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1 Introduction
The theory of impulsive differential equations has been emerging as an important area of
investigation in recent years [–]. There is a vast literature on the existence of solutions
by using topologicalmethods, including fixed point theorems, Leray-Schauder degree the-
ory, and fixed point index theory [–]. But it is quite difficult to apply the variational ap-
proach to an impulsive differential equation; therefore, there was no result in this area for
a long time. Only in the recent five years, there appeared a few articles which dealt with
some impulsive differential equations by using variational methods [–]. Motivated
by [], in this article we shall use a different variational approach to discuss the existence
of solutions for a class of impulsive differential equations and we only deal with classical
solutions.
Consider the boundary value problem (BVP) for the second-order nonlinear impulsive

differential equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
–u′′(t) = f (t,u(t)), ∀t ∈ J ′,
�u|t=tk = ck (k = , , , . . . ,m),
�u′|t=tk = dk (k = , , , . . . ,m),
u() = u() = ,

()

where J = [, ],  < t < · · · < tk < · · · < tm < , J ′ = J\{t, . . . , tk , . . . , tm}, ck and dk (k =
, , . . . ,m) are any real numbers, f (t,u) is a real function defined on J × R, where R de-
notes the set of all real numbers, and f (t,u) is continuous on J ′ × R, left continuous at
t = tk , i.e.

lim
t→tk–,w→u

f (t,w) = f (tk ,u)
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for any u ∈ R (k = , , . . . ,m), and the right limit at t = tk exists, i.e.

lim
t→tk+,w→u

f (t,w)

(denoted by f (t+k ,u)) exists for any u ∈ R (k = , , . . . ,m). �u|t=tk denotes the jump of u(t)
at t = tk , i.e.

�u|t=tk = u
(
t+k

)
– u

(
t–k

)
,

where u(t+k ) and u(t–k ) represent the right and left limits of u(t) at t = tk , respectively. Sim-
ilarly,

�u′|t=tk = u′(t+k ) – u′(t–k )
,

where u′(t+k ) and u′(t–k ) represent the right and left limits of u′(t) at t = tk , respectively. Let
PC[J ,R] = {u : u is a real function on J such that u(t) is continuous at t �= tk , left continuous
at t = tk , and u(t+k ) exists, k = , , . . . ,m} and PC[J ,R] = {u ∈ PC[J ,R] : u′(t) is continuous
at t �= tk and u′(t+k ), u′(t–k ) exist, k = , , . . . ,m}. A function u ∈ PC[J ,R]∩C[J ′,R] is called
a solution of BVP () if u(t) satisfies ().
Let us list some conditions.

(H) There exist p > , a >  and b >  such that

∣∣f (t,u)∣∣ ≤ a + b|u|p–, ∀t ∈ J ,u ∈ R.

(H) There exist  < c < π

 and d >  such that

∫ u


f (t, v)dv≤ cu + d, ∀t ∈ J ,u ∈ R.

Lemma  u ∈ PC[J ,R] ∩ C[J ′,R] is a solution of BVP () if and only if v ∈ C[J ,R] is a
solution of the integral equation

v(t) =
∫ 


G(t, s)g

(
s, v(s)

)
ds, ∀t ∈ J , ()

where

G(t, s) =

{
s( – t), ∀ ≤ s≤ t ≤ ;
t( – s), ∀ ≤ t < s ≤ ,

()

g(t, v) = f
(
t, v + a(t) – a()t

)
, ∀t ∈ J , v ∈ R ()

and

v(t) = u(t) – a(t) + a()t, a(t) =
∑
<tk<t

[
ck + (t – tk)dk

]
, ∀t ∈ J . ()
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Proof For u ∈ PC[J ,R]∩C[J ′,R], we have the formula (see [], Lemma (b))

u(t) = u() + tu′() +
∫ t


(t – s)u′′(s)ds

+
∑
<tk<t

{[
u
(
t+k

)
– u(tk)

]
+ (t – tk)

[
u′(t+k ) – u′(t–k )]}

, ∀t ∈ J . ()

So, if u ∈ PC[J ,R]∩C[J ′,R] is a solution of BVP (), then, by () and (), we have

u(t) = tu′() –
∫ t


(t – s)f

(
s,u(s)

)
ds +

∑
<tk<t

[
ck + (t – tk)dk

]

= tu′() –
∫ t


(t – s)f

(
s,u(s)

)
ds + a(t), ∀t ∈ J . ()

It is clear, by (), that

a(t) = , ∀ ≤ t ≤ t; a() =
m∑
k=

[
ck + ( – tk)dk

]
, ()

so

v′() = u′() + a(). ()

Substituting () into (), we get

v(t) = tv′() –
∫ t


(t – s)f

(
s,u(s)

)
ds

= tv′() –
∫ t


(t – s)f

(
s, v(s) + a(s) – a()s

)
ds

= tv′() –
∫ t


(t – s)g

(
s, v(s)

)
ds, ∀t ∈ J . ()

By virtue of (), we see that v ∈ C[J ,R] (in fact, v ∈ C[J ,R]) and

v() = u() – a() + a() = u() = ,

so, letting t =  in (), we find

v′() =
∫ 


( – s)g

(
s, v(s)

)
ds. ()

Substituting () into (), we get

v(t) =
∫ 

t
t( – s)g

(
s, v(s)

)
ds +

∫ t


s( – t)g

(
s, v(s)

)
ds

=
∫ 


G(t, s)g

(
s, v(s)

)
ds, ∀t ∈ J ,

so v(t) is a solution of the integral equation ().
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Conversely, suppose that v ∈ C[J ,R] is a solution of (), i.e.

v(t) = ( – t)
∫ t


sg

(
s, v(s)

)
ds + t

∫ 

t
( – s)g

(
s, v(s)

)
ds, ∀t ∈ J . ()

By (), it is clear that g(t, v(t)) is continuous on J ′, so differentiation of () gives

v′(t) = –
∫ t


sg

(
s, v(s)

)
ds + ( – t)tg

(
t, v(t)

)

+
∫ 

t
( – s)g

(
s, v(s)

)
ds – t( – t)g

(
t, v(t)

)

= –
∫ t


sg

(
s, v(s)

)
ds +

∫ 

t
( – s)g

(
s, v(s)

)
ds, ∀t ∈ J ′. ()

Differentiating again, we get

v′′(t) = –tg
(
t, v(t)

)
– ( – t)g

(
t, v(t)

)
= –g

(
t, v(t)

)
, ∀t ∈ J ′. ()

From () we see that v′(t+k ) and v′(t–k ) (k = , , . . . ,m) exist and

v′(t+k ) = v′(t–k )
= –

∫ tk


sg

(
s, v(s)

)
ds +

∫ 

tk
( – s)g

(
s, v(s)

)
ds. ()

It follows from (), (), (), (), and () that u ∈ PC[J ,R] ∩ C[J ′,R] and u(t) satis-
fies (). �

Lemma Let condition (H) be satisfied. If v ∈ Lp[J ,R] is a solution of the integral equation
(), then v ∈ C[J ,R].

Proof It is clear, for function a(t) defined by (),

∣∣a(t)∣∣ ≤ a, ∀t ∈ J ; a =
m∑
k=

(|ck| + ( – tk)|dk|
)
. ()

By (), (), (), and condition (H), we have

∣∣g(t, v)∣∣ ≤ a + b
∣∣v + a(t) – a()t

∣∣p– ≤ a + b
(|v| + a

)p–
≤ a + b

(
max

{|v|, a})p– ≤ a + bp–
(|v|p– + (a)p–

)
, ∀t ∈ J , v ∈ R,

so,

∣∣g(t, v)∣∣ ≤ a + b|v|p–, ∀t ∈ J , v ∈ R, ()

where

a = a + b(p–)ap– , b = bp–.
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It is clear that g(t, v) satisfies the Caratheodory condition, i.e. g(t, v) is measurable with
respect to t on J for every v ∈ R and is continuous with respect to v on R for almost t ∈ J
(in fact, g(t, v) is discontinuous only at t = tk (k = , , . . . ,m)), so () implies [, ] that
the operator g defined by

(gv)(t) = g
(
t, v(t)

)
, ∀t ∈ J ()

is bounded and continuous from Lp[J ,R] into Lq[J ,R], where 
p +


q =  (q > ).

Let v ∈ Lp[J ,R] be a solution of the integral equation (). Then by the Hölder inequality,

∣∣v(t) – v(t)
∣∣ ≤

(∫ 



∣∣G(t, s) –G(t, s)
∣∣p ds) 

p
(∫ 



∣∣g(s, v(s))∣∣q ds) 
q
, ∀t, t ∈ J ,

which implies by virtue of the uniform continuity of G(t, s) on J × J that v ∈ C[J ,R]. �

2 Variational approach
Theorem  If conditions (H) and (H) are satisfied, then BVP () has at least one solution
u ∈ PC[J ,R]∩C[J ′,R].

Proof By Lemma  and Lemma , we need only to show that the integral equation () has
a solution v ∈ Lp[J ,R]. The integral equation () can be written in the form

v =Ggv, ()

where G is the linear integral operator defined by

(Gv)(t) =
∫ 


G(t, s)v(s)ds, ∀t ∈ J , ()

and the nonlinear operator g is defined by (), which is bounded and continuous from
Lp[J ,R] into Lq[J ,R] ( p +


q = ). It is well known that G(t, s) is a L positive-definite kernel

with eigenvalues { 
nπ } (n = , , , . . .) and, by the continuity of G(t, s), we have

∫ 



∫ 



[
G(t, s)

]p dsdt < ∞, ()

so [, ] the linear operator G defined by () is completely continuous from L[J ,R]
into L[J ,R] and also from Lq[J ,R] into Lp[J ,R], and G =HH∗, where H =G 

 (the positive
square-root operator ofG) is completely continuous from L[J ,R] into Lp[J ,R] andH∗ de-
notes the adjoint operator ofH , which is completely continuous from Lq[J ,R] into L[J ,R].
We now show that () has a solution v ∈ Lp[J ,R] is equivalent to the equation

u =H∗gHu ()

has a solution u ∈ L[J ,R]. In fact, if v ∈ Lp[J ,R] is a solution of (), i.e. v = HH∗gv, then
H∗gv = H∗gHH∗gv, so, u = H∗gv ∈ L[J ,R] and u is a solution of (). Conversely, if u ∈
L[J ,R] is a solution of (), then Hu = HH∗gHu = GgHu, so, v = Hu ∈ Lp[J ,R] and v is a

http://www.boundaryvalueproblems.com/content/2014/1/37
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solution of (). Consequently, we need only to show that () has a solution u ∈ L[J ,R].
It is well known [, ] that the functional � defined by

�(u) =


(u,u) –

∫ 


dt

∫ (Hu)(t)


g(t, v)dv, ∀u ∈ L[J ,R] ()

is a C functional on L[J ,R] and its Fréchet derivative is

�′(u) = u –H∗gHu, ∀u ∈ L[J ,R]. ()

Hence we need only to show that there exists a u ∈ L[J ,R] such that �′(u) = θ (θ denotes
the zero element of L[J ,R]), i.e. u is a critical point of functional �.
By (), (), (), and condition (H), we have

∫ u


g(t, v)dv =

∫ u+a(t)–a()t


f (t,w)dw –

∫ a(t)–a()t


f (t,w)dw, ∀t ∈ J ,u ∈ R ()

and
∣∣∣∣
∫ a(t)–a()t


f (t,w)dw

∣∣∣∣ ≤ ∣∣a(t) – a()t
∣∣(a + b

∣∣a(t) – a()t
∣∣p–)

≤ a
(
a + bp–ap–

)
= a, ∀t ∈ J . ()

So, (), (), and condition (H) imply

∫ (Hu)(t)


g(t, v)dv ≤

∫ (Hu)(t)+a(t)–a()t


f (t,w)dw + a

≤ c
{
(Hu)(t) + a(t) – a()t

} + d + a

≤ c
{[
(Hu)(t)

] + [
a(t) – a()t

]} + d + a

≤ c
[
(Hu)(t)

] + ca + d + a, ∀u ∈ L[J ,R], t ∈ J . ()

It is well known [],

‖G‖ = λ =


π , ()

whereG is defined by () and is regarded as a positive-definite operator from L[J ,R] into
L[J ,R], and λ denotes the largest eigenvalue ofG. It follows from (), (), and () that

�(u) ≥ 

(u,u) – c(Hu,Hu) – ca – d – a

=


(u,u) – c(Gu,u) – ca – d – a ≥ 


(u,u) –

c
π (u,u) – ca – d – a

=
(


–

c
π

)
‖u‖ – ca – d – a, ∀u ∈ L[J ,R], ()

which implies by virtue of  < c < π

 (see condition (H)) that

lim‖u‖→∞�(u) = ∞. ()

http://www.boundaryvalueproblems.com/content/2014/1/37
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So, there exists a r >  such that

�(u) >�(θ ) = , ∀u ∈ L[J ,R],‖u‖ > r. ()

It is well known [, ] that the ball T(θ , r) = {u ∈ L[J ,R] : ‖u‖ ≤ r} is weakly closed and
weakly compact and the functional �(u) is weakly lower semicontinuous, so, there exists
u∗ ∈ T(θ , r) such that

�
(
u∗) = inf

u∈T(θ ,r)
�(u) ≤ �(θ ). ()

It follows from () and () that

�
(
u∗) = inf

u∈L[J ,R]
�(u).

Hence �′(u∗) = θ and the theorem is proved. �

Example  Consider the BVP

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
–u′′(t) = 

u(t) sin(t – u(t)) – t, ∀t ∈ J ′,
�u|t=tk = ck (k = , , . . . ,m),
�u′|t=tk = dk (k = , , . . . ,m),
u() = u() = ,

()

where J = [, ],  < t < · · · < tk < · · · < tm < , J ′ = J\{t, . . . , tk , . . . , tm}, ck and dk (k =
, , . . . ,m) are any real numbers.

Conclusion BVP () has at least one solution u ∈ PC[J ,R]∩C[J ′,R].

Proof Evidently, () is a BVP of the form () with

f (t,u) =


u sin(t – u) – t. ()

It is clear that f ∈ C[J × R,R]. By (), we have

∣∣f (t,u)∣∣ ≤ 

|u| + , ∀t ∈ J ,u ∈ R. ()

Moreover, it is well known that

|u| ≤ 

(
 + u

)
, ∀u ∈ R. ()

So, () and () imply that

∣∣f (t,u)∣∣ ≤ 

u +



, ∀t ∈ J ,u ∈ R,

and consequently, condition (H) is satisfied for p = , a = 
 and b = 

 . On the other hand,
choose ε such that

 < ε <



(
π – 

)
. ()

http://www.boundaryvalueproblems.com/content/2014/1/37
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For |u| ≥ 
ε
, we have |u| ≤ εu, so,

|u| ≤ εu +

ε
, ∀u ∈ R. ()

By (), we have

∫ u


f (t, v)dv≤ 


u + |u|, ∀t ∈ J ,u ∈ R. ()

It follows from () and () that

∫ u


f (t, v)dv≤

(


+ ε

)
u +


ε
, ∀t ∈ J ,u ∈ R. ()

Since, by virtue of (),

 <


+ ε <

π


,

we see that () implies that condition (H) is satisfied for c = 
 + ε and d = 

ε
. Hence,

our conclusion follows from Theorem . �

By using the Mountain Pass Lemma and the Minimax Principle established by Am-
brosetti and Rabinowitz [, ], we have obtained in [] the existence of a nontrivial
solution and the existence of infinitely many nontrivial solutions for a class of nonlinear
integral equations. Since () is a special case of such nonlinear integral equations, we get
the following result for ().

Lemma  (Special case of Theorem  and Theorem  in []) Suppose the following.
(a) There exist p >  and a > , b >  such that

∣∣g(t, v)∣∣ ≤ a + b|v|p–, ∀t ∈ J , v ∈ R.

(b) There exist  ≤ τ < 
 andM >  such that

∫ v


g(t,w)dw ≤ τvg(t, v), ∀t ∈ J , |v| ≥M.

(c) g(t,v)
v →  as v→  uniformly for t ∈ J and g(t,v)

v → ∞ as |v| → ∞ uniformly for t ∈ J .
Then the integral equation () has at least one nontrivial solution in Lp[J ,R]. If, in addi-

tion,
(d) g(t, –v) = –g(t, v), ∀t ∈ J , v ∈ R.
Then the integral equation () has infinite many nontrivial solutions in Lp[J ,R].

Let us list more conditions for the function f (t,u).

(H) There exist  ≤ τ < 
 andM >  such that

∫ u


f
(
t, v + a(t) – a()t

)
dv ≤ τuf

(
t,u + a(t) – a()t

)
, ∀t ∈ J , |u| ≥M.

http://www.boundaryvalueproblems.com/content/2014/1/37
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(H) f (t,u+a(t)–a()t)
u →  as u →  uniformly for t ∈ J , and f (t,u+a(t)–a()t)

u → ∞ as |u| → ∞
uniformly for t ∈ J .

(H) f (t, –u + a(t) – a()t) = –f (t,u + a(t) – a()t), ∀t ∈ J , u ∈ R.

Theorem  Suppose that conditions (H), (H), and (H) are satisfied. Then BVP () has
at least one solution u ∈ PC[J ,R]∩C[J ′,R]. If, in addition, condition (H) is satisfied, then
BVP () has infinitely many solutions un ∈ PC[J ,R]∩C[J ′,R] (n = , , , . . .).

Proof In the proof of Lemma , we see that condition (H) implies condition (a) of Lem-
ma  (see ()). On the other hand, it is clear that conditions (H), (H), (H) are the same
as conditions (b), (c), (d) in Lemma , respectively. Hence the conclusion of Theorem 
follows from Lemma , Lemma , and Lemma . �

Example  Consider the BVP
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

–u′′(t) =

{
[u(t) – t], ∀≤ t < 

 ;
[u(t) + t – ], ∀ 

 < t ≤ ,
�u|t= 


= ,

�u′|t= 

= –,

u() = u() = .

()

Conclusion BVP () has infinite many solutions un ∈ PC[J ,R]∩C[J ′,R] (n = , , , . . .).

Proof Obviously, () is a BVP of form (). In this situation, J = [, ], m = , t = 
 , J

′ =
[, ]\{ 

 }, c = , d = –, and

f (t,u) =

{
(u – t), ∀ ≤ t ≤ 

 ;
(u + t – ), ∀ 

 < t ≤ .
()

It is clear that f (t,u) is continuous on J ′ × R, left continuous at t = t, and the right limit
f (t+ ,u) exists. By (), we have

∣∣f (t,u)∣∣ ≤
(

|u| + 


)

≤
(
max

{
|u|, 



})

≤ 
(

|u| +
(



))
= |u| + , ∀t ∈ J ,u ∈ R,

so, condition (H) is satisfied for p = , a =  and b = . By (), we have

a(t) =

{
, ∀ ≤ t ≤ 

 ;
 – t, ∀ 

 < t ≤ ,
()

so, a() = – and () and () imply

f
(
t,u + a(t) – a()t

)
= u, ∀t ∈ J ,u ∈ R, ()

and, consequently, (H) is satisfied for τ = 
 and anyM > . On the other hand, from ()

we see that conditions (H) and (H) are all satisfied. Hence, our conclusion follows from
Theorem . �
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