖X∗

‖u‖p––X
= .

Proof Let  < ε <  be arbitrary. Choose a positive constant R such that |b(r)| ≤ εr for all
r ≥ R. Since b is locally bounded, there is a nonnegative constant CR such that |b(r)| ≤ CR
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for all r ∈ [,R]. Let u ∈ X. Set �R = {x ∈ � : |u(x)| + |∇u(x)| ≤ R}. By assumption (F),
Minkowski’s inequality and the fact thatW ,p(x)

 (�) ↪→W ,p–
 (�), we obtain

∥∥f (,x,u(x),∇u(x)
)∥∥

Lp′(x)(�)

≤ ‖a‖Lp′(x)(�) +
∥∥b(|u| + |∇u|)p––∥∥Lp′(x)(�)

≤ ‖a‖Lp′(x)(�) +C
∥∥b(|u| + |∇u|)p––∥∥L(p′)+ (�)

≤ ‖a‖Lp′(x)(�) +C
(∫

�

∣∣b(∣∣u(x)∣∣ + ∣∣∇u(x)
∣∣)∣∣p– dx

) 
(p′)+

≤ ‖a‖Lp′(x)(�) +C
(∫

�R

(CR)p– dx
) p––

p–
+C

(∫
�\�R

εp–
(∣∣u(x)∣∣ + ∣∣∇u(x)

∣∣)p– dx
) p––

p–

≤ ‖a‖Lp′(x)(�) +C
(
Cp–
R meas(�R)

) p––
p– + p––εp––C‖u‖p––

W ,p–
 (�)

≤ ‖a‖Lp′(x)(�) +C
(
Cp–
R meas(�R)

) p––
p– + p––εp––C‖u‖p––X

for all u ∈ X, where C are some positive constants. It follows fromHölder’s inequality that

∣∣〈F(,u),ϕ〉∣∣ ≤ 
∥∥f (,x,u(x),∇u(x)

)∥∥
Lp′(x)(�)‖ϕ‖Lp(x)(�)

≤ C
(‖a‖Lp′(x)(�) +

(
Cp–
R meas(�R)

) p––
p– + p––εp––‖u‖p––X

)‖ϕ‖X

for all u,ϕ ∈ X. Therefore, we get

lim‖u‖X→∞
‖F(,u)‖X∗

‖u‖p––X
= . �

Recall that a real number μ is called an eigenvalue of (E) if the equation

Jp(·)(u) = μG(u)

has a solution u in X that is different from the origin.
Now we consider the following spectral result for nonhomogeneous operators. When

p(x) is a constant function, the following assertion has been shown to hold by virtue of the
Furi-Martelli-Vignoli spectrum; see Theorem  of [] or Lemma  of [].

Lemma . If μ is not an eigenvalue of (E), we have

lim inf‖u‖X→∞
‖J(u) –μG(u)‖X∗

‖u‖p––X
> .

Proof Suppose that

lim inf‖u‖X→∞
‖J(u) –μG(u)‖X∗

‖u‖p––X
= .
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Choose an unbounded sequence (un) in X with ‖un‖X >  such that

‖J(un) –μG(un)‖X∗

‖un‖p––X
→  as n→ ∞. (.)

Set vn = un/‖un‖X for n ∈N. Then we have

∥∥Jp(·)(vn) –μG(vn)
∥∥
X∗ ≤ ‖Jp(·)(un) – J(un)‖X∗

‖un‖p––X
+

‖J(un) –μG(un)‖X∗

‖un‖p––X
.

Hence it follows from Proposition . and (.) that

∥∥Jp(·)(vn) –μG(vn)
∥∥
X∗ →  as n→ ∞. (.)

By the compactness ofG, wemay assume thatG(vn) converges to some pointw ∈ X∗. From
(.) it follows that Jp(·)(vn)→ μw as n → ∞. Put v := J–p(·)(μw). Since Jp(·) is a homeomor-
phism (see Theorem . in []), we get that v 
=  and vn → v as n→ ∞ and so

∥∥Jp(·)(v) –μG(v)
∥∥
X∗ ≤ ∥∥Jp(·)(v) – Jp(·)(vn)

∥∥
X∗ +

∥∥Jp(·)(vn) –μG(vn)
∥∥
X∗

+
∥∥μG(vn) –μG(v)

∥∥
X∗ →  as n→ ∞.

We conclude that μ is an eigenvalue of (E). This completes the proof. �

4 Main result
In this section, we are preparing to prove our main result. First we give the definition of
weak solutions for our problem.

Definition . A weak solution of (B) is a pair (λ,u) in R×X such that

J(u) –μG(u) = F(λ,u) in X∗,

where J , F and G are defined by (.), (.) and (.), respectively.

The following result about the existence of an unbounded branch of solutions for non-
linear operator equations is taken from Theorem . of [] (see also []) as a key tool in
obtaining our bifurcation result.

Lemma . Let X be a Banach space and Y be a normed space. Suppose that J : X → Y
is a homeomorphism and G : X → Y is a continuous and compact operator such that the
composition J– ◦ (–G) is odd. Let F :R×X → Y be a continuous and compact operator. If
the set

⋃
t∈[,]

{
u ∈ X : J(u) +G(u) = tF(,u)

}

is bounded, then the set

{
(λ,u) ∈R×X : J(u) +G(u) = F(λ,u)

}

has an unbounded connected set C ⊆ (R \ {})×X such that C intersects {} ×X.
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Proof Since J– ◦ (–G) is odd, Borsuk’s theorem implies that the condition

deg
(
I –

(
J– ◦ (–G)),Br , 

) 
= 

is satisfied for all sufficiently large r > , where I is the identity operator on X and Br is the
open ball in X centered at  of radius r, respectively. In view of Theorem . of [], the
conclusion holds. �

Based on the above lemma, we now can prove the main result on bifurcation result for
problem (B).

Theorem . Suppose that conditions (HJ)-(HJ) and (F)-(F) are satisfied. If μ is not
an eigenvalue of (E), then there is an unbounded connected set C ⊆ (R \ {})×X such that
every point (λ,u) in C is a weak solution of the above problem (B) and C intersects {}×X.

Proof Apply Lemma . with X = W ,p(x)
 (�) and Y = X∗. From Lemmas . and . we

know that J : X → X∗ is a homeomorphism, the operators G and F are continuous and
compact, and J– ◦ (μG) is odd. Since μ is not an eigenvalue of (E), Lemmas . and .
imply that for some β > , there is a positive constant R >  such that

∥∥J(u) –μG(u)
∥∥
X∗ > β‖u‖p––X >

∥∥F(,u)∥∥X∗ ≥ ∥∥tF(,u)∥∥X∗

for all u ∈ X with ‖u‖X ≥ R and for all t ∈ [, ]. Therefore, the set

S =
⋃

t∈[,]

{
u ∈ X : J(u) –μG(u) = tF(,u)

}

is bounded. By Lemma ., the set

{
(λ,u) ∈R×X : J(u) –μG(u) = F(λ,u)

}

contains an unbounded connected set C which C intersects {} × X. This completes the
proof. �

Finally, we give an example which illustrates an application of our bifurcation result.

Example . Let β ∈ (p– – ,p+], w ∈ L∞(�) and α ∈ Lp(x)/β(�) ∩ L∞(�). Assume that
w(x) ≥ ε >  and there is a real number δ in (, ] such that

δ –  ≤ α(x)≤max

{
(p– – )

β – (p– – )
,

β(p– – )
(β – (p– – ))

– δ

}

for almost all x ∈ �. Let

φ
(
x, |v|) = ω(x)

(
 +

α(x)
 + |v|β

)
|v|p(x)–

for all v ∈ R
N . If μ is not an eigenvalue of (E) and assumptions (F)-(F) are fulfilled, then

there is an unbounded connected set C intersecting {} × X such that every point (λ,u)
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in C is a weak solution of the nonlinear equation

⎧⎨
⎩
–div(φ(x, |∇u|)∇u) = μ|u|p–u + f (λ,x,u,∇u) in �,

u =  on ∂�.

Proof Putting λ(x) := (p(x) – )/β , we claim that

|α(x)|
 + |v|β |v|p(x)– ≤ |α(x)|λ(x)

λ–
+

|v|p(x)–
 – λ+

(
v ∈R

N)
.

If v = , the inequality is clear. Now let v 
= . It follows from Young’s inequality that

|α(x)|
 + |v|β =

|α(x)|
|v|β · |v|β

( + |v|β )

≤ |α(x)|λ(x)
λ–|v|p(x)– +

|v|β(–λ(x))

( – λ+)( + |v|β )–λ(x)

and hence

|α(x)|
 + |v|β |v|p(x)– ≤ |α(x)|λ(x)

λ–
+

|v|β
( – λ+)|v|β(–λ(x))

=
|α(x)|λ(x)

λ–
+

|v|p(x)–
 – λ+

.

Set a(x) = |w(x)|(λ–)–|α(x)|λ(x) and choose c >  such that |w(x)| ≤ c for almost every-
where x ∈ �. Then

∫
�

∣∣a(x)∣∣p′(x) dx =
∫

�

∣∣w(x)∣∣p′(x) · 
λp′(x)
–

· ∣∣α(x)∣∣λ(x)p′(x) dx

≤
(
c
λ–

)(p′)+ ∫
�

∣∣α(x)∣∣ p(x)β dx < ∞, i.e., a ∈ Lp
′(x)(�).

Thus (HJ) and (HJ) are satisfied. Removing some null set from � if necessary, we may
suppose that the hypotheses are satisfied for all x ∈ �. If we put

φ(x,η) = w(x)
(
 +

α(x)
 + ηβ

)
ηp(x)– (η ≥ ),

we observe that the first relation in (.) holds, because α(x) ≥ ε –  and w(x) ≥ ε > .
Moreover, a straightforward calculation shows that for all u > ,


w(x)ηp(x)–

(
η
∂φ

∂η
(x,η) + φ(x,η)

)

≥ (p– – )
(
 +

α(x)
 + ηβ

)
–

α(x)βηβ

( + ηβ )

=
p– – 

( + ηβ )

(
ηβ +

[
 –

(
β

p– – 
– 

)
α(x)

]
ηβ +

[
α(x) + 

])
.
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From an analogous argument in the proof of Corollary . in [], we can show that this
expression is bounded from below by a positive constant which is independent of η > 
and x ∈ �. Therefore (HJ) is satisfied. Finally, (HJ) holds if for each ε >  we choose

M(x) =
∣∣ε–w(x)α(x)∣∣/β

for almost all x ∈ �. �
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