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Abstract
In this paper, we are concerned with the existence of positive solutions of the
semilinear elliptic system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

–�u1 = λ(g11(u1) + g12(u2) + · · · + g1n(un)), x ∈ �,

–�u2 = λ(g21(u1) + g22(u2) + · · · + g2n(un)), x ∈ �,

· · ·
–�un = λ(gn1(u1) + gn2(u2) + · · · + gnn(un)), x ∈ �,

u1(x) = u2(x) = · · · = un(x) = 0, x ∈ ∂�,

where λ > 0 is a parameter, gij : [0,∞)→ [0,∞) is a continuous real function for each
i, j = 1, 2, . . . ,n. Under some appropriate assumptions, we show that the above system
has at least one positive solution in certain interval of λ. The proofs of our main results
are based upon bifurcation theory.
MSC: 34B15; 34B18

Keywords: sublinear elliptic systems; positive solutions; eigenvalues; bifurcation
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1 Introduction
Let � be a bounded smooth domain in R

N (N ≥ ). In this paper, we study the existence
of positive solutions of the semilinear elliptic system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

–�u = λ(g(u) + g(u) + · · · + gn(un)), x ∈ �,
–�u = λ(g(u) + g(u) + · · · + gn(un)), x ∈ �,
· · ·
–�un = λ(gn(u) + gn(u) + · · · + gnn(un)), x ∈ �,
u(x) = u(x) = · · · = un(x) = , x ∈ ∂�,

(.)

where λ >  is a bifurcation parameter, gij : [,∞) → [,∞) is a continuous real function
for each i, j = , , . . . ,n.
A solution of (.) is a pair (λ,U) := (λ, (u,u, . . . ,un)) ∈ (,∞) × [C(�̄)]n. (λ,U) is

called a positive solution of (.) if ui >  in � for each i = , , . . . ,n. In the follow-
ing, (u,u, . . . ,un) also denotes the elements of Rn

+ = {(u,u, . . . ,un) ∈ R
n : ui ≥ , i =

, , . . . ,n}.
The following definitions will be used in the statement of our main results.
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Definition . [] Let fi (i = , , . . . ,n) be smooth real functions defined onR
n
+. Define the

Jacobian of the vector field (f, f, . . . , fn) as

H(u,u, . . . ,un) =

⎛
⎜⎜⎝

∂f
∂u

· · · ∂f
∂un

...
. . .

...
∂fn
∂u

· · · ∂fn
∂un

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
f ′
 · · · f ′

n
...

. . .
...

f ′
n · · · f ′

nn

⎞
⎟⎟⎠ .

If ∂fi
∂uj

≥  (i �= j) for all (u,u, . . . ,un) ∈ R
n
+, then the semilinear elliptic system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

–�u = f(u,u, . . . ,un), x ∈ �,
–�u = f(u,u, . . . ,un), x ∈ �,
· · ·
–�un = fn(u,u, . . . ,un), x ∈ �,
u(x) = · · · = un(x) = , x ∈ ∂�

(.)

is said to be cooperative. Similarly, H is called a cooperative matrix.

Definition . [] An n× nmatrix A is reducible if for some permutation matrix Q,

QAQT =

(
B 
C D

)
,

where B and D are square matrices, and QT is the transpose of Q. Otherwise, A is irre-
ducible.

In the past few years, the existence of positive solutions to sublinear semilinear elliptic
systems with two equations have been extensively studied, see for example, [–] and the
references therein. The sublinear condition plays an important role. Very recently, Wu
and Cui [] considered the existence, uniqueness and stability of positive solutions to the
sublinear elliptic system (.). By using bifurcation theory and the continuation method,
they proved the following.

Theorem A Assume that
(H) Each gij (i, j = , , . . . ,n) is a smooth real function defined on R+ satisfying

gij()≥ .
(H) g ′

ij(s) ≥ , (gij(s)/s)′ ≤  for all s ≥ .
(H) lims→∞

gij(s)
s = .

(i) If at least one of gij() (i = , , . . . ,n) is positive and matrix G = (gij())n×n is
irreducible, then (.) has a unique positive solution U(λ) = (u(λ),u(λ), . . . ,un(λ))
for all λ > ;

(ii) If gij() = , g ′
ij() >  for each i, j = , , . . . ,n and matrix G′ = (g ′

ij())n×n is
irreducible, then for some λ∗ > , (.) has no positive solution when λ ≤ λ∗, and (.)
has a unique positive solution U(λ) = (u(λ),u(λ), . . . ,un(λ)) for λ > λ∗.

Moreover, {(λ,u(λ),u(λ), . . . ,un(λ)) : λ > λ∗} (in the first case, we assume λ∗ = ) is a
smooth curve so that ui(λ) is strictly increasing in λ, and ui(λ)→  as λ → λ+∗ .

http://www.boundaryvalueproblems.com/content/2014/1/28
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We are interested in the existence of positive solutions of (.) under weaker assump-
tions. More concretely, we consider the existence of positive solutions of (.) from the
following two aspects: (a) To obtain the counterpart of Theorem A(ii) under the weaker
assumptions than those of []. In other words, we will not assume that gij (i, j = , , . . . ,n)
are smooth functions any more. (b) Furthermore, we will also consider the case that
lims→

gij(s)
s (i, j = , , . . . ,n) may not exist. More precisely, the following two theorems,

which are the main results of the present paper, shall be proved.

Theorem . Suppose that
(A) gij : [,∞)→ [,∞) (i, j = , , . . . ,n) are continuous real functions satisfying

gij() = ; gij(s) > , s > .

(A) There exist constants gij ∈ (,∞) such that

gij = lim
s→

gij(s)
s

, ∀i, j = , , . . . ,n.

(A) lims→∞
gij(s)
s = , ∀i, j = , , . . . ,n.

If the matrix (gij )n×n is irreducible, then there exists λ̂ >  such that (.) has no positive
solution for λ < λ̂ and (.) has at least one positive solution for λ ≥ λ̂.

Theorem . Let (A) and (A) hold. Assume the following.

(A)′ For each i, j ∈ {, , . . . ,n}, there exist g
ij
, gij ∈ (,∞) such that

g
ij
= lim inf

s→

gij(s)
s

≤ lim sup
s→

gij(s)
s

= gij.

(A) The matrix Jα := (( – α)g
ij
+ αgij)n×n is irreducible, where α ∈ [, ].

Then for some λ̃ > , (.) has at least one positive solution for λ > λ̃.

Remark . It follows from (A) and (A)′ that the matrices (gij )n×n and Jα ,α ∈ [, ] are
all cooperative.

Remark . We note that our assumptions in Theorems . and . are weaker than those
of Theorem A, and, accordingly, our results are weaker than Theorem A. Since we just
suppose that gij is continuous, we can only obtain the continua of positive solutions of
(.) by applying bifurcation techniques, which are not necessarily curves of positive so-
lutions, and thus the uniqueness and stability of positive solutions are not investigated. In
[], the authors obtained a smooth curve consisting of positive solutions of (.) by assum-
ing stronger assumptions, under which the uniqueness and stability of positive solutions
can be achieved.

Remark . For related results, established via bifurcation techniques, for other kind of
problems, we refer the readers to [–] and the references therein.

http://www.boundaryvalueproblems.com/content/2014/1/28
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The rest of the paper is arranged as follows. In Section , we recall some basic knowl-
edges on the maximum principle of cooperative systems as well as the eigenvalues of co-
operative matrices. Finally in Section , we prove our main results Theorems . and .
by applying bifurcation theory.

2 Preliminaries
We shall essentially work in Banach space X = [C(�̄)]n, here

C(�̄) =
{
u ∈ C(�̄) : u(x) = ,x ∈ ∂�

}
.

The norm of U ∈ X will be defined as ‖U‖X =
∑n

l= ‖ul‖, where ‖ · ‖ denotes the norm of
C(�̄). We useW ,p(�) andW ,p

loc (�) for the standard Sobolev space.We useN(L) and R(L)
to denote the null and the range space of a linear operator L, respectively.
Let (λ,U) = (λ, (u,u, . . . ,un)) be a solution of (.). Suppose that gij : [,∞) → [,∞)

(i, j = , , . . . ,n) are smooth real functions. Then we can deduce the eigenvalue problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�ξ + λg ′
ξ + λg ′

ξ + · · · + λg ′
nξn = –μξ, x ∈ �,

�ξ + λg ′
ξ + λg ′

ξ + · · · + λg ′
nξn = –μξ, x ∈ �,

· · ·
�ξn + λg ′

nξ + λg ′
nξ + · · · + λg ′

nnξn = –μξn, x ∈ �,
ξ(x) = ξ(x) = · · · = ξn(x) = , x ∈ ∂�,

(.)

which can be rewritten as

Lu =Hu +μu, (.)

where

u =

⎛
⎜⎜⎝

ξ
...
ξn

⎞
⎟⎟⎠ , Lu =

⎛
⎜⎜⎝
–�ξ
...

–�ξn

⎞
⎟⎟⎠ , H = λ

⎛
⎜⎜⎝
g ′
 · · · g ′

n
...

. . .
...

g ′
n · · · g ′

nn

⎞
⎟⎟⎠ . (.)

Lemma . [, ] Let Y = [W ,p
loc (�)∩C(�̄)]n and Z = [Lp(�)]n with p >N . Suppose that

L,H are given as in (.), andH is cooperative and irreducible.Thenwe have the following:
(a) μ = inf{Re(μ) : μ ∈ spt(L –H)} is a real eigenvalue of L –H , where spt(L –H) is the

spectrum of L –H .
(b) For μ = μ, there exists a unique (up a constant multiple) eigenfunction u ∈ Y , and

u >  in �.
(c) For μ < μ, the equation Lu =Hu +μu + f is uniquely solvable for any f ∈ Z, and

u >  as long as f ≥ .
(d) (Maximum principle) For μ < μ, assume that u ∈ [W ,p

loc (�)∩C(�̄)]n satisfies
Lu≥Hu +μu in �, u≥  on ∂�, then u≥  in �.

(e) If there exists u ∈ [W ,p
loc (�)∩C(�̄)]n satisfying Lu ≥Hu in �, u≥  on ∂�, and

either u �≡  on ∂� or Lu �≡ Hu in �, then μ > .

For the results and proofs, see Proposition . andTheorem . of Sweers [].Moreover,
from a standard compactness argument, there are countably many eigenvalues {μi} of

http://www.boundaryvalueproblems.com/content/2014/1/28
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L – H , and |μi – μ| → ∞ as i → ∞. We notice that μi (i ≥ ) are not necessarily real-
valued.
In this section, we also need to consider the adjoint operator of L–H . Let the transpose

matrix of H be

HT =

⎛
⎜⎜⎝
g ′
 · · · g ′

n
...

. . .
...

g ′
n · · · g ′

nn

⎞
⎟⎟⎠ .

Then it is clear that the results in Lemma . are also true for the eigenvalue problem

Lu∗ =HTu∗ +μu∗,

which is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�ξ ∗
 + λg ′

ξ
∗
 + λg ′

ξ
∗
 + · · · + λg ′

nξ
∗
n = –μξ ∗

 , x ∈ �,
�ξ ∗

 + λg ′
ξ

∗
 + λg ′

ξ
∗
 + · · · + λg ′

nξ
∗
n = –μξ ∗

 , x ∈ �,
· · ·
�ξ ∗

n + λg ′
nξ

∗
 + λg ′

nξ
∗
 + · · · + λg ′

nnξ
∗
n = –μξ ∗

n , x ∈ �,
ξ ∗
 (x) = ξ ∗

 (x) = · · · = ξ ∗
n (x) = , x ∈ ∂�,

(.)

where u∗ = (ξ ∗
 , ξ ∗

 , . . . , ξ ∗
n )T . It is easy to verify that L–HT is the adjoint operator of L–H ,

while both are considered as operators defined on subspaces of [L(�)]n.
The following lemmas are crucial in the proof of our main results.

Lemma . [] Let Y , Z, L and H be the same as in Lemma .. Then the principal eigen-
value μ of L – H is also a real eigenvalue of L – HT , μ = inf{μ ∈ spt(L – HT )}, and for
μ = μ, there exists a unique eigenfunction u∗

 ∈ [W ,
loc (�) ∩ C(�̄)]n of L –HT (up a con-

stant multiple), and u∗
 >  in �.

Lemma . [, Theorem ..] Let n× n matrix A be a nonnegative irreducible matrix.
Then ρ(A) is a simple eigenvalue of A, associated to a positive eigenvector, where ρ(A) de-
notes the spectral radius of A.Moreover, ρ(A) > .

Lemma . [] Let V be a real Banach space. Suppose that

F :R×V → V

is completely continuous and F(λ, ) =  for all λ ∈ R. Let a,b ∈R (a < b) such that u =  is
the isolated solution of the equation

u – F(λ,u) = , u ∈ V . (.)

Furthermore, assume that

d
(
I – F(a, ·),Br(), 

) �= d
(
I – F(b, ·),Br(), 

)
,

http://www.boundaryvalueproblems.com/content/2014/1/28
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where Br() is an isolated neighborhood of trivial solutions. Let

S =
{
(λ,u) : (λ,u) is a solution of (.) and u �= 

} ∪ (
[a,b]× {}).

Then there exists a continuum (i.e., a closed connected set) C of S containing [a,b] × {},
and either

(i) C is unbounded in R×V ; or
(ii) C ∩ [(R\[a,b])× {}] �= ∅.

Finally, let (λ,ϕ) be the principal eigen-pair of the linear eigenvalue problem

{
–�ϕ = λϕ, x ∈ �,
ϕ = , x ∈ ∂�,

(.)

such that ϕ >  in � and ‖ϕ‖ = .

3 Proof of themain results

Proof of Theorem .. We extend each gij to be a nonnegative continuous function, which
is still denoted by gij, defined on R in the following way: if s < , then gij(s)≡ gij().
Let us define

F(λ,U) =

⎛
⎜⎜⎜⎝

�u + λ(g(u) + g(u) + · · · + gn(un))
�u + λ(g(u) + g(u) + · · · + gn(un))

· · ·
�un + λ(gn(u) + gn(u) + · · · + gnn(un))

⎞
⎟⎟⎟⎠ , (.)

where λ ∈ R. Then it follows from (A) that F : R × X → X is continuous, and (λ,U) =
(λ, (, , . . . , )) is always a solution of (.). Moreover, (A) implies that F is differentiable
at (λ,U) = (λ, (, , . . . , )), and

FU
(
λ, (, , . . . , )

)
⎛
⎜⎜⎜⎜⎝

φ

φ
...

φn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

�φ + λ(gφ + gφ + · · · + gnφn)
�φ + λ(gφ + gφ + · · · + gnφn)

· · ·
�φn + λ(gnφ + gnφ + · · · + gnnφn)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

�φ

�φ
...

�φn

⎞
⎟⎟⎟⎟⎠ + λ

⎛
⎜⎜⎜⎜⎝
g g · · · gn
g g · · · gn
...

...
. . .

...
gn gn · · · gnn

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

φ

φ
...

φn

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

�φ

�φ
...

�φn

⎞
⎟⎟⎟⎟⎠ + λJ

⎛
⎜⎜⎜⎜⎝

φ

φ
...

φn

⎞
⎟⎟⎟⎟⎠ , (.)

where J = (gij )n×n. By (A), all entries of J are positive. Therefore Lemma . yields
the result that J has a positive principal eigenvalue χJ , the corresponding eigenvector

http://www.boundaryvalueproblems.com/content/2014/1/28
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(k,k, . . . ,kn)T satisfying ki >  (i = , , . . . ,n). Moreover, it is not difficult to verify that

⎛
⎜⎜⎜⎜⎝
–�(kϕ)
–�(kϕ)

...
–�(knϕ)

⎞
⎟⎟⎟⎟⎠ = λ∗J

⎛
⎜⎜⎜⎜⎝
kϕ

kϕ
...

knϕ

⎞
⎟⎟⎟⎟⎠ , (.)

where λ∗ = λ
χJ
. This implies that (kϕ,kϕ, . . . ,knϕ)T is a positive eigenvector of the op-

erator FU (λ∗, (, , . . . , )). Similarly, JT has the same principal eigenvalue χJ and the cor-
responding eigenvector is (k∗

 , . . . ,k∗
n)T , where k∗

i (i = , , . . . ,n) is a positive constant. Ob-
viously,

⎛
⎜⎜⎜⎜⎝
–�(k∗

ϕ)
–�(k∗

ϕ)
...

–�(k∗
nϕ)

⎞
⎟⎟⎟⎟⎠ = λ∗JT

⎛
⎜⎜⎜⎜⎝
k∗
ϕ

k∗
ϕ
...

k∗
nϕ

⎞
⎟⎟⎟⎟⎠ .

Hence when λ = λ∗ = λ
χJ
, FU (λ∗, (, , . . . , )) is not invertible and λ = λ∗ is a potential bi-

furcation point. More precisely, the null space

N
(
FU

(
λ∗, (, , . . . , )

))
= span

{
(kϕ,kϕ, . . . ,knϕ)T

}
is one dimensional. In addition, it is easy to see that Fλ(λ,U) and FλU (λ, (, , . . . , )) exist
for (λ,U) ∈R×X.
We divide the rest of the proof into two steps.
Step . We show that (λ∗, (, , . . . , )) is actually a bifurcation point.
Indeed, the proof of this is similar to the proof of Theorem A(ii), we state it here for the

readers’ convenience.
Suppose (h,h, . . . ,hn)T ∈ R(FU (λ∗, (, , . . . , ))). Then there exists (ψ,ψ, . . . ,ψn) ∈ X

such that

FU
(
λ∗, (, , . . . , )

)
⎛
⎜⎜⎜⎜⎝

ψ

ψ
...

ψn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

�ψ

�ψ
...

�ψn

⎞
⎟⎟⎟⎟⎠ + λ∗J

⎛
⎜⎜⎜⎜⎝

ψ

ψ
...

ψn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
h
h
...
hn

⎞
⎟⎟⎟⎟⎠ . (.)

Let us consider the adjoint eigenvalue equation

⎛
⎜⎜⎝

�w∗


...
�w∗

n

⎞
⎟⎟⎠ + λ∗JT

⎛
⎜⎜⎝
w∗

...
w∗
n

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�w∗


...
�w∗

n

⎞
⎟⎟⎠ + λ∗

⎛
⎜⎜⎝
g · · · gn
...

. . .
...

gn · · · gnn

⎞
⎟⎟⎠

⎛
⎜⎜⎝
w∗

...
w∗
n

⎞
⎟⎟⎠ = , (.)

where w∗
i = k∗

i ϕ, i = , , . . . ,n. Multiplying the system (.) by (w∗
 ,w∗

, . . . ,w∗
n)T , multiply-

ing the system (.) by (ψ,ψ, . . . ,ψn)T , integrating on � and subtracting, then we obtain

∫
�

n∑
i=

hiw∗
i dx =

∫
�

n∑
i=

k∗
i hiϕ dx = . (.)

http://www.boundaryvalueproblems.com/content/2014/1/28
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Thus (h,h, . . . ,hn)T ∈ R(FU (λ∗, (, , . . . , ))) if and only if (.) holds, which implies that
R(FU (λ∗, (, , . . . , ))) is one dimensional.
Next, we verify that

FλU
(
λ∗, (, , . . . , )

)
⎛
⎜⎜⎝
kϕ
...

knϕ

⎞
⎟⎟⎠ /∈ R

(
FU

(
λ∗, (, , . . . , )

))
. (.)

Otherwise, we have

FλU
(
λ∗, (, , . . . , )

)
⎛
⎜⎜⎝
kϕ
...

knϕ

⎞
⎟⎟⎠ ∈ R

(
FU

(
λ∗, (, , . . . , )

))
. (.)

Since

FλU
(
λ∗, (, , . . . , )

)
⎛
⎜⎜⎝
kϕ
...

knϕ

⎞
⎟⎟⎠ = J

⎛
⎜⎜⎝
k
...
kn

⎞
⎟⎟⎠ϕ = χJ

⎛
⎜⎜⎝
k
...
kn

⎞
⎟⎟⎠ϕ, (.)

multiplying the system (.) by (k∗
ϕ,k∗

ϕ, . . . ,k∗
nϕ)T and using (.), we can get a contra-

diction that

 = χJ ·
∫

�

(
kk∗

 + · · · + knk∗
n
)
ϕ
 dx > .

By using [, Theorem .], we conclude that (λ∗, (, , . . . , )) is a bifurcation point. Fur-
thermore, by the Rabinowitz global bifurcation theorem [], there exists a continuum C+



of positive solutions of (.), which joins (λ∗, (, , . . . , )) to infinity in R×X. Clearly,

C+
 ∩ ({} ×X

)
= ∅, (.)

since (.) has only the trivial solution (, (, , . . . , )) when λ = .
Step : We claim that C+

 cannot blow up at some finite λ∗ ∈ (,∞).
Otherwise, a sequence {(λk ,Uk)} ⊂ C+

 can be taken such that

lim
k→∞

λk = λ∗, lim
k→∞

∥∥Uk∥∥
X =∞, (.)

where Uk = (uk ,uk, . . . ,ukn). Let K : C(�̄) → C(�̄) be the Green operator of –� subject
to Dirichlet boundary conditions, i.e., u = Kv if and only if

{
–�u = v, x ∈ �,
u(x) = , x ∈ ∂�.

http://www.boundaryvalueproblems.com/content/2014/1/28
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By the elliptic regularity, (λk ,Uk) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
uk (x) = λkK [g(uk (x)) + g(uk(x)) + · · · + gn(ukn(x))], x ∈ �,
uk(x) = λkK [g(uk (x)) + g(uk(x)) + · · · + gn(ukn(x))], x ∈ �,
· · ·
ukn(x) = λkk[gn(uk (x)) + gn(uk(x)) + · · · + gnn(ukn(x))], x ∈ �.

(.)

Here gij also denotes theNemytski operator generated by itself. Clearly, (.) is equivalent
to

⎛
⎜⎜⎜⎜⎝
uk
uk
...
ukn

⎞
⎟⎟⎟⎟⎠ = λkK

⎛
⎜⎜⎜⎜⎝
g(uk ) + g(uk) + · · · + gn(ukn)
g(uk ) + g(uk) + · · · + gn(ukn)

...
gn(uk ) + gn(uk) + · · · + gnn(ukn)

⎞
⎟⎟⎟⎟⎠ , (.)

where K = diag(K ,K , . . . ,K). It is well known that K : C(�̄) → C(�̄) is continuous and
compact, and so K is continuous and compact on (,∞)×X.
Let wk

i =
uki

‖Uk‖X (i = , , . . . ,n). Then wk
i >  in � and ‖(wk

 ,wk
, . . . ,wk

n)‖X = . Dividing
both sides of (.) with ‖Uk‖X , we have

⎛
⎜⎜⎜⎜⎝
wk


wk

...
wk
n

⎞
⎟⎟⎟⎟⎠ = λkK

⎛
⎜⎜⎜⎜⎜⎜⎝

g(uk )
‖Uk‖X + g(uk)

‖Uk‖X + · · · + gn(ukn)
‖Uk‖X

g(uk )
‖Uk‖X + g(uk)

‖Uk‖X + · · · + gn(ukn)
‖Uk‖X

...
gn(uk )
‖Uk‖X + gn(uk)

‖Uk‖X + · · · + gnn(ukn)
‖Uk‖X

⎞
⎟⎟⎟⎟⎟⎟⎠
. (.)

For each i, j = , , . . . ,n, from (A) and (A) it follows that gij(s)
s is bounded in [,∞).More-

over, we have

gij(ukj )
‖Uk‖X ≤ gij(ukj )

‖ukj ‖
=
gij(ukj )
ukj

· ukj
‖ukj ‖

. (.)

Therefore,

⎛
⎜⎜⎜⎜⎜⎜⎝

g(uk )
‖Uk‖X + g(uk)

‖Uk‖X + · · · + gn(ukn)
‖Uk‖X

g(uk )
‖Uk‖X + g(uk)

‖Uk‖X + · · · + gn(ukn)
‖Uk‖X

...
gn(uk )
‖Uk‖X + gn(uk)

‖Uk‖X + · · · + gnn(ukn)
‖Uk‖X

⎞
⎟⎟⎟⎟⎟⎟⎠

is bounded in X. This together with the compactness of K implies that {(wk
 ,wk

, . . . ,wk
n)}

has a subsequence, denoted by itself, satisfying, in X,

(
wk
 ,w

k
, . . . ,w

k
n
) → (w̃, w̃, . . . , w̃n), k → ∞.

http://www.boundaryvalueproblems.com/content/2014/1/28
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Obviously, w̃j ≥  (j = , , . . . ,n) in � and ‖(w̃, w̃, . . . , w̃n)‖X = . In addition, we have
λ∗ > . Or else, let k → ∞, then by (.) we get w̃j ≡  (j = , , . . . ,n) in �, which contra-
dicts ‖(w̃, w̃, . . . , w̃n)‖X = .
We define

�+
j =

{
x ∈ � : w̃j(x) > 

}
, �

j =�\�+
j , j = , , . . . ,n. (.)

Then for each j = , , . . . ,n,

ukj (x) = wk
j (x) ·

∥∥Uk∥∥
X → +∞ as k → ∞,x ∈ �+

j ,

by Lebesgue control convergence theorem, we get

gij(ukj (x))
ukj (x)

→  as k → ∞,x ∈ �+
j ,∀i, j = , , . . . ,n,

which together with (.) yields

gij(ukj (x))
‖Uk‖X →  as k → ∞,x ∈ �+

j ,∀i, j = , , . . . ,n. (.)

On the other hand, we know from (A) and (.) that

gij(ukj (x))
‖Uk‖X →  as k → ∞,x ∈ �

j ,∀i, j = , , . . . ,n. (.)

Hence we conclude from (.) and (.) that

gij(ukj (x))
‖Uk‖X →  as k → ∞,x ∈ �,∀i, j = , , . . . ,n. (.)

Now, let k → ∞ in (.), using (.) and the fact that λ∗ >  we can obtain

w̃j(x) =  in �, for all j = , , . . . ,n,

which contradicts ‖(w̃, w̃, . . . , w̃n)‖X = .
Finally, by (.), the connectness of C+

 and above arguments, we can find some λ̂ > 
such that (.) has no positive solution for λ < λ̂, and (.) has at least one positive solution
for λ ≥ λ̂. �

To prove Theorem ., we need the following lemmas as required.
By Remark . and Lemma ., the matrices J = (g

ij
)n×n and J = (gij)n×n have the prin-

cipal eigenvalues χ := ρ(J) >  and χ := ρ(J) > , respectively, and the corresponding
positive eigenvectors are (k ,k , . . . ,kn )T and (k ,k, . . . ,kn)T . Moreover, it is easy to ob-
tain

⎛
⎜⎜⎜⎜⎝

�(k ϕ)
�(kϕ)

...
�(knϕ)

⎞
⎟⎟⎟⎟⎠ +

λ

χ

⎛
⎜⎜⎜⎜⎜⎝

g


g


· · · g
n

g


g


· · · g
n

...
...

. . .
...

g
n

g
n

· · · g
nn

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
k ϕ

kϕ
...

knϕ

⎞
⎟⎟⎟⎟⎠ =  (.)

http://www.boundaryvalueproblems.com/content/2014/1/28
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and

⎛
⎜⎜⎜⎜⎝

�(kϕ)
�(kϕ)

...
�(knϕ)

⎞
⎟⎟⎟⎟⎠ +

λ

χ

⎛
⎜⎜⎜⎜⎝
g g · · · gn
g g · · · gn
...

...
. . .

...
gn gn · · · gnn

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
kϕ

kϕ
...

knϕ

⎞
⎟⎟⎟⎟⎠ = , (.)

where λ is given as in (.). By Lemma ., the matrices(J)T and (J)T have princi-
pal eigenvalues χ and χ, respectively, the associated positive eigenvectors are (k∗

 ,k∗
 ,

. . . ,k∗
n )T and (k∗ ,k∗ , . . . ,k∗n )T . We can easily verify that

⎛
⎜⎜⎜⎜⎝

�(k∗
 ϕ)

�(k∗
 ϕ)
...

�(k∗
n ϕ)

⎞
⎟⎟⎟⎟⎠ +

λ

χ

⎛
⎜⎜⎜⎜⎜⎝

g


g


· · · g
n

g


g


· · · g
n

...
...

. . .
...

g
n

g
n

· · · g
nn

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
k∗
 ϕ

k∗
 ϕ
...

k∗
n ϕ

⎞
⎟⎟⎟⎟⎠ =  (.)

and

⎛
⎜⎜⎜⎜⎝

�(k∗ ϕ)
�(k∗ ϕ)

...
�(k∗n ϕ)

⎞
⎟⎟⎟⎟⎠ +

λ

χ

⎛
⎜⎜⎜⎜⎝
g g · · · gn
g g · · · gn
...

...
. . .

...
gn gn · · · gnn

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
k∗ ϕ

k∗ ϕ
...

k∗n ϕ

⎞
⎟⎟⎟⎟⎠ = . (.)

Let ⊂ (,∞)×X be the closure of the set of positive solutions to (.).We extend each
gij to be a function defined on R by

g̃ij(s) =

{
gij(s), s ∈ [,∞),
gij(), s ∈ (–∞, ),

(.)

then g̃ij(s)≥  on R. Let (λ,U) ∈ (,∞)×X be a solution of

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

–�u = λ(g̃(u) + g̃(u) + · · · + g̃n(un)), x ∈ �,
–�u = λ(g̃(u) + g̃(u) + · · · + g̃n(un)), x ∈ �,
· · ·
–�un = λ(g̃n(u) + g̃n(u) + · · · + g̃nn(un)), x ∈ �,
u(x) = u(x) = · · · = un(x) = , x ∈ ∂�.

(.)

Then by (.), for each i = , , . . . ,n,

ui(x) = λK
[
g̃i

(
u(x)

)
+ g̃i

(
u(x)

)
+ · · · + g̃in

(
un(x)

)] ≥ , x ∈ �,

where K is given as in the proof of Theorem .. Hence (λ,U) is a nonnegative solution
of (.). Moreover, from (.) it follows that (λ,U) is a solution of (.). On the other
hand, (.) has no half-trivial solutions. Otherwise, U must have trivial and nontrivial
components, and so there is a i ∈ {, , . . . ,n} such that ui ≡  in�, and by themaximum

http://www.boundaryvalueproblems.com/content/2014/1/28
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principle of elliptic boundary value problems, we have

 = ui = λK
[
g̃i(u) + g̃i(u) + · · · + g̃in(un)

]
> , x ∈ �,

which is a contradiction. Therefore, the closure of the set of nontrivial solutions of (.)
is exactly .
In the following,we shall apply the Leray-Schauder degree theory,mainly to themapping

�λ : X → X,

�λ(U) =U – λKG(U), (.)

where K is given as in (.), and

G(U)(x) =

⎛
⎜⎜⎜⎜⎝
g̃(u)(x) + g̃(u)(x) + · · · + g̃n(un)(x)
g̃(u)(x) + g̃(u)(x) + · · · + g̃n(un)(x)

...
g̃n(u)(x) + g̃n(u)(x) + · · · + g̃nn(un)(x)

⎞
⎟⎟⎟⎟⎠ , x ∈ �

is the associatedNemytski operator. For R > , let BR = {U ∈ X : ‖U‖X < R}, let d(�λ,BR, )
denote the degree of �λ on BR with respect to .

Lemma . Let � ⊂ R
+ be a compact interval with � ∩ [ λ

χ
, λ

χ
] = ∅. Then there exists a

δ >  such that

�λ(U) �= , ∀U ∈ X,  < ‖U‖X ≤ δ, ∀λ ∈ �.

Proof Suppose on the contrary that there exist sequences {λk} ⊂ � and {Uk} ⊂ X so that

�λk
(
Uk) = , ∀k ∈N, (.)

λk → λ∗ and
∥∥Uk∥∥

X → , k → ∞. (.)

Apparently, (.) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

–�uk = λk(g̃(uk ) + g̃(uk) + · · · + g̃n(ukn)), x ∈ �,
–�uk = λk(g̃(uk ) + g̃(uk) + · · · + g̃n(ukn)), x ∈ �,
· · ·
–�ukn = λk(g̃n(uk ) + g̃n(uk) + · · · + g̃nn(ukn)), x ∈ �,
uk (x) = uk(x) = · · · = ukn(x) = , x ∈ ∂�

(.)

and uki ≥  (i = , , . . . ,n) in�, and therefore g̃ij(ukj ) = gij(ukj ), ∀i, j = , , . . . ,n. Furthermore,
it follows from (A)′ that, for s >  sufficiently small, g

ij
s ≤ gij(s) ≤ gijs. This together with

(.) implies that, for k large enough,

g
ij
· ukj (s)≤ gij

(
ukj (s)

) ≤ gij · ukj (s), ∀i, j = , , . . . ,n. (.)

http://www.boundaryvalueproblems.com/content/2014/1/28
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Multiplying (.) by (k∗
 ϕ,k∗

 ϕ, . . . ,k∗
n ϕ)T , multiplying (.) by (uk ,uk, . . . ,ukn)T , in-

tegrating on � and adding, using (.) and the fact g̃ij(ukj ) = gij(ukj ), ∀i, j = , , . . . ,n, we
know that, for k large enough,

λ

χ

∫
�

n∑
i=

[ n∑
j=

g
ij
k∗
i ukj ϕ

]
dx = λk

∫
�

n∑
i=

[ n∑
j=

gij
(
ukj

)
k∗
i ϕ

]
dx

≥ λk
∫

�

n∑
i=

[ n∑
j=

g
ij
k∗
i ukj ϕ

]
dx, (.)

and so λk ≤ λ
χ

for k sufficiently large. Similarly, by (.) and (.), we can deduce that
λk ≥ λ

χ
for k large enough. Consequently, for k sufficiently largewe get λk ∈ [ λ

χ
, λ

χ
], which

contradicts {λk} ⊂ �. �

Corollary . For λ ∈ (, λ
χ
) and δ ∈ (, δ), d(�λ,Bδ , ) = .

Proof Lemma ., applied to the interval� = [,λ], guarantees the existence of δ >  such
that, for δ ∈ (, δ),

U – τλKG(U) �= , U ∈ X,  < ‖U‖X ≤ δ, τ ∈ [, ].

Hence for any δ ∈ (, δ),

d(�λ,Bδ , ) = d(I,Bδ , ) = . �

Lemma . Suppose that λ > λ
χ
. Then there exists δ >  such that

�λ(U) �= τϕ, ∀U ∈ X :  < ‖U‖X ≤ δ,∀τ ≥ ,

where ϕ = (k ϕ,kϕ, . . . ,knϕ)T .

Proof Suppose on the contrary that there exist τk ≥  and a sequence {Uk}with ‖Uk‖X > 
and ‖Uk‖X →  such that

�λ

(
Uk) = τkϕ, ∀k ∈ N,

which is

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

–�uk = λ(g(uk ) + g(uk) + · · · + gn(ukn)) + λτkk ϕ, x ∈ �,
–�uk = λ(g(uk ) + g(uk) + · · · + gn(ukn)) + λτkkϕ, x ∈ �,
· · ·
–�ukn = λ(gn(uk ) + gn(uk) + · · · + gnn(ukn)) + λτkknϕ, x ∈ �,
uk (x) = uk(x) = · · · = ukn(x) = , x ∈ ∂�.

(.)

Clearly, uki ≥  (i = , , . . . ,n) in �. Multiplying (.) by (uk ,uk, . . . ,ukn)T , multiplying
(.) by ϕ∗ := (k∗

 ϕ,k∗
 ϕ, . . . ,k∗

n ϕ)T , integrating over � and adding, then by (.) we

http://www.boundaryvalueproblems.com/content/2014/1/28
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know that, for k large enough,

λ

χ

∫
�

n∑
i=

[ n∑
j=

g
ij
k∗
i ukj ϕ

]
dx = λ

∫
�

n∑
i=

[ n∑
j=

gij
(
ukj

)
k∗
i ϕ

]
dx + λτk

n∑
i=

ki k
∗
i ϕ



≥ λ

∫
�

n∑
i=

[ n∑
j=

gij
(
ukj

)
k∗
i ϕ

]
dx

≥ λ

∫
�

n∑
i=

[ n∑
j=

g
ij
k∗
i ukj ϕ

]
dx.

Hence λ ≤ λ
χ

for k sufficiently large, which contradicts λ > λ
χ
. �

Corollary . For λ > λ
χ

and δ ∈ (, δ), d(�λ,Bδ , ) = .

Proof Let  < δ ≤ δ, where δ is the constant given as in Lemma .. Since �λ is bounded
in B̄δ , there exists a constant C >  such that �λ(U) �= Cϕ, ∀U ∈ B̄δ . By Lemma ., we get

�λ(U) �= τCϕ, U ∈ ∂Bδ , τ ∈ [, ].

Hence,

d(�λ,Bδ , ) = d(�λ –Cϕ,Bδ , ) = . �

Proof of Theorem .. For n ∈ N such that λ
χ

– 
n > , let an = λ

χ
– 

n , bn =
λ
χ

+ 
n and

δ̂ =min{δ, δ}. For any δ ∈ (, δ̂), it is easy to see that the assumptions of Lemma . are all
satisfied. Therefore there exists a continuum C of solutions of (.) containing [an,bn]×
{}, and either

(i) C is unbounded in R×X ; or
(ii) C ∩ [(R\[an,bn])× {}] �= ∅.
By Lemma ., the case (ii) cannot occur, and hence C is unbounded bifurcated from

[an,bn]×{}. Note that (.) has only trivial solutionswhen λ = , and therefore C∩({}×
X) = ∅. Moreover, from Lemma . it follows that for a closed interval I ⊂ [an,bn]\[ λ

χ
, λ

χ
],

ifU ∈ {U ∈ X : (λ,U) ∈ ,λ ∈ I}, then ‖U‖X →  inX is impossible. Thus Cmust be bifur-
cated from [ λ

χ
, λ

χ
]. Finally, applying similarmethods to the proof of Step  of Theorem .,

we can show that

{
λ : (λ,U) ∈ C

} ⊃
(

λ

χ
,∞

)
.

Consequently, (.) has at least one positive solution for λ > λ̃ := λ
χ
. �
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