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Abstract
By generalizing the extension of the continuous theorem of Ge and Ren and
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1 Introduction
In this paper, we will study the boundary value problem

⎧⎨
⎩(ϕp(u′′))′(t) = f (t,u(t),u′(t),u′′(t)),

u() = u′′() = , u′() =
∫ 
 k(t)u

′(t)dt,
(.)

and
⎧⎨
⎩(ϕp(u′′))′(t) = f (t,u(t),u′(t),u′′(t)),

u′′() = , u′() =
∫ 
 g(t)u

′(t)dt, u′() =
∫ 
 h(t)u

′(t)dt,
(.)

where ϕp(s) = |s|p–s, p > ,
∫ 
 k(t)dt = ,

∫ 
 g(t)dt = ,

∫ 
 h(t)dt = .

A boundary value problem is said to be a resonance one if the corresponding homoge-
neous boundary value problem has a non-trivial solution. Mawhin’s continuous theorem
[] is an effective tool to solve this kind of problemswhen the differential operator is linear,
see [–] and references cited therein. But it does not work for nonlinear cases such as
boundary value problems with a p-Laplacian, which attracted the attention of mathemati-
cians in recent years [–]. Ge and Ren extendedMawhin’s continuous theorem [] and
many authors used their results to solve boundary value problems with a p-Laplacian, see
[, ]. In this new theorem, two projectors P andQmust be constructed. But it is difficult
to give the projector Q in many boundary value problems with a p-Laplacian. In this pa-
per, we generalize the extension of the continuous theorem and show that the p-Laplacian
problem is solvable whenQ is not a projector. And we will use this new theorem to discuss
problems (.) and (.), respectively.
In this paper, we will always suppose that
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(H) k(t), g(t),h(t) ∈ L[, ] are nonnegative and ‖k‖ = ‖g‖ = ‖h‖ = , where ‖k‖ :=∫ 
 |k(t)|dt.

(H) f (t,u, v,w) is continuous in [, ]×R
.

2 Preliminaries
Definition . [] Let X and Y be two Banach spaces with norms ‖ · ‖X , ‖ · ‖Y , respec-
tively. A continuous operatorM : X ∩ domM → Y is said to be quasi-linear if

(i) ImM :=M(X ∩ domM) is a closed subset of Y ,
(ii) KerM := {x ∈ X ∩ domM :Mx = } is linearly homeomorphic to R

n, n <∞,
where domM denote the domain of the operatorM.

Let X = KerM and X be the complement space of X in X, then X = X ⊕ X. Let P :
X → X be a projector and � ⊂ X an open and bounded set with the origin θ ∈ �.

Definition . Suppose Nλ : � → Y , λ ∈ [, ] is a continuous and bounded operator.
Denote N by N . Let �λ = {x ∈ �∩ domM :Mx =Nλx}.Nλ is said to beM-quasi-compact
in � if there exists a vector subspace Y of Y satisfying dimY = dimX and two operators
Q, R with Q : Y → Y, QY = Y, being continuous, bounded, and satisfying Q(I –Q) = ,
R :� × [, ]→ X ∩ domM continuous and compact such that for λ ∈ [, ],
(a) (I –Q)Nλ(�) ⊂ ImM ⊂ (I –Q)Y ,
(b) QNλx = θ , λ ∈ (, )⇔ QNx = θ ,
(c) R(·, ) is the zero operator and R(·,λ)|�λ

= (I – P)|�λ
,

(d) M[P + R(·,λ)] = (I –Q)Nλ.

Theorem . Let X and Y be two Banach spaces with the norms ‖ · ‖X , ‖ · ‖Y , respectively,
and let � ⊂ X be an open and bounded nonempty set. Suppose

M : X ∩ domM → Y

is a quasi-linear operator and that Nλ :� → Y , λ ∈ [, ] is M-quasi-compact. In addition,
if the following conditions hold:

(C) Mx �=Nλx, ∀x ∈ ∂� ∩ domM, λ ∈ (, ),
(C) deg{JQN ,� ∩KerM, } �= ,

then the abstract equation Mx =Nx has at least one solution in domM∩�, where N =N,
J : ImQ →KerM is a homeomorphism with J(θ ) = θ .

Proof The proof is similar to the one of Lemma . and Theorem . in []. �

We can easily get the following inequalities.

Lemma . For any u, v ≥ , we have
() ϕp(u + v)≤ ϕp(u) + ϕp(v),  < p≤ .
() ϕp(u + v)≤ p–(ϕp(u) + ϕp(v)), p≥ .

In the following, we will always suppose that q satisfies /p + /q = .
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3 The existence of a solution for problem (1.1)
Let X = C[, ] with norm ‖u‖ = max{‖u‖∞,‖u′‖∞,‖u′′‖∞}, Y = C[, ] × C[, ] with
norm ‖(y, y)‖ =max{‖y‖∞,‖y‖∞}, where ‖y‖∞ =maxt∈[,] |y(t)|.We know that (X,‖·‖)
and (Y ,‖ · ‖) are Banach spaces.
Define operatorsM : X ∩ domM → Y , Nλ : X → Y as follows:

Mu =

[
(ϕp(u′′))′(t)
T(ϕp(u′′))′(t)

]
, Nλu =

[
λf (t,u(t),u′(t),u′′(t))



]
,

where Ty = c, y ∈ C[, ], c satisfying

∫ 


k(t)

∫ 

t
ϕq

(∫ s


y(r) – cdr

)
dsdt = ,

domM =
{
u ∈ X | ϕp

(
u′′) ∈ C[, ],u() = u′′() = 

}
.

(.)

Lemma. For y ∈ C[, ], there is only one constant c ∈R such that Ty = c with |c| ≤ ‖y‖∞
and that T : C[, ]→R is continuous.

Proof For y ∈ C[, ], let

F(c) =
∫ 


k(t)

∫ 

t
ϕq

(∫ s



(
y(r) – c

)
dr

)
dsdt.

Obviously, F(c) is continuous and strictly decreasing in R. Take a = mint∈[,] y(t), b =
maxt∈[,] y(t). It is easy to see that F(a) ≥ , F(b) ≤ . Thus, there exists a unique con-
stant c ∈ [a,b] such that F(c) = , i.e. there is only one constant c ∈ R such that Ty = c with
|c| ≤ ‖y‖∞.
For y, y ∈ C[, ], assume Ty = c, Ty = c. By k(t) ≥ ,

∫ 
 k(t)dt =  and ϕq being

strictly increasing, we obtain, if c – c >maxt∈[,](y(t) – y(t)), then

 =
∫ 


k(t)

∫ 

t
ϕq

(∫ s



(
y(r) – c

)
dr

)
dsdt

=
∫ 


k(t)

∫ 

t
ϕq

(∫ s



[(
y(r) – c

)
+

(
y(r) – y(r) – (c – c)

)
dr

])
dsdt

<
∫ 


k(t)

∫ 

t
ϕq

(∫ s



(
y(r) – c

)
dr

)
dsdt = .

This is a contradiction. On the other hand, if c – c <mint∈[,](y(t) – y(t)), then

 =
∫ 


k(t)

∫ 

t
ϕq

(∫ s



(
y(r) – c

)
dr

)
dsdt

=
∫ 


k(t)

∫ 

t
ϕq

(∫ s



[(
y(r) – c

)
+

(
y(r) – y(r) – (c – c)

)
dr

])
dsdt

>
∫ 


k(t)

∫ 

t
ϕq

(∫ s



(
y(r) – c

)
dr

)
dsdt = .
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This is a contradiction, too. So, we havemint∈[,](y(t) – y(t))≤ c – c ≤maxt∈[,](y(t) –
y(t)), i.e. |c – c| ≤ ‖y – y‖∞. So, T : C[, ] → R is continuous. The proof is com-
pleted. �

It is clear that u ∈ domM is a solution if and only if it satisfies Mu =Nu, where N =N.
For convenience, let (a,b)L :=

[ a
b
]
.

Lemma . M is a quasi-linear operator.

Proof It is easy to see that KerM = {bt | b ∈R} := X.
For u ∈ X ∩ domM, ifMu = (y, c)L, then c satisfies (.). On the other hand, if y ∈ C[, ],

Ty = c, take

u(t) =
∫ t


(t – s)ϕq

(∫ s


y(r)dr

)
ds.

By a simple calculation, we get u ∈ X ∩ domM andMu = (y, c)L. Thus

ImM =
{
(y, c)L | y ∈ C[, ], c satisfies (.)

}
.

By the continuity of T , we find that ImM ⊂ Y is closed. So,M is quasi-linear. The proof is
completed. �

Lemma . T(c) = c, T(y + c) = T(y) + c, T(cy) = cT(y), c ∈R, y ∈ C[, ].

Proof The proof is simple. Therefore, we omit it. �

Take a projector P : X → X and an operator Q : Y → Y as follows:

(Pu)(t) = u′()t, Q(y, y)L = (,Ty – Ty)L,

where Y = {(, c)L | c ∈R}. Obviously, QY = Y, and dimY = dimX.
By the continuity and boundedness of T , we can easily see that Q is continuous and

bounded in Y . It follows from Lemma . that Q(I –Q)(y, y)L = (, )L, y, y ∈ C[, ].
Define an operator R : X × [, ]→ X as

R(u,λ)(t) =
∫ t


(t – s)ϕq

(∫ s


λf

(
r,u(r),u′(r),u′′(r)

)
dr

)
ds,

where KerM ⊕ X = X. By (H) and the Arzela-Asscoli theorem, we can easily see that
R :�× [, ]→ X ∩domM is continuous and compact, where� ⊂ X is an open bounded
set.

Lemma . Assume that � ⊂ X is an open bounded set. Then Nλ is M-quasi-compact
in �.

http://www.boundaryvalueproblems.com/content/2014/1/36
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Proof It is clear that ImP = KerM, QNλx = θ , λ ∈ (, ) ⇔ QNx = θ and R(·, ) = . For
u ∈ �,

(I –Q)Nλu =

[
λf (t,u(t),u′(t),u′′(t))



]
–

[


–T[λf (t,u(t),u′(t),u′′(t))]

]

=

[
λf (t,u(t),u′(t),u′′(t))

T[λf (t,u(t),u′(t),u′′(t))]

]
∈ ImM.

Since ImM ⊂KerQ and y =Qy+(I–Q)y, we obtain ImM ⊂ (I–Q)Y . Thus, (I–Q)Nλ(�) ⊂
ImM ⊂ (I –Q)Y .
For u ∈ �λ = {u ∈ � ∩ domM :Mu =Nλu}, we get

R(u,λ) =
∫ t


(t – s)ϕq

(∫ s


λf

(
r,u(r),u′(r),u′′(r)

)
dr

)
ds

=
∫ t


(t – s)ϕq

(∫ s



(
ϕp

(
u′′))′

)
ds

= u(t) – u′()t = (I – P)u,

i.e. Definition .(c) holds. For u ∈ �, we have

M
[
Pu + R(u,λ)

]
=

[
λf (t,u(t),u′(t),u′′(t))

T[λf (t,u(t),u′(t),u′′(t))]

]
= (I –Q)Nλu.

So, Definition .(d) holds. Therefore, Nλ is M-quasi-compact in �. The proof is com-
pleted. �

Theorem . Assume that the following conditions hold.

(H) There exists a nonnegative constant K such that one of () and () holds:
() Bf (t,A,B,C) > , t ∈ [, ], |B| > K , A,C ∈R,
() Bf (t,A,B,C) < , t ∈ [, ], |B| > K , A,C ∈R.

(H) There exist nonnegative functions a(t),b(t), c(t), e(t) ∈ L[, ] such that

∣∣f (t,x, y, z)∣∣ ≤ a(t)ϕp
(|x|) + b(t)ϕp

(|y|) + c(t)ϕp
(|z|) + e(t), t ∈ [, ],x, y, z ∈R,

where ϕq(‖a‖ + ‖b‖ + ‖c‖) < –q, if  < p ≤ ; ϕq(p–‖a‖ + p–‖b‖ + ‖c‖) < , if
p≥ .

Then boundary value problem (.) has at least one solution.

In order to prove Theorem ., we show two lemmas.

Lemma . Suppose (H) and (H) hold. Then the set

� =
{
u ∈ domM |Mu =Nλu,λ ∈ (, )

}
is bounded in X.

http://www.boundaryvalueproblems.com/content/2014/1/36
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Proof For u ∈ �, we have QNλu = , i.e. Tf (t,u(t),u′(t),u′′(t)) = . By (H), there exists a
constant t ∈ [, ] such that |u′(t)| ≤ K . Since u(t) =

∫ t
 u

′(s)ds, u′(t) = u′(t) +
∫ t
t
u′′(s)ds,

we have

∣∣u(t)∣∣ ≤ ∥∥u′∥∥∞,
∣∣u′(t)

∣∣ ≤ K +
∥∥u′′∥∥∞, t ∈ [, ]. (.)

It follows fromMu =Nλu, (H), and (.) that

∣∣u′′(t)
∣∣ = ∣∣∣∣ϕq

(∫ t


λf

(
s,u(s),u′(s),u′′(s)

)
ds

)∣∣∣∣
≤ ϕq

(∫ 


a(t)ϕp

(|u|) + b(t)ϕp
(∣∣u′∣∣) + c(t)ϕp

(∣∣u′′∣∣) + e(t)dt
)

≤ ϕq
[(‖a‖ + ‖b‖

)
ϕp

(
K +

∥∥u′′∥∥∞
)
+ ‖c‖ϕp

(∥∥u′′∥∥∞
)
+ ‖e‖

]
.

If  < p≤ , by Lemma ., we get

∣∣u′′(t)
∣∣ ≤ ϕq

(
B +Aϕp

(∥∥u′′∥∥∞
)) ≤ q–

[
ϕq(B) + ϕq(A)

∥∥u′′∥∥∞
]
,

thus

∥∥u′′∥∥∞ ≤ q–ϕq(B)
 – q–ϕq(A)

,

where B = (‖a‖ + ‖b‖)ϕp(K ) + ‖e‖, A = ‖a‖ + ‖b‖ + ‖c‖.
If p > , by Lemma ., we get

∣∣u′′(t)
∣∣ ≤ ϕq

(
B +Aϕp

(∥∥u′′∥∥∞
)) ≤ [

ϕq(B) + ϕq(A)
∥∥u′′∥∥∞

]
,

thus

∥∥u′′∥∥∞ ≤ ϕq(B)
 – ϕq(A)

,

where B = p–(‖a‖ + ‖b‖)ϕp(K ) + ‖e‖, A = p–(‖a‖ + ‖b‖) + ‖c‖.
These, together with (.), mean that � is bounded in X. �

Lemma . Assume (H) holds. Then

� = {u ∈KerM |QNu = }

is bounded in X, where N =N.

Proof For u ∈ �, we have u = bt and Tf (t,bt,b, ) = . By (H), we get |b| ≤ K . So, � is
bounded. The proof is completed. �

Proof of Theorem . Let � = {u ∈ X | ‖u‖ < r}, where r is large enough such that K < r <
+∞ and � ⊃ �.

http://www.boundaryvalueproblems.com/content/2014/1/36
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By Lemmas . and ., we knowMu �=Nλu, u ∈ domM∩∂� andQNu �= , u ∈KerM∩
∂�.
Let H(u, δ) = ρδu + ( – δ)JQNu, δ ∈ [, ], u ∈ KerM ∩ �, where J : ImQ → KerM is a

homeomorphism with J(,b)L = bt, ρ =
{ –, if (H)() holds,
, if (H)() holds.

Define a function Sgn(x) =
{ , if x > ,
–, if x < .

For u ∈KerM ∩ ∂�, we have u = bt �= . Thus

H(u, δ) = ρδbt + ( – δ)
(
–Tf (t,bt,b, )

)
t.

If δ = , H(u, ) = ρbt �= . If δ = , by QNu �= , we get H(u, ) = JQN(bt) �= . For  < δ < ,
we now prove that H(u, δ) �= . Otherwise, if H(u, δ) = , then

Tf (t,bt,b, ) =
ρδ

 – δ
b. (.)

Since ‖u‖ = r > K , we have |b| > K . Thus, T[bf (t,bt,b, )] = bTf (t,bt,b, ) = ρδ

–δ
b. So,

we have Sgn(bf (t,bt,b, )) = Sgn{T[bf (t,bt,b, )]} = Sgn( ρδ

–δ
b) = Sgn(ρ). A contradiction

with the definition of ρ . So, H(u, δ) �= , u ∈KerM ∩ ∂�, δ ∈ [, ].
By the homotopy of degree, we get

deg(JQN ,� ∩KerM, ) = deg
(
H(·, ),� ∩KerM, 

)
= deg

(
H(·, ),� ∩KerM, 

)
= deg(ρI,� ∩KerM, ) �= .

By Theorem ., we can see that Mu = Nu has at least one solution in �. The proof is
completed. �

Example Let us consider the following boundary value problem at resonance:

⎧⎨
⎩(ϕp(u′′))′(t) = 

 t sinx
 + 

y
 + t sin z + cos t,

u() = u′′() = , u′() = 
∫ 
 tu

′(t)dt,
(.)

where p = .
Corresponding to problem (.), we have q = 

 , a(t) =

 t, b(t) =


 , c(t) = t, e(t) = cos t,

k(t) = t.
Take K = . By a simple calculation, we find that the conditions (H)-(H) hold. By The-

orem ., we obtain the result that problem (.) has at least one solution.

4 The existence of a solution for problem (1.2)
LetX = C[, ] with norm ‖u‖ =max{‖u‖∞,‖u′‖∞,‖u′′‖∞}, Y = C[, ]×C[, ]×C[, ]
with norm ‖(y, y, y)‖ = max{‖y‖∞,‖y‖∞,‖y‖∞}, where ‖y‖∞ = maxt∈[,] |y(t)|. We
know that (X,‖ · ‖) and (Y ,‖ · ‖) are Banach spaces.
Define operatorsM : X ∩ domM → Y , Nλ : X → Y as follows:

Mu =

⎡
⎢⎣

(ϕp(u′′))′(t)
T(ϕp(u′′))′(t)
T(ϕp(u′′))′(t)

⎤
⎥⎦ , Nλu =

⎡
⎢⎣

λf (t,u(t),u′(t),u′′(t))



⎤
⎥⎦ ,

http://www.boundaryvalueproblems.com/content/2014/1/36
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where Ty = c, Ty = c, y ∈ C[, ], c, c satisfy

∫ 


g(t)

∫ t


ϕq

(∫ s


y(r) – c dr

)
dsdt = ,

∫ 


h(t)

∫ 

t
ϕq

(∫ s


y(r) – c dr

)
dsdt = ,

domM =
{
u ∈ X | ϕp

(
u′′) ∈ C[, ],u′′() = 

}
.

(.)

Lemma . For y ∈ C[, ], there is only one constant ci ∈ R such that Tiy = ci with |ci| ≤
‖y‖∞. And Ti : C[, ]→R are continuous, i = , .

The proof is similar to Lemma ..
It is clear that u ∈ domM is a solution if and only if it satisfies Mu =Nu, where N =N.

For convenience, let (a,b, c)T :=
[ a

b
c

]
.

Lemma . M is a quasi-linear operator.

Proof It is easy to get KerM = {a + bt | a,b ∈R} := X.
For u ∈ X ∩ domM, if Mu = (y, c, c)T , then c, c satisfy (.). On the other hand, if

y ∈ C[, ], Ty = c, Ty = c, take

u(t) =
∫ t


(t – s)ϕq

(∫ s


y(r)dr

)
ds.

By simple calculation, we get u ∈ X ∩ domM andMu = (y, c, c)T . Thus

ImM =
{
(y, c, c)T | y ∈ C[, ], c, c satisfy (.)

}
.

By the continuity of Ti, i = , , we see that ImM ⊂ Y is closed. So, M is quasi-linear. The
proof is completed. �

Take a projector P : X → X and an operator Q : Y → Y as follows:

(Pu)(t) = u() + u′()t, Q(y, y, y)T = (,Ty – Ty,Ty – Ty)T ,

where Y = {(, c, c)T | ci ∈ R, i = , }. Obviously, QY = Y, and dimY = dimX.
By the continuity and boundedness of Ti, i = , , we can easily see that Q is continuous

and bounded in Y . It follows from Lemma . thatQ(I –Q)(y, y, y)T = (, , )T , y, y, y ∈
C[, ].
Define an operator R : X × [, ]→ X as

R(u,λ)(t) =
∫ t


(t – s)ϕq

(∫ s


λf

(
r,u(r),u′(r),u′′(r)

)
dr

)
ds,

where KerM ⊕ X = X. By (H) and the Arzela-Asscoli theorem, we can easily see that
R :�× [, ]→ X ∩domM is continuous and compact, where� ⊂ X is an open bounded
set.

http://www.boundaryvalueproblems.com/content/2014/1/36
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Lemma . Assume that � ⊂ X is an open bounded set. Then Nλ is M-quasi-compact
in �.

Proof It is clear that ImP = KerM, QNλx = θ , λ ∈ (, ) ⇔ QNx = θ and R(·, ) = . For
u ∈ �,

(I –Q)Nλu =

⎡
⎢⎣

λf (t,u(t),u′(t),u′′(t))



⎤
⎥⎦ –

⎡
⎢⎣


–Tλf (t,u(t),u′(t),u′′(t))
–Tλf (t,u(t),u′(t),u′′(t))

⎤
⎥⎦

=

⎡
⎢⎣

λf (t,u(t),u′(t),u′′(t))
Tλf (t,u(t),u′(t),u′′(t))
Tλf (t,u(t),u′(t),u′′(t))

⎤
⎥⎦ ∈ ImM.

Since ImM ⊂KerQ and y =Qy+(I–Q)y, we obtain ImM ⊂ (I–Q)Y . Thus, (I–Q)Nλ(�) ⊂
ImM ⊂ (I –Q)Y .
For u ∈ �λ = {u ∈ � ∩ domM :Mu =Nλu}, we get

R(u,λ) =
∫ t


(t – s)ϕq

(∫ s


λf

(
r,u(r),u′(r),u′′(r)

)
dr

)
ds

=
∫ t


(t – s)ϕq

(∫ s



(
ϕp

(
u′′))′

)
ds

= u(t) – u() – u′()t = (I – P)u,

i.e. Definition .(c) holds. For u ∈ �, we have

M
[
Pu + R(u,λ)

]
=

⎡
⎢⎣

λf (t,u(t),u′(t),u′′(t))
Tλf (t,u(t),u′(t),u′′(t))
Tλf (t,u(t),u′(t),u′′(t))

⎤
⎥⎦ = (I –Q)Nλu.

Thus, Definition .(d) holds. Therefore, Nλ isM-quasi-compact in �. The proof is com-
pleted. �

Theorem . Assume that the following conditions hold:

(H) There exists a nonnegative constant L such that if |u(t)| > L, t ∈ [, ] then either

Tf
(
t,u(t),u′(t),u′′(t)

) �= 

or

Tf
(
t,u(t),u′(t),u′′(t)

) �= .

(H) There exist nonnegative constants K, K such that one of () and () holds:
()

Bf (t,A,B,C) > , t ∈ [, ], |B| > K,A,C ∈R,
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and

Af (t,A,B,C) > , t ∈ [, ], |B| ≤ K, |A| > K,C ∈ R.

()

Bf (t,A,B,C) < , t ∈ [, ], |B| > K,A,C ∈R,

and

Af (t,A,B,C) < , t ∈ [, ], |A| > K, |B| ≤ K,C ∈ R.

(H) There exist nonnegative functions a(t),b(t), c(t), e(t) ∈ L[, ] such that

∣∣f (t,x, y, z)∣∣ ≤ a(t)ϕp
(|x|) + b(t)ϕp

(|y|) + c(t)ϕp
(|z|) + e(t), t ∈ [, ],x, y, z ∈R,

where ϕq(‖a‖ + ‖b‖ + ‖c‖) < –q, if  < p ≤ ; ϕq(p–‖a‖ + p–‖b‖ + ‖c‖) < , if
p≥ .

Then boundary value problem (.) has at least one solution.

In order to prove Theorem ., we show two lemmas.

Lemma . Suppose (H)-(H) hold. Then the set

� =
{
u ∈ domM |Mu =Nλu,λ ∈ (, )

}
is bounded in X.

Proof For u ∈ �, we have QNλu = , i.e. Tif (t,u(t),u′(t),u′′(t)) = , i = , . By (H) and
(H), there exist constants t, t ∈ [, ] such that |u(t)| ≤ L, |u′(t)| ≤ K. Since u(t) =
u(t) +

∫ t
t
u′(s)ds, u′(t) = u′(t) +

∫ t
t
u′′(s)ds, then

∣∣u(t)∣∣ ≤ L +
∥∥u′∥∥∞,

∣∣u′(t)
∣∣ ≤ K +

∥∥u′′∥∥∞, t ∈ [, ]. (.)

It follows fromMu =Nλu, (H), and (.) that

∣∣u′′(t)
∣∣ = ∣∣∣∣ϕq

(∫ t


λf

(
s,u(s),u′(s)′u′′(s)

)
ds

)∣∣∣∣
≤ ϕq

(∫ 


a(t)ϕp

(|u|) + b(t)ϕp
(∣∣u′∣∣) + c(t)ϕp

(∣∣u′′∣∣) + e(t)dt
)

≤ ϕq
(‖a‖ϕp

(
K + L +

∥∥u′′∥∥∞
)
+ ‖b‖ϕp

(
K +

∥∥u′′∥∥∞
)

+ ‖c‖ϕp
(∥∥u′′∥∥∞

)
+ ‖e‖

)
.

If  < p≤ , by Lemma ., we get

∣∣u′′(t)
∣∣ ≤ ϕq

(
B +Aϕp

(∥∥u′′∥∥∞
)) ≤ q–

[
ϕq(B) + ϕq(A)

∥∥u′′∥∥∞
]
,
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thus

∥∥u′′∥∥∞ ≤ q–ϕq(B)
 – q–ϕq(A)

,

where B = ‖a‖ϕp(K + L) + ‖b‖ϕp(K) + ‖e‖, A = ‖a‖ + ‖b‖ + ‖c‖.
If p > , by Lemma ., we get

∣∣u′′(t)
∣∣ ≤ ϕq

(
B +Aϕp

(∥∥u′′∥∥∞
)) ≤ [

ϕq(B) + ϕq(A)
∥∥u′′∥∥∞

]
,

thus

∥∥u′′∥∥∞ ≤ ϕq(B)
 – ϕq(A)

,

where B = p–‖a‖ϕp(K + L) + p–‖b‖ϕp(K) + ‖e‖, A = p–‖a‖ + p–‖b‖ + ‖c‖.
These, together with (.), mean that � is bounded in X. �

Lemma . Assume (H) holds. Then

� = {u ∈KerM |QNu = }

is bounded in X, where N =N.

Proof For u ∈ �, we have u = a + bt and Q(Nu) = . By (H), we see that there exists a
constant t ∈ [, ] such that |u(t)| = |a + bt| ≤ K, |u′(t)| = |b| ≤ K. So, � is bounded.
The proof is completed. �

Proof of Theorem . Let� = {u ∈ X | ‖u‖ < r}, where r is large enough such that K +K <
r < +∞ and � ⊃ � ∪ �.
By Lemmas . and ., we knowMu �=Nλu, u ∈ domM∩∂� andQNu �= , u ∈KerM∩

∂�.
Let H(u, δ) = ρδu + ( – δ)JQNu, δ ∈ [, ], u ∈ KerM ∩ �, where J : ImQ → KerM is a

homeomorphism with J(,a,b)T = a + bt, ρ =
{ –, if (H)() holds,
, if (H)() holds.

Take the function Sgn(x) is the same as the one in Proof of Theorem ..
For u ∈KerM ∩ ∂�, we have u = a + bt �= . Thus

H(u, δ) = ρδ(a + bt) + ( – δ)
(
–Tf (t,a + bt,b, ) – Tf (t,a + bt,b, )t

)
.

If δ = , H(u, ) = ρ(a + bt) �= . If δ = , by QNu �= , we get H(u, ) = JQN(a + bt) �= . For
 < δ < , we now prove that H(u, δ) �= . Otherwise, if H(u, δ) = , then

Tf (t,a + bt,b, ) =
ρδ

 – δ
a, Tf (t,a + bt,b, ) =

ρδ

 – δ
b. (.)

Since ‖u‖ = max{‖a + bt‖∞, |b|} = r > K + K, we have either |b| > K or ‖a + bt‖∞ >
K + K. If |b| > K, then Tbf (t,a + bt,b, ) = bTf (t,a + bt,b, ) = ρδ

–δ
b. So, we have

Sgn(bf (t,a+bt,b, )) = Sgn(Tbf (t,a+bt,b, )) = Sgn( ρδ

–δ
b) = Sgn(ρ). This is a contradic-

tion with the definition of ρ . If |b| ≤ K, then ‖a+ bt‖∞ > K +K. Thusmint∈[,] |a+ bt| >
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K and Sgn(a) = Sgn(a + bt). By Taf (t,a + bt,b, ) = aTf (t,a + bt,b, ) = ρδ

–δ
a, we get

Sgn(T(a + bt)f (t,a + bt,b, )) = Sgn(Taf (t,a + bt,b, )) = Sgn( ρδ

–δ
a) = Sgn(ρ). This is a

contradiction with the definition of ρ , too. So, H(u, δ) �= , u ∈KerM ∩ ∂�, δ ∈ [, ].
By the homotopy of degree, we get

deg(JQN ,� ∩KerM, ) = deg
(
H(·, ),� ∩KerM, 

)
= deg

(
H(·, ),� ∩KerM, 

)
= deg(ρI,� ∩KerM, ) �= .

By Theorem ., we find that (.) has at least one solution in �. The proof is com-
pleted. �
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