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1 Introduction
The theory of minimal surfaces has a long history, originating with the papers of Lagrange
() and the famous Plateau problem; we refer to the classical papers by Calabi [] and
by Cheng and Yau []. Timelike minimal submanifolds may be viewed as simple but non-
trivial examples of D-branes, which play an important role in string theory, and the sys-
tem under consideration here thus has natural generalizations motivated by string theory.
The case of timelike surfaces has been investigated by several authors (see [–] and []).
Huang and Kong [] studied themotion of a relativistic torus in theMinkowski spaceR+n

(n ≥ ). They derived the equations for the motion of relativistic torus in the Minkowski
space R

+n (n ≥ ). This kind of equation also describes the three dimensional timelike
extremal submanifolds in the Minkowski space R

+n. They showed that these equations
can be reduced to a ( + ) dimensional quasilinear symmetric hyperbolic system and the
system possesses some interesting properties, such as nonstrict hyperbolicity, constant
multiplicity of eigenvalues, linear degeneracy of all characteristic fields, and the strong
null condition (see [] and []). They also found and proved the interesting fact that all
plane wave solutions to these equations are lightlike extremal submanifolds and vice versa,
except for a type of special solution. For small initial data with compact support, the global
existence problem for timelikeminimal hypersurfaces has been considered by Brendle []
and Lindblad [].
Paul et al. [] investigated timelike minimal submanifolds of dimension  + n, n≥ , of

Minkowski spacetimes of dimension +n+q, q ≥ . The authors considered an embedding
of R+n into Minkowski spacetime R+n+q given by the graph of a map f :R+n −→ R

q. Let
Greek indices α,β , . . . take values in , , . . . ,n and let uppercase Latin indices I, J , . . . take
values in , . . . ,q. Introduce cartesian coordinates xα on R

+n and xI on R
q. The induced
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metric R+n is

hαβ = ηαβ + f Iα f
J
βδIJ , (.)

where fI = xI ◦ f , f α = ∂αf I and η = diag(, , . . . , ) is the Minkowski metric. By variational
principles (see []), they derived the Euler-Lagrange equations

∂μ

[√
–dethhμν f Iν

]
= , I = , . . . ,q. (.)

Moreover for a small initial value with compact support, they also proved the global exis-
tence of classical solutions for (.).
In this paper, we consider (.) with the initial data

t =  : f I = εf I (x), f It = εf I (x), (.)

where f I (x), f I (x) ∈ C∞(Rn) (n = , ) satisfying

∣∣f I (x)∣∣ ≤ A
( + |x|)k ,

∣∣f I (x)∣∣ ≤ A
( + |x|)k+ (k > , I = , . . . ,q),

where A >  is a constant and ε >  is a small parameter. The aim of this paper is to prove
that the Cauchy problem (.), (.) has a global classical solution, provided that the initial
value f I (x), f I (x) ∈ C∞(Rn) is sufficiently small and satisfy |f I (x)| ≤ A

(+|x|)k , |f I (x)| ≤ A
(+|x|)k+

(k > n
 , I = , . . . ,q). We reduce the restriction on compact support of the initial data to

some decay. In other words, we show the global existence of solutions to timelike minimal
surface in two space dimensions and three space dimensions, provided that the initial
value is suitably small.
To study (.), we note that (.) can be written in divergence form

� f I = ∂μ

[
Fμν f Iν

]
, (.)

where � = ημν∂μ∂ν is the Minkowski wave operator and Fμν = ημν –
√
–dethhμν , as well

as in the form

Hμν
JL (∂f )∂μ∂ν f I = , I = , . . . ,q, (.)

where

Hμν
JL =

√
–deth

[
δJLhμν – δIJδKL

(
hμνhαβ f Kβ f Iβ + hμαhνβ f Iα f

K
β + hμαhνβ f Kα f Iβ

)]
. (.)

We raise and lower Greek (intrinsic) indices using hμν and its inverse, while Latin (ex-
trinsic) indices are raised and lowered using the identity δIJ and its inverse. From (.), it
follows that Hμν

IJ has the symmetries

Hμν
JL =Hμν

LJ =Hνμ
JL . (.)

Due to the symmetries, an energy estimate and local well posedness holds for the system
(.).
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The plan of this paper is as follows. In Section , we cite some estimates and prove some
estimates on the solution of linear wave equations. The global existence of solutions to
timelike minimal surface equations with slow decay initial value in two space dimensions
and three space dimensions will be proved in Section  and Section , respectively.

2 Preliminaries
Following Klainerman [], we introduce a set of partial differential operators

Z =
(
(∂i), i = , , . . . ,n;L; (	ij), ≤ i < j ≤ n; (	i), i = , . . . ,n

)
, (.)

where

∂ =
∂

∂t
, ∂i =

∂

∂xi
(i = , . . . ,n), (.)

L = t∂ +
n∑
i=

xi∂i, (.)

	ij = xi∂j – xj∂i ( ≤ i < j ≤ n) (.)

and

	i = t∂i + xi∂ (i = , . . . ,n). (.)

Zα denotes a product of |α| of the vector fields (.), (.), (.), and (.). α = (α, . . . ,ασ )
is a multi-index, |α| = α + · · · + ασ , σ is the number of partial differential operators in
Z : Z = (Z, . . . ,Zσ ) and

Zα = Zα
 · · ·Zασ

σ . (.)

It is easy to prove Lemma . (see []).

Lemma . For any multi-index α = (α, . . . ,ασ ), we have

[
�,Zα

]
=

∑
|β|≤|α|–

AαβZβ� (.)

and

[
∂i,Zα

]
=

∑
|β|≤|α|–

BαβZβ∂ =
∑

|β|≤|α|–
B̃αβ∂Zβ (i = , , . . . ,n), (.)

where [ , ] stands for the Poisson bracket, β = (β, . . . ,βσ ) are multi-indices, � is the wave
operator, ∂ = (∂, ∂, . . . , ∂n) and Aαβ , Bαβ , and B̃αβ are constants.

We need the following lemma that is basically established in [] and []. For complete-
ness, the proof will also be sketched here.

http://www.boundaryvalueproblems.com/content/2014/1/32
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Lemma . Let φ(x),φ(x) ∈ C∞(R) and satisfy

∣∣φ(x)
∣∣ ≤ A

( + |x|)k ,
∣∣φ(x)

∣∣ ≤ A
( + |x|)k+ (k > ).

Assume that φ = φ(t,x) is a solution to the following Cauchy problem:

{
φtt –	φ = , x ∈R

, t > ,
t =  : φ = φ(x), φt = φ(x), x ∈R

.
(.)

Then we have

∣∣φ(t,x)∣∣ ≤
⎧⎨
⎩

CA
√
+t+|x|(+|t–|x||)k– 


(|x| ≥ t),

CA√
+t+|x|√+|t–|x|| (|x| ≤ t).

(.)

Remark . Under the condition that

∣∣φ(x)
∣∣ ≤ A

( + |x|)k+ ,
∣∣φ(x)

∣∣ ≤ A
( + |x|)k+ (k > ),

Tsutaya [] has showed that the solution of the Cauchy problem (.) satisfies

∣∣φ(t,x)∣∣ ≤ CA√
 + t + |x|√ + |t – |x|| .

Obviously, Lemma . improves the result in [].

Proof The solution of (.) is given

φ(t,x) =


π t

∫
|x–y|≤t

tφ(y) + tφ(y) + t∇φ(y) · (y – x)
(t – |y – x|) 

dy. (.)

First, we make an estimate for | 
π t

∫
|x–y|≤t

φ(y)

(t–|y–x|) 
dy|; switching to polar coordinates,

we have
∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣

≤ A
π t

∫
|x–y|≤t

√
t – |y – x|( + |y|)k dy

≤ A
π t

(∫ t+|x|

|t–|x||
r

( + r)k

∫ ϕ

–ϕ

√
t – |x| – r + r|x| cosψ dψ dr

+ χ
(
t – |x|)∫ t–|x|



r
( + r)k

∫ π

–π

√
t – |x| – r + r|x| cosψ dψ dr

)
, (.)

ϕ = arccos
|x| + r – t

|x|r ,

where x = (|x| cos θ , |x| sin θ ) and y = (r cos(θ +ψ), r sin(θ +ψ)), and χ is the characteristic
function of positive numbers.

http://www.boundaryvalueproblems.com/content/2014/1/32
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Let h(y) be a continuous function on R
 and y = (r cos(θ +ψ), r sin(θ +ψ)). Define

H
(
t, |x|, r, θ ,h) =

⎧⎨
⎩

∫ ϕ

–ϕ

h(r,θ+ψ)√
t–|x|–r+|x|r cosψ dψ , | |x|+r–t

|x|r | ≤ ,∫ π

–π

h(r,θ+ψ)√
t–|x|–r+|x|r cosψ dψ , | |x|+r–t

|x|r | ≥ ,

and

H
(
t, |x|, r) =H

(
t, |x|, r, θ , ),

where, as before, ϕ is given by

ϕ = arccos
|x| + r – t

|x|r .

We will use the following proposition, which is proved in Kovalyov [].

Proposition . (I) If t ≥ |x| + r and | |x|+r–t
|x|r | ≥ , then H(t, |x|, r) satisfies

H
(
t, |x|, r) ≤ C

ln( + r|x|
t–(r+|x|) )√

t – |x| – r
≤ C√

t – (r + |x|) . (.)

(II) If t ≤ |x| + r and | |x|+r–t
|x|r | ≤ , then

H
(
t, |x|, r) ≤ C√

r|x| ln
(
 +

r|x|χ (t – |x|)
(r + |x|) – t

)
, (.)

where χ is the characteristic function of positive numbers.

We next continue tomake an estimate for (.); wemake an estimate for the right-hand
side of (.) by dividing into two cases.
Case . |x| ≥ t.
By (.), we get

∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤ CA

t
√|x|

∫ t+|x|

|x|–t


( + r)k– 

dr. (.)

We subdivide into three cases again.
(i) k > 

 .

CA
t
√|x|

∫ t+|x|

|x|–t


( + r)k– 

dr =

CA
t
√|x|( + |x| – t)k– 



[
 –

(
 + |x| – t
 + |x| + t

)k– 

]
.

Note that

 – sk–

 ≤ C( – s), ∀≤ s ≤ 

http://www.boundaryvalueproblems.com/content/2014/1/32
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and

 –
 + |x| – t
 + |x| + t

=
t

 + |x| + t
.

Thus,
∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤ CA√|x|( + |x| – t)k– 

 ( + |x| + t)

≤ CA√|x| + t( + |x| – t)k– 

. (.)

(ii) k = 
 .

From (.), we have
∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣

≤ CA
t
√|x|

∫ t+|x|

|x|–t


( + r)
dr

=
CA
t
√|x| ln

(
 +

t
 + |x| – t

)
≤ CA√|x|( + |x| – t)

≤ CA√|x| + t( + |x| – t)
. (.)

(iii)  < k < 
 .

It follows from (.) that
∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤ CA

t
√|x|

[(
 + t + |x|) 

 –k –
(
 + |x| – t

) 
 –k

]

=
CA

t
√|x|( + |x| – t)k– 



[(
 + t + |x|
 + |x| – t

) 
 –k

– 
]
.

Note that  < k < 
 ; we get

(
 + t + |x|
 + |x| – t

) 
 –k

–  ≤ Ct
 + |x| – t

.

Hence∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤ CA√|x| + t( + |x| – t)k– 


. (.)

In other words, if |x| ≥ t and t ≥ , from (.)-(.), we get
∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤ CA√

 + |x| + t( + |x| – t)k– 


(k > ). (.)

In what follows, we prove that (.) also holds if  < t <  and |x| ≥ t. In this case, we
also subdivide into two cases.

http://www.boundaryvalueproblems.com/content/2014/1/32
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() |t – |x|| ≤ .
By changing variables, r = |x – y|, we obtain

∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤ 

π t

∫
|x–y|≤t

CA
(t – |y – x|)  ( + |y|)k

dy

≤ CA√
 + t + |x|( + |x| – t)k– 


. (.)

() |t – |x|| > .
Note that  < t <  and |x| ≥ t, thus we obtain |x| > t + . From Cases (i)-(iii), we get

∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤ CA√

 + t + |x|( + |x| – t)k– 

. (.)

In other words, when |x| ≥ t, from (.)-(.), we have

∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤ CA√

 + t + |x|( + |x| – t)k– 

. (.)

Case . |x| ≤ t.
From (.), we get

∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤ I + II, (.)

where

I =
A
π t

∫ t+|x|

t–|x|
H(t, |x|, r)r
( + r)k

and

II =
A
π t

∫ t–|x|



H(t, |x|, r)r
( + r)k

.

In what follows, we make an estimate for I and II , respectively, when t + |x| ≥ .
It follows from (.) that

I ≤ CA
t
√|x|

∫ t+|x|

t–|x|
ln

(
 +

|x|
|x| + r – t

)


( + r)k– 

dr. (.)

By changing variables ξ = |x| + r – t,

I ≤ CA
t
√|x|

∫ |x|


ln

(
 +

|x|
ξ

)


( + ξ + t – |x|)k– 

dξ

≤ CA
t
√|x|( + t – |x|)k– 



∫ |x|


ln

|x|
ξ

dξ

≤ CA√
 + t + |x|( + t – |x|)k– 


. (.)

http://www.boundaryvalueproblems.com/content/2014/1/32
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By (.), we get

II ≤ CA
t

∫ t–|x|



√
t – (|x| + r)( + r)k–

dr

≤ CA
t
√
t + |x|

∫ t–|x|



√
t – |x| – r( + r)k–

dr.

Let ρ =
√
t – |x| – r, then

II ≤ CA
t
√
t + |x|

∫ √
t–|x|




( + t – |x| – ρ)k–

dρ

≤ CA

t
√
t + |x|( + t – |x|) k–

∫ √
t–|x|




(
√
 + t – |x| – ρ)k–

dρ.

In what follows, we make estimate II by dividing into three cases.
(i) k > .

II ≤ CA

t
√
t + |x|( + t – |x|) k–

[


(
√
 + t – |x| –√

t – |x|)k– –


( + t – |x|) k–
]

≤ CA

t
√
t + |x|( + t – |x|) k–

(√
 + t – |x| +√

t – |x|)k–

≤ CA√
 + t + |x|√ + t – |x| .

(ii) k = .

II ≤ CA
t
√
t + |x|√ + t – |x| ln

√
 + t – |x|√

 + t – |x| –√
t – |x| ≤ CA√

 + t + |x|√ + t – |x| .

(iii)  < k < .

II ≤ CA

t
√
t + |x|( + t – |x|) k–

[(
 + t – |x|) –k+

 –
(√

 + t – |x| –√
t – |x|)–k+]

≤ CA√
 + t + |x|√ + t – |x| .

In other words, when t + |x| ≥ , we get

II ≤ CA√
 + t + |x|√ + t – |x| . (.)

For  < t + |x| < , by changing variables r = |x – y|, we obtain
∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤ 

π t

∫
|x–y|≤t

CA
(t – |y – x|)  ( + |y|)k

dy

≤ CA√
 + t + |x|√ + t – |x| . (.)

http://www.boundaryvalueproblems.com/content/2014/1/32
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Combining (.)-(.) gives

∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤ CA√

 + t + |x|√ + t – |x|
(|x| ≤ t

)
. (.)

Thus (.) and (.) imply that

∣∣∣∣ 
π t

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤

⎧⎨
⎩

CA
√
+t+|x|(+|t–|x||)k– 


(|x| ≥ t),

CA√
+t+|x|√+|t–|x|| (|x| ≤ t).

(.)

By Tsutaya [], we obtain

∣∣∣∣ 
π

∫
|x–y|≤t

φ(y)
(t – |y – x|) 

dy
∣∣∣∣ ≤

⎧⎨
⎩

CA
√
+t+|x|(+|t–|x||)k– 


(|x| ≥ t),

CA√
+t+|x|√+|t–|x|| (|x| ≤ t),

(.)

and

∣∣∣∣ 
π t

∫
|x–y|≤t

∇φ(y) · (y – x)
(t – |y – x|) 

dy
∣∣∣∣ ≤

⎧⎨
⎩

CA
√
+t+|x|(+|t–|x||)k– 


(|x| ≥ t),

CA√
+t+|x|√+|t–|x|| (|x| ≤ t).

(.)

Equation (.) follows from (.)-(.), and (.) immediately. Then we have com-
pleted the proof of lemma. �

The following lemma plays a key role in our main results. It is basically established in
[] and [].

Lemma . Let φ(x),φ(x) ∈ C∞(R) and satisfy

∣∣φ(x)
∣∣ ≤ A

( + |x|)k ,
∣∣φ(x)

∣∣ ≤ A
( + |x|)k+ (k > ).

Assume that u is a solution to the following Cauchy problem:

{
φtt –	φ = ,
t =  : φ = φ(x), φt = φ(x).

(.)

Then

∣∣φ(t,x)∣∣ ≤ CA
( + t + |x|)( + |t – |x||)k– (k > ). (.)

Lemma . Let φ = φ(t,x) ∈ C satisfy

�φ +
n∑

j,k=

γ jk(t,x)∂j∂kφ = F ,  ≤ t ≤ T

and assume that φ decays to  at infinity. If

|γ | =
∑∣∣γ jk∣∣ ≤ 


,  ≤ t ≤ T .

http://www.boundaryvalueproblems.com/content/2014/1/32
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It follows for  ≤ t ≤ T that

∥∥∂φ(t, ·)∥∥L ≤  exp
(∫ t



∣∣γ̇ (τ )∣∣dτ

)∥∥∂φ(, ·)∥∥L

+ 
∫ t


exp

(∫ t

s

∣∣γ̇ (τ )∣∣dτ

)∥∥F(s, ·)∥∥L ds, (.)

where |γ̇ (t)| = sup |∂iγ jk(t, ·)|.

For the proof of Lemma ., see Klainerman [].
Using Lemmas ., . and the L – L∞ estimate of the linear wave equation with zero

initial data, it is not difficulty to prove the following.

Lemma . Suppose that n = , . Let φ = φ(t,x) be the solution to the Cauchy problem

{
φtt –	φ = g, x ∈R

n, t > ,
t =  : φ = εφ(x), φt = εφ(x), x ∈R

n.
(.)

Then

( + t)
n–


∥∥φ(t, ·)∥∥L∞(Rn)

≤ C(φ,φ)ε +C
∑

|I|≤n–

∫ t



∥∥(
ZIg

)
(τ , ·)/( + τ + | · |) n–


∥∥
L dτ . (.)

By Lemmas . and ., we can prove the following lemma.

Lemma . Assume that n ≥  and φ = φ(t,x) is the solution to the Cauchy problem

{
φtt –	φ =

∑n
j= aj∂jGj, x ∈ R

n, t > ,
t =  : φ = εφ(x), φt = εφ(x), x ∈R

n,
(.)

where the coefficients aj (j = , . . . ,n) are constants. Then we have

∥∥φ(t, ·)∥∥L ≤ C
(
φ,φ,G(, ·)

)
m(t)ε +C

n∑
j=

∫ t



∥∥fj(τ , ·)∥∥L dτ , (.)

where

m(t) =

{
ln( + t), n = ,
, n = ,

and C(φ,φ,G(, ·)) depends on φ, φ and G(, ·).

3 Global existence in three space dimensions
Theorem . Suppose that f I (x), f I (x) ∈ C∞(R) and satisfy

∣∣f I (x)∣∣ ≤ A
( + |x|)k ,

∣∣f I (x)∣∣ ≤ A
( + |x|)k+

(
k >



, I = , . . . ,q

)
,
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where A >  is a constant. Then there exists ε such that for  < ε ≤ ε the Cauchy problem
(.), (.) has a global classical solution for all t ≥ .

Proof The local existence argument follows from the method of Picard iteration [] (see
also [] and []). In what follows, we will prove the global existence of the classical so-
lutions by a continuous induction, or a bootstrap argument. Let N ≥ , we set

M(t) =
∑

|α|≤N

∥∥∂Zα f (t, ·)∥∥L ,

M(t) =
∑

|α|≤N

∥∥Zαf (t, ·)∥∥L ,

N(t) =
∑

|α|≤N+


∥∥∂Zαf (t, ·)∥∥L∞ ,

(.)

and

N(t) =
∑

|α|≤N+
 +

∥∥Zαf (t, ·)∥∥L∞ .

To set up the bootstrap argument, we assume that there is a positive constant K so that
on [,T) we have the following estimates for the norms defined in (.):

M(t) ≤ Kε,

M(t)≤ Kε,

( + t)N(t) ≤ Kε,

(.)

and

( + t)N(t) ≤ Kε.

To close the bootstrap, we can prove that we can in fact choose K sufficiently large and
ε suitably small so that the above inequalities hold independent of T with K replaced by

K .
From Lemma . and (.), we obtain

Hμν
IJ ∂μ∂ν

(
Zαf I

)
=

∑
k≥,

∑ |αi|≤|α|+
HI,I···Ik ,γ···γk ,α···αk

(
∂γZ

α f I
) · · · (∂γkZ

αk f Ik
)
. (.)

It follows from Lemma . and (.), (.) for |α| ≤N that

M(t)≤ C
(

ε +C
∫ t


N

 (τ )M(τ )dτ

)
exp

(
C

∫ t


N

 (τ )dτ

)

≤ 

Kε, (.)

if K is sufficiently large and ε is suitably small.
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Note that
√
dethhμν = ημν +O(|∂f |); from (.) and Lemma ., we have

�
(
Zαf I

)
= ∂μ

[ ∑
k≥,

∑ |αi|≤|α|+
Fμ,I
I,I···Ik ,γ···γk ,α···αk

(
∂γZ

α f I
) · · · (∂γkZ

αk f Ik
)]
, (.)

where again at most one of the αi can satisfy |αi| > 
 |α|.

Applying Lemma . to (.), we obtain

M(t) ≤ Cε +C
∫ t


N

 (t)M(t)dτ

≤ 

Kε, (.)

if K is sufficiently large and ε is suitably small.
Since hμν = ημν +O(|∂f |), (.) may also be written as

�
(
Zαf I

)
=

∑
k≥,

∑ |αi|≤|α|+
ĤI,I···Ik ,γ···γk ,α···αk

(
∂γZ

α f I
) · · · (∂γkZ

αk f Ik
)
, (.)

where Ĥ =O(|∂f |).
Using Lemma ., (.), and (.), we get

N(t)≤ C( + t)–
(

ε +
∫ t



N(τ ) +N(τ )
 + τ

(
M(τ ) +M(τ )

) dτ

)

≤ 

Kε( + t)–,

if K is sufficiently large and ε is suitably small.
So

( + t)N(t) ≤ 

Kε, (.)

if K is sufficiently large and ε is suitably small.
From (.), we know that the estimate for N(t) implies the desired estimate for N(t).

We have completed the proof of Theorem .. �

4 Global existence in two space dimensions
Theorem . Suppose that f I (x), f I (x) ∈ C∞(R) and satisfy

∣∣f I (x)∣∣ ≤ A
( + |x|)k ,

∣∣f I (x)∣∣ ≤ A
( + |x|)k+ (k > , I = , . . . ,q),

where A >  is a constant. Then there exists ε such that for  < ε ≤ ε the Cauchy problem
(.), (.) has a global classical solution for all t ≥ .

Proof The local existence argument follows from the method of Picard iteration [] (see
also [] and []). In what follows, we will prove global existence of classical solutions by
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a continuous induction, or bootstrap argument. Let N ≥ , we set

M(t) =
∑

|α|≤N

∥∥∂Zα f (t, ·)∥∥L ,

M(t) =
∑

|α|≤N

∥∥Zαf (t, ·)∥∥L ,

N(t) =
∑

|α|≤N+


∥∥∂Zαf (t, ·)∥∥L∞ ,

(.)

and

N(t) =
∑

|α|≤N+
 +

∥∥Zαf (t, ·)∥∥L∞ .

To set up the bootstrap argument, we assume that there is a positive constant K so that
on [,T) we have following estimates for the norms defined in (.),

M(t) ≤ Kε( + t)ι,

M(t)≤ Kε( + t)ι,

( + t)

N(t) ≤ Kε

(.)

and

( + t)

N(t) ≤ Kε,

where  < ι < 
 is a fixed, arbitrary constant.

To close the bootstrap, we can prove that we can in fact choose K sufficiently large and
ε suitably small so that the above inequalities hold independent of T with K replaced by

K .
It follows from Lemma . and (.) for |α| ≤ N that

M(t)≤ Cε exp

(
C

∫ t


N

 (τ )dτ

)
+C

∫ t


exp

(
C

∫ t

τ

N
 (s)ds

)
N

 (τ )M(τ )dτ

≤ Cε exp

(
C

∫ t



(Kε)

 + τ
dτ

)
+C

∫ t


exp

(
C

∫ t

τ

(Kε)

 + s
ds

)
(Kε)

( + τ )–ι
dτ

≤ Kε( + t)ι, (.)

if K is sufficiently large and ε is suitably small.
Applying Lemma . to (.), we obtain

M(t) ≤ Cε ln( + t) +C
∫ t


N

 (t)M(t)dτ

≤ 

Kε( + t)ι, (.)

if K is sufficiently large and ε is suitably small.
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In what follows, we make an estimate for N(t). In order to make this estimate for N(t),
define the following null forms:

Q(u, v) = utvt –
∑
i=

uivi (.)

and

Qij(u, v) = uivj – ujvi,  ≤ i, j ≤ , i �= j. (.)

Let Q symbolically stand for any of the full forms (.) and (.). Then

ZQ(u, v) =Q(Zu, v) +Q(u,Zv) +
∑

aijQij(u, v) (.)

for some constants aij.
Let Q be one of null form in (.)-(.), we have

∣∣Q(u, v)(t,x)∣∣ ≤ C
(
 + t + |x|)– ∑

|α|=

∣∣Zαu(t,x)
∣∣ ∑
|α|=

∣∣Zαv(t,x)
∣∣. (.)

Note that the Lagrangian associated to the volume element of the induced metric is√
–deth. For small |∂f |, we have

–deth =  + ημνδIJ f Iμf
J
ν +O

(|∂f |) =  + δIJQ
(
f I , f J

)
+O

(|∂f |)
and thus the Euler-Lagrange equations take the form

(
 + δKLQ

(
f K , f L

))
� f I =



ημν f Iμ∂ν

[
δABQ

(
f A, f B

)]
+O

(∣∣∂f
∣∣|∂f |).

For small |∂f |, we obtain
(
 + δKLQ

(
f K , f L

))– =  +O
(|∂f |).

So we have

� f I =


Q

(
f I , δABQ

(
f A, f B

))
+O

(∣∣∂f
∣∣|∂f |). (.)

By Lemma ., (.), we have

�Zαf I =


Q

(
Zα f I , δABQ

(
Zα f A,Zα f B

))
+O

(∣∣Zβ∂f
∣∣∣∣Zβ∂f

∣∣), (.)

where |α| + |β| ≤ |α|.
From Lemma . and (.), (.), (.), (.) when N+

 +  ≤N , i.e., N ≥ , we get

( + t)

N(t)≤ Cε +C

∫ t



(N(τ ) +N(τ ))
( + τ ) 

(
M(τ ) +M(τ )

) dτ

≤ Cε +C
∫ t


Kε( + t)δ– dτ ≤ 


Kε, (.)

if K is sufficiently large and ε is suitably small and since  < δ < 
 .
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From (.), we know that the estimate for N(t) implies the desired estimate for N(t).
We have completed the proof of the theorem. �
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