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Abstract
In this paper, we study periodic BVPs for fractional order impulsive evolution
equations. The existence and boundedness of piecewise continuous mild solutions
and design parameter drift for periodic motion of linear problems are presented.
Furthermore, existence results of piecewise continuous mild solutions for semilinear
impulsive periodic problems are showed. Finally, an example is given to illustrate the
results.
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1 Introduction
In order to describe dynamics of populations subject to abrupt changes as well as other
evolution processes such as harvesting, diseases, and so forth,many researchers have used
impulsive differential systems to describe the model since the last century. For a wide-
ranging bibliography and exposition on this important object see for instance the mono-
graphs of [–] and the papers [–].
Fractional differential equations appear naturally in fields such as viscoelasticity, elec-

trical circuits, nonlinear oscillation of earthquakes etc. In particular, impulsive fractional
evolution equations are used to describe many practical dynamical systems in many evo-
lutionary processes models. Recently, Wang et al. [] discussed Cauchy problems and
nonlocal problems for impulsive fractional evolution equations involving the Caputo frac-
tional derivative. However, periodic boundary value problems (BVPs for short) for impul-
sive fractional evolution equations have not been studied extensively.
In this paper we study the periodic BVPs for impulsive fractional evolution equations.

Firstly, we discuss periodic BVPs for impulsive fractional evolution equations:

⎧⎪⎨
⎪⎩

cDq
,tx(t) = Ax(t) + f (t), q ∈ (, ), t ∈ J = [,T], t �= tk ,

x() = x(T),
x(t+k ) = x(t–k ) + yk , k = , , . . . , δ,

()

in Banach spaceX, where cDq
,t is the Caputo fractional derivative of order qwith the lower

limit zero, A :D(A)⊆ X → X is the generator of a C-semigroup {S(t), t ≥ } on a Banach
space X, f : J → X is continuous, x() and yk are the elements of X,  = t < t < t < · · · <
tδ < tδ+ = T , and x(t+k ) = limh→+ = x(tk + h) and x(t–k ) = x(tk) represent respectively the
right and left limits of x(t) at t = tk .
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Secondly, we design parameter drift for the above periodic motion. We study the fol-
lowing impulsive periodic BVPs with parameter perturbations:

⎧⎪⎨
⎪⎩

cDq
,tx(t) = Ax(t) + f (t) + p(t,x(t), ξ ), t ∈ J , t �= tk ,

x() = x(T),
x(t+k ) = x(t–k ) + yk , k = , , . . . , δ,

()

where p is a given function and ξ ∈ � = (–ξ̃ , ξ̃ ) is a small parameter perturbation that may
be caused by some adaptive control algorithms or parameter drift.
Finally, we consider semilinear impulsive periodic problems:

⎧⎪⎨
⎪⎩

cDq
,tx(t) = Ax(t) + f (t,x(t)), t ∈ J , t �= tk ,

x() = x(T),
x(t+k ) = x(t–k ) + Ik(x(t–k )), k = , , . . . , δ,

()

where f : J ×X → X is continuous and Ik : X → X is continuous.
The rest of this paper is organized as follows. In Section , the existence and bound-

edness of the operator B = [I – T (T)]– are given. In Section , the existence and bound-
edness of PC-mild solutions and the design parameter drift for such a periodic motion
are presented. In Section , existence results of PC-mild solutions for impulsive periodic
problems are showed. Finally, an example is presented to illustrate the theory.

2 Existence and boundedness of operator B = [I – T (T)]–1

Suppose T > , let J = [,T]. LetM = supt≥ ‖S(t)‖ < ∞. We denote by C(J ,X) the Banach
space of all continuous functions from J into X with the norm ‖x‖C = sup{‖x(t)‖ : t ∈ J}.
We also introduce the set of functions PC(J ,X) = {x : J → X : x is continuous at t ∈
J \ {t, t, . . . , tδ}, and x is continuous from the left and has right-hand limits at t ∈
{t, t, . . . , tδ}}. Endowed with the norm

‖x‖PC =max
{
sup
t∈J

∥∥x(t + )
∥∥, sup

t∈J

∥∥x(t – )
∥∥}

,

it is easy to see (PC(J ,X),‖ · ‖PC) is a Banach space.
Formeasurable functions l : J → R, define the norm ‖l‖Lp(J ,R) = (

∫
J |l(t)|p dt)


p ,  ≤ p < ∞.

We denote by Lp(J ,R) the Banach space of all Lebesgue measurable functions l with
‖l‖Lp(J ,R) < ∞.

Definition . ([]) The fractional integral of order γ with the lower limit zero for a
function f is defined as

Iγ,t f (t) =


�(γ )

∫ t



f (s)
(t – s)–γ

ds, t > ,γ > ,

provided the right side is point-wise defined on [,∞), where �(·) is the gamma function.

Definition . ([]) The Riemann-Liouville derivative of order γ with the lower limit
zero for a function f : [,∞)→ R can be written as

LDγ
,t f (t) =


�(n – γ )

dn

dtn

∫ t



f (s)
(t – s)γ+–n

ds, t > ,n –  < γ < n.
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Definition . ([]) The Caputo derivative of order γ for a function f : [,∞) → R can
be written as

cDγ
,t f (t) =

L Dγ
,t

(
f (t) –

n–∑
k=

tk

k!
f (k)()

)
, t > ,n –  < γ < n.

Remark . If f is an abstract function with values in X, then the integrals which appear
in Definitions . and . are taken in Bochner’s sense.

As in our previous work [], by a PC-mild solution of () we mean the function x ∈
PC(J ,X) satisfying

x(t) = T (t)x() +
k∑
i=

T (t – ti)yi

+
∫ t


(t – s)q–S(t – s)f (s)ds, t ∈ (ti, ti+],k = , , . . . , δ,

and x() = x(T), where

T (t) =
∫ ∞


ξq(θ )S

(
tqθ

)
dθ , S(t) = q

∫ ∞


θξq(θ )S

(
tqθ

)
dθ

and

ξq(θ ) =

q
θ
–– 

q ϑq
(
θ
– 
q
) ≥ ,

ϑq(θ ) =

π

∞∑
n=

(–)n–θ–qn– �(nq + )
n!

sin(nπq), θ ∈ (,∞),

here ξq is a probability density function defined on (,∞), that is,

ξq(θ )≥ , θ ∈ (,∞) and
∫ ∞


ξq(θ )dθ = .

Lemma . (see Lemma . []) The operator T has the following properties:
(i) For any fixed t ≥ , T (t) and S(t) are linear and bounded operators, i.e., for any

x ∈ X , ‖T (t)x‖ ≤ M‖x‖ and ‖S(t)x‖ ≤ M
�(q)‖x‖.

(ii) Both {S(t), t ≥ } and {T (t), t ≥ } are strongly continuous.
(iii) For every t > , T (t) and S(t) are compact operators if S(t) is compact.

Suppose that here the bounded operator B : X → X exists given by

B =
[
I – T (T)

]–. ()

We present sufficient conditions for the existence and boundedness of the operator B.

Lemma . (see Theorem . and Remark . []) The operator B defined in () exists
and is bounded, if one of the following three conditions holds:

http://www.boundaryvalueproblems.com/content/2014/1/35
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(i) S(t) is compact for each t >  and the homogeneous linear nonlocal problem

{
cDq

,tx(t) = Ax(t), t ∈ J ,
x() = x(T),

has no non-trivial PC-mild solutions.
(ii) If ‖T (T)‖ < , then the operator I – T (T) is invertible and [I – T (T)]– ∈ Lb(X).
(iii) If ‖S(t)‖ <  for t ∈ (,T], then T (nT) →  as n→ ∞ and the operator I – T (T) is

invertible and [I – T (T)]– ∈ Lb(X).

3 Linear impulsive periodic problems and robustness
In this section, we consider the existence of PC-mild solutions of () and of design param-
eter drift for ().
We list the following assumptions.
(HA): A :D(A)→ X is the infinitesimal generator of a C-semigroup {S(t), t ≥ }.
(HF): f : J → X is strongly measurable for t ∈ J and there exist a constant q ∈ (,q) and

a real-valued function h(·) ∈ L

q (J ,R) such that ‖f (t)‖ ≤ h(t), for each t ∈ J .

(HB): The operator B defined in () exists and is bounded.
We first give an existence theorem of PC-mild solutions of ().

Theorem . Assume that (HA), (HF), and (HB) are satisfied. Then () has a PC-mild
solution given by

xT (t) = T (t)Bz +
k∑
i=

T (t – ti)yi

+
∫ t


(t – s)q–S(t – s)f (s)ds, t ∈ (ti, ti+],k = , , . . . , δ, ()

where

z =
δ∑
i=

T (t – ti)yi +
∫ T


(T – s)q–S(T – s)f (s)ds. ()

Further, we have

∥∥xT (t)∥∥ ≤M(ML + )

[
δ∑
i=

‖yi‖ + Tq–qH
�(q)( q–q–q

)–q

]
, ()

where L = ‖B‖ and H = ‖h‖
L


q (J ,R)

.

Proof We consider an impulsive Cauchy problem,

⎧⎪⎨
⎪⎩

cDq
,tx(t) = Ax(t) + f (t), t ∈ J , t �= tk ,

x() = Bz := x̄, z defined in (),
x(t+k ) = x(t–k ) + yk , k = , , . . . , δ.

()

It follows from the expression of the initial value x() = Bz := x̄ that the mild solution xT (·)
of () corresponding to the initial value x̄must be the PC-mild solution of ().

http://www.boundaryvalueproblems.com/content/2014/1/35
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For the estimation of xT (·), by Lemma .,

∥∥xT (t)∥∥ ≤ ∥∥T (t)Bz
∥∥ +

k∑
i=

∥∥T (t – ti)
∥∥‖yi‖ +

∫ t


(t – s)q–

∥∥S(t – s)f (s)
∥∥ds

≤ M‖B‖‖z‖ +M
k∑
i=

‖yi‖ + M
�(q)

∫ t


(t – s)q–h(s)ds

≤ M‖B‖
(

δ∑
i=

∥∥T (t – ti)
∥∥‖yi‖ +

∫ T


(T – s)q–

∥∥S(T – s)f (s)
∥∥ds

)

+M
δ∑
i=

‖yi‖ + M
�(q)

∫ t


(t – s)q–h(s)ds

≤ M‖B‖
(

δ∑
i=

‖yi‖ + 
�(q)

∫ T


(T – s)q–h(s)ds

)

+M
δ∑
i=

‖yi‖ + M
�(q)

∫ t


(t – s)q–h(s)ds

≤ M‖B‖
[

δ∑
i=

‖yi‖ + 
�(q)

(∫ T


(T – s)

q–
–q ds

)–q(∫ T


h


q (s)ds

)q
]

+

[
M

δ∑
i=

‖yi‖ + M
�(q)

(∫ t


(t – s)

q–
–q ds

)–q(∫ t


h


q (s)ds

)q
]

≤ M(ML + )

[
δ∑
i=

‖yi‖ + Tq–qH
�(q)( q–q–q

)–q

]
,

where L = ‖B‖ and H = ‖h‖
L


q (J ,R)

. The desired results are obtained. �

Remark . In Theorem ., we replace (HB) by {S(t), t ≥ }; it is a compact semigroup
and

{
cDq

,tx(t) = Ax(t), t ∈ J ,
x() = x(T),

has no non-trivial mild solutions. Then one can use the Fredholm alternative theorem
to derive that the operator equation [I – T (T)]x() = z has a unique solution x() = [I –
T (T)]–z := x̄. Thus, the PC-mild solution of () is unique.

Define PCT (J ,X) = {x ∈ PC(J ,X) : x() = x(T)} with ‖x‖PCT = sup{‖x(t)‖ : t ∈ J} for x ∈
PCT (J ,X). It can be seen that endowed with the norm ‖ ·‖PCT , PCT (J ,X) is a Banach space.
Denote

Sρ =
{
x ∈ PCT (J ,X) : ‖x‖PCT ≤ ρ

}
,

B(x,ρ) =
{
x ∈ PCT (J ;X) : ‖x – xT‖PCT ≤ ρ

}
,

http://www.boundaryvalueproblems.com/content/2014/1/35
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where

ρ =M(ML + )

[
δ∑
i=

‖yi‖ + Tq–qH
�(q)( q–q–q

)–q
+

Tq

�(q + )
sup
|ξ |≤ξ̃

χ (ξ )

]
,

ρ =
M(ML + )Tq

�( + q)
sup
|ξ |≤ξ̃

χ (ξ ),

and χ is a nonnegative function.
We introduce the assumption (HP):
(HP): p : J × Sρ × � → X is measurable in t.
(HP): There exists a nonnegative function � such that limξ→ � (ξ ) =� () =  and

for any t ∈ J , x, y ∈ Sρ , and ξ ∈ �, and we have

∥∥p(t,x, ξ ) – p(t, y, ξ )
∥∥ ≤ � (ξ )‖x – y‖.

(HP): There exists a nonnegative function χ such that limξ→ χ (ξ ) = χ () = , and for
any t ∈ J , x ∈ Sρ , and ξ ∈ �, we have

∥∥p(t,x, ξ )∥∥ ≤ χ (ξ ).

By a PC-mild solution of (), we mean the function x ∈ PC(J ,X) satisfying

x(t) = T (t)x() +
k∑
i=

T (t – ti)yi

+
∫ t


(t – s)q–S(t – s)

[
f (s) + p

(
s,x(s), ξ

)]
ds, k = , , . . . , δ,

and x() = x(T).
The following result shows that given a periodic motion we can design periodic motion

controllers that are robust with respect to parameter drift.

Theorem . Let (HA), (HF), (HB), and (HP) hold. Then there is a ξ ∈ (, ξ̃ ) such that,
for |ξ | ≤ ξ, () has a PC-mild solution xξ

T satisfying

∥∥xξ
T – xT

∥∥
PCT

≤ ρ

and limξ→ xξ
T (t) = xT (t) uniformly on t ∈ J where xT is the mild solution of ().

Proof By (HB), one can choose

x = B
[
z +

∫ T


(T – s)q–S(T – s)p

(
s,x(s), ξ

)
ds

]
∈ X

to be fixed. Consider the map O on B(xT ,ρ) given by

(Ox)(t) = T (t)x +
k∑
i=

T (t – ti)yi +
∫ t


(t – s)q–S(t – s)

[
f (s) + p

(
s,x(s), ξ

)]
ds.

Obviously, Ox ∈ PCT (J ,X).

http://www.boundaryvalueproblems.com/content/2014/1/35
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By the assumption (HP), we can choose a ξ ∈ (, ξ̃ ) such that

M(ML + )Tq

�( + q)
sup

|ξ |≤ξ
χ (ξ )≤ ρ

and

η =
M(ML + )Tq

�( + q)
sup

|ξ |≤ξ
� (ξ ) < .

For ξ ∈ (–ξ, ξ) and x, y ∈ B(xT ,ρ), one can verify that

‖Ox – xT‖PCT ≤ M(ML + )Tq

�( + q)
sup

|ξ |≤ξ
χ (ξ )≤ ρ ()

and

‖Ox –Oy‖PCT ≤ η‖x – y‖PCT .

This implies that O is a contraction mapping on B(xT ,ρ). Then, O has a unique fixed
point xξ

T ∈ B(xT ,ρ) given by

xξ
T (t) = T (t)x +

∫ t


(t – s)q–S(t – s)

[
f (s) + p

(
s,xξ

T (s), ξ
)]
ds, ()

which is just the PC-mild solution of ().
From the expressions () and (), one can get ‖xξ

T – xT‖PCT ≤ ρ. It is easy to see that
limξ→ xξ

T (t) = xT (t) uniformly on t ∈ J . �

4 Semilinear impulsive periodic problems
We impose the following assumptions.
(HF): f : J ×X → X is continuous and there exist a constant q ∈ (,q) and a

real-valued function Lf (·) ∈ L

q (J ,R+) such that ‖f (t,x) – f (t, y)‖ ≤ Lf (t)‖x – y‖

for all x, y ∈ X .
(HF): f : J ×X → X is continuous and maps a bounded set into a bounded set.
(HF): For each x ∈ X , there exists a constant r >  such that

M(ML + )
(

δMI +
Tq

�( + q)
sup

s∈J ,φ∈Y�

∥∥f (s,φ(s))∥∥)
≤ r,

where

Y� =
{
φ ∈ PC(J ,X) : ‖φ‖ ≤ r for t ∈ J

}
.

(HI): Ik : X → X is continuous and there exists a constant LI >  such that
‖Ik(x) – Ik(y)‖ ≤ LI‖x – y‖ for all x, y ∈ X , k = , , . . . , δ.

(HI): Ik : X → X is continuous and there exists a constantMI >  such that
‖Ik(x)‖ ≤ MI , for all x ∈ X , k = , , . . . , δ.

http://www.boundaryvalueproblems.com/content/2014/1/35


Yu and Wang Boundary Value Problems 2014, 2014:35 Page 8 of 11
http://www.boundaryvalueproblems.com/content/2014/1/35

Theorem. Let (HA), (HB), (HI), and (HF) be satisfied.Then () has a unique PC-mild
solution on J provided that

M(ML + )
(

δLI +
T∗

�(q)

)
< , T∗ =

[(
 – q
q – q

)
T

q–q
–q

]–q
‖Lf ‖

L

q (J ,R+)

. ()

Proof Consider

⎧⎪⎨
⎪⎩

cDq
,tx(t) = Ax(t) + f (t,x(t)), t ∈ J , t �= tk ,

x() = Bz,
x(t+k ) = x(t–k ) + Ik(x(t–k )), k = , , . . . , δ,

()

where

z =
δ∑
i=

T (t – ti)Ii
(
x
(
t–i

))
+

∫ T


(T – s)q–S(T – s)f

(
s,x(s)

)
ds, ()

and we define an operator Q on PC(J ,X):

(Qx)(t) = T (t)Bz +
k∑
i=

T (t – ti)Ii
(
x
(
t–i

))

+
∫ t


(t – s)q–S(t – s)f

(
s,x(s)

)
ds, t ∈ (ti, ti+],k = , , . . . , δ. ()

Clearly, Q is well defined on PC(J ,X) due to our assumptions.
Then, we only need to show that Q is a contraction on PC(J ,X).
In general, for each t ∈ (tk , tk+], k = , , . . . , δ we have

∥∥(Qx)(t) – (Qy)(t)
∥∥

≤MLLI
δ∑
i=

∥∥x(t–i )
– y

(
t–i

)∥∥ +MLI
k∑
i=

∥∥x(t–i )
– y

(
t–i

)∥∥

+
M

�(q)

(
ML

∫ T


(T – s)q–Lf (s)

∥∥x(s) – y(s)
∥∥ds

+
∫ t


(t – s)q–Lf (s)

∥∥x(s) – y(s)
∥∥ds)

≤MLI(ML + )δ‖x – y‖PC

+
M‖x – y‖PC

�(q)

(
ML

∫ T


(T – s)q–Lf (s)ds +

∫ t


(t – s)q–Lf (s)ds

)

≤MLI(ML + )δ‖x – y‖PC

+
M‖x – y‖PC

�(q)

[
ML

(∫ T


(T – s)

q–
–q ds

)–q
‖Lf ‖

L

q (J ,R+)

+
(∫ t


(t – s)

q–
–q ds

)–q
‖Lf ‖

L

q ([,tk+],R+)

]

≤M(ML + )
(

δLI +
T∗

�(q)

)
‖x – y‖PC .

http://www.boundaryvalueproblems.com/content/2014/1/35
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Hence, the condition () allows us to conclude, in viewof theBanach contractionmapping
principle, that Q has a unique fixed point x ∈ PC(J ,X), which is just the unique PC-mild
solution of (). �

Theorem . Suppose that (HA), (HB), (HI), and (HF) and (HF) are satisfied. Then
for every x ∈ X, () has at least a PC-mild solution on J .

Proof Consider the mapping

Q : PC(J ,X) → PC(J ,X)

by

(Qv)(t) = (Qv)(t) + (Qv)(t),

where

(Qv)(t) = T (t)Bz +
∫ t


(t – s)q–S(t – s)f

(
s, v(s)

)
ds, t ∈ J \ {t, t, . . . , tδ}; ()

z is defined in () and

(Qv)(t) =

{
, t ∈ [, t],∑k

i= T (t – ti)Ii(v(t–i )), t ∈ (tk , tk+],k = , . . . , δ.
()

For each t ∈ (tk , tk+], v ∈ Y� ,

∥∥(Qv)(t)
∥∥ ≤ ∥∥(Qv)(t)

∥∥ +
∥∥(Qv)(t)

∥∥
≤ M(ML + )

(
δMI +

Tq

�( + q)
sup

s∈J ,φ∈Y�

∥∥f (s,φ(s))∥∥)
.

Thus, we see that Q : Y� → Y� .
Just like the proof in our previous work [], one can prove that Q is a continuous map-

ping from Y� to Y� and it is a compact operator. Now, Schauder’s fixed point theorem
implies that Q has a fixed point, which gives rise to a PC-mild solution. �

5 Example
We consider impulsive fractional differential equations with periodic boundary condi-
tions,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cD


,tx(t, y) =

∂

∂y x(t, y) +
|x(t,y)|

γ (+et )(+|x(t,y)|) , y ∈ (,π ), t ∈ [,  )∪ (  , ],
x(t, ) = x(t,π ) = ,
x(, y) = x(, y), y ∈ (,π ),

x( 
+) = x( 

–) + |x( 
–,y)|

γ (+t)(+|x( 
–,y)|) , y ∈ (,π ),

()

in X = L(,π ) where γ >  will be chosen later.

http://www.boundaryvalueproblems.com/content/2014/1/35
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Define Ax = – ∂

∂y x for x ∈ D(A) where D(A) = {x ∈ X : ∂x
∂y ,

∂x
∂y ∈ X and x() = x(π ) = }.

ThenA is the infinitesimal generator of aC-semigroup {T(t), t ≥ } in L(,π ).Moreover,
T(·) is also compact and ‖T(t)‖ ≤ e–t ≤ , t ≥ . By the Fredholm alternative theorem,
[I – T ()]– exists and is bounded where T (·) is defined in Section .
Define f (t,x(t))(y) = |x(t,y)|

γ (+et )(+|x(t,y)|) , t ∈ [,  )∪ (  , ], x ∈ X, y ∈ (,π ) and f : [, ]×X →
X is a continuous function, ‖f (t,x) – f (t,x)‖ ≤ Lf ‖x – x‖, with Lf = 

γ
∈ L 

 ([, ],R+).

Define I(x( 
–))(y) = |x( 

–,y)|
γ (+t)(+|x( 

–,y)|) , x ∈ X, y ∈ (,π ). ‖I(x) – I(x)‖ ≤ LI‖x – x‖ for all

x,x ∈ X with LI = 
γ

.
Moreover,

M(ML + )
(

δLI +
T∗

�(q)

)
=

∥∥[
I – T ()

]–∥∥(


γ
+

√
γ�(  )

)
<


γ

∥∥[
I – T ()

]–∥∥.
Thus, one can choose γ > 

‖[I –T ()]–‖ such that () holds. Therefore, () has a unique
PC-mild solution on [, ].
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