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Abstract
This paper is concerned with the nonlinear equation involving the fractional
Laplacian: (–�)sv(x) = b(x)f (v(x)), x ∈ R, where s ∈ (0, 1), b :R→ R is a periodic,
positive, even function and –f is the derivative of a double-well potential G. That is,
G ∈ C2,γ (0 < γ < 1), G(1) = G(–1) < G(τ ) ∀τ ∈ (–1, 1), G′(–1) = G′(1) = 0. We show the
existence of layer solutions of the equation for s≥ 1

2 and for some odd nonlinearities
by variational methods, which is a bounded solution having the limits ±1 at ±∞.
Asymptotic estimates for layer solutions as |x| → +∞ and the asymptotic behavior of
them as s ↑ 1 are also obtained.
MSC: 35B20; 35B40; 49J45; 82B26
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1 Introduction
In this paper we study the fractional Laplacian

(–�)sv(x) = b(x)f
(
v(x)

)
, x ∈R, (.)

where s ∈ (, ), and (–�)s is the fractional Laplacian defined by

(–�)sv = Cs P.V.
∫
R

v(x) – v(y)
|x – y|+s dy.

Here P.V. stands for the Cauchy principle value and Cs is a positive constant multiplier
depending only on s.
The fractional Laplacian is a nonlocal operator which can be localized as

{
–div(ya∇u) =  in R


+,

– limy↓+ ya ∂u
∂y =


ds b(x)f (u) on ∂R

+,
(.)

where a =  – s ∈ (–, ), ds = s– �(s)
�(–s) and u(x, ) = v(x). Moreover u(·, ·) can be ex-

pressed by a Poisson kernel,

u(x, y) = Ps(·, y) ∗ v = ps
∫
R

ys

(|z| + y) +s
v(x – z)dz for every y > ,
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which is called the s-extension of v. ps is a positive constant depending only on s. For more
details as regards the fractional Laplacian, readers can refer to [–] and the references
therein.
In view of the celebrated De Giorgi conjecture (see [–]), Cabré and Sire [, ] con-

sidered layer solutions of the nonlocal equation

(–�)sv = f (v) in R. (.)

The necessary and sufficient conditions for the existence of one-dimensional layer solu-
tions were given as

G() =G(–) <G(s) ∀s ∈ (–, ), G′() =G′(–) = ,

where G′ = –f . All these were obtained by a Hamiltonian equality and a Modica-type es-
timate for layer solutions. By the sliding method, the layer solution of (.) was proved to
be the unique local minimizer which increases in x with values varying from – to . The
regularity, Hopf principle, maximum principle as well as a Harnack inequality for (.) or
for its extension equation (.) (in this case b = ) were given. Some of them will be used
in our paper.
If b is not a constant and is periodic, the perturbed equation (.) becomes complicated.

The aim of this paper is to study the layer solution of (.) with periodic perturbed non-
linearity.

Definition . A function v ∈ (L∞ ∩ Cβ )(R) ( < β < ) is said to be a layer solution of
(.), if v solves (.),

(–�)sv(x) = b(x)f
(
v(x)

)
, x ∈R

and

lim
x→±∞ v(x) =±.

Definition . A function u ∈ L∞(R
+)∩Cβ (R

+) is said to be a layer solution of (.), if u
solves (.),{

–div(ya∇u) =  in R

+,

– limy↓+ ya ∂u
∂y =


ds b(x)f (u) on ∂R

+

and

lim
x→±∞u(x, ) = ±.

Namely, u(x, ) is the corresponding layer solution of (.).

Different from the unperturbed case (.), the inhomogeneous term b(x)f (u) depends
explicitly on x in (.) and (.); the sliding method cannot be used and layer solutions of
them have nomonotonicity in the direction of x. Themethod for obtaining layer solutions
in [] and [] cannot be used in our case directly; some difficulties need to be solved.

http://www.boundaryvalueproblems.com/content/2014/1/41
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In the paper, we consider the extension problem (.). Obviously, (.) has a variational
structure.
Denote

� ⊂R

+, a bounded Lipschitz domain,

BR(x, y) ⊂R
, a ball centered at (x, y) ∈R

 with radius R,

B+
ε (x, ) = Bε(x, )∩R


+,

∂� =
{
(x, ) ∈ ∂� ∩ ∂R

+|∃ε > ,B+
ε (x, )⊂ �

}
,

∂+� = ∂� ∩R
+.

For u ∈ H(ya,�), the norm is

‖u‖H(ya ,�) =
(∫

�

ya|∇u| dxdy
) 


+

(∫
�

ya|u| dxdy
) 


.

The energy functional of u on � is given by

E(u,�) = ds
∫

�

ya


|∇u| dxdy +

∫
∂�

b(x)G
(
u(x, )

)
dx. (.)

We state our main results in the following.
We show, via a Liouville result, the existence of layer solutions of (.) for s ≥ 

 and for
some odd nonlinearities.

Theorem . Let s ≥ 
 . Assume that b, f ∈ C,γ (R) ( < γ < ):

() b :R →R is -periodic, even, not constant and positive; denote b =maxR b and
b =minR b;

() f (–τ ) = –f (τ ) for any τ ∈ [–, ], f (–) = f () = f () = , f >  in (, ) and f <  in
(–, ).

Obviously, if G′ = –f ,

G(–) =G() <G(τ ) for τ ∈ (–, ), G′() =G′(–) = .

There exists a layer solution v ∈ C,β (R) (for some  < β < ) of (.):{
(–∂xx)sv(x) = b(x)f (v(x)) in R,
v → ± as x→ ±∞.

(.)

In addition, v is odd.

Furthermore we obtain asymptotic estimates of the layer solutions of (.) by comparing
with a layer solution of the unperturbed equation (.).

Theorem . Let b ∈ C,γ ∩ L∞ is positive. Let f ∈ C,γ (R) (γ >max (,  – s)) satisfy
(i) G(–) =G() <G(τ ) for τ ∈ (–, ), G′() =G′(–) = ;
(ii) G′′() > , G′′(–) > .

http://www.boundaryvalueproblems.com/content/2014/1/41
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If v is a layer solution of (.), then the following asymptotic estimates hold:

cx–s ≤ | – v| ≤ Cx–s for x > , (.)

c|x|–s ≤ | + v| ≤ C|x|–s for x < – (.)

for some constants  < c < C.

Finally we investigate the asymptotic behavior of vs as s ↑  and obtain a local elliptic
equation, which is stated as follows.

Theorem . Let s ∈ [  , ). Let {vsk } be a sequence of layer solutions of (.) in Theorem ..
Then, there exists a subsequence denoted again by {vsk } converging locally uniformly to a
function v ∈ C(R) as sk ↑ , which is also a layer solution of the local elliptic equation{

–vxx(x) = b(x)f (v(x)) in R,
limx→±∞ v(x) =±.

(.)

In addition,



(
vx

) = b(x)
{
G

(
v(x)

)
–G()

}
+

∫ +∞

x
b′(t)

{
G

(
v(t)

)
–G()

}
dt. (.)

For convenience of the presentation we will use C for a general positive constant; such
a C is usually different in different contexts.

2 Some preliminaries and properties
In this paper, we mainly study the extension equation (.). To make our problems clear,
we present several properties of layer solutions.

Lemma . Let u be a bounded solution of (.),{
–div(ya∇u) =  in R


+,

– limy↓+ ya ∂u
∂y =


ds b(x)f (u) on ∂R

+

and

lim
x→±∞u(x, ) = L± (.)

with two constants L±. Then,
()

f
(
L+

)
= f

(
L–

)
= ; (.)

()

lim
x→±∞u(x, y) = L± (.)

for every y ≥ ;

http://www.boundaryvalueproblems.com/content/2014/1/41
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()

∥∥u – L±∥∥
L∞(B+R(x,))

→  as x → ±∞; (.)

()

‖∇xu‖L∞(B+R(x,)) +
∥∥∥∥ya ∂u

∂y

∥∥∥∥
L∞(B+R(x,))

→  as x→ ±∞. (.)

Proof Our proof uses the invariance of the problem under periodic translations in x and
a compactness argument.
Denote un(x, y) = u(x+n, y) for n ∈ Z. Since b is -periodic, un still satisfies the equations

{
–div(ya∇un) =  in R


+,

– limy↓+ ya ∂un
∂y = 

ds b(x)f (u
n(x, )) on ∂R

+.
(.)

By regularity results in [] and [], we see that up to a subsequence,

un → u±∞ in C
loc

(
R

+
)
,

∇xun → ∇xu±∞ in C
loc

(
R

+
)
,

ya
∂un

∂y
→ ya

∂u∞

∂y
in C

loc
(
R

+
)

as n→ ±∞. Then u±∞ solves the equations

{
–div(ya∇u±∞) =  in R


+,

– limy↓+ ya ∂u±∞
∂y = 

ds b(x)f (u
±∞) on ∂R

+,
(.)

and it follows that u±∞(x, )≡ L± for every x ∈R.
Consider the Dirichlet problem

{
–div(ya∇u±∞) =  in R


+,

u±∞(x, )≡ L± on ∂R
+.

(.)

u±∞ ≡ L± is the unique solution of (.) by Corollary . in []. As a consequence, (.)
and (.) are obvious. �

The following lemma is a necessary condition for a local minimizer of the energy func-
tional E .

Lemma . Let u be a local minimizer of the energy functional E under perturbations in
[–, ].That is, for any bounded Lipschitz domain� ⊂R


+ and for any ξ ∈H(ya,�) having

compact support in � ∪ ∂� such that u + ξ ∈ [–, ],

E(u,�) ≤ E(u + ξ ,�).

http://www.boundaryvalueproblems.com/content/2014/1/41
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Let

lim
x→±∞u(x, ) = ±. (.)

Then

G() =G(–) ≤G(τ ) for all τ ∈ (–, ). (.)

Proof To show (.), it is sufficient to prove thatG() ≤G(τ ) andG(–) ≤G(τ ) for all τ ∈
[–, ]. Suppose G(τ) < G() for some point τ ∈ [–, ] by contradiction. For simplicity,
assume that G(τ) =  by adding a constant.
By (.),

lim inf
l→+∞

E
(
u,B+

R(l, )
) ≥ lim inf

l→+∞

∫
∂B+R(l,)

b(x)G
(
u(x, )

) ≥ bεR (.)

for some ε > .
Let ξR be a cut-off function with values in [, ],

ξR =

{
 in B(–η)R,
 in R

n+ \ BR,

where η ∈ (, ) will be specified later, and |∇ξR| ≤ 
ηR .

Define ξR,l(x, y) = ξR(x – l, y). Let w = τξR,l + ( – ξR,l)u, then w = u on ∂+B+
R(l, ) and

w≡ τ in B+
(–η)R(l, ). We have

lim sup
l→+∞

EB+R(l,)(w) = lim sup
l→+∞

{
ds

∫
B+R(l,)

ya


∣∣( – ξR,l)∇u + (τ – u)∇ξR,l

∣∣
+

∫
∂B+R(l,)

b(x)G(w)
}

≤ ds
∫
B+R

ya|∇ξR,l| + bmax
[–,]

G · ηR

≤ CdsRa

η + bmax
[–,]

G · ηR. (.)

We use (.) in the first inequality above.
Having chosen η = bε

bmax[–,]G
, by (.) and (.),

lim sup
l→+∞

E
(
w,B+

R(l, )
)
< lim inf

l→+∞
E
(
u,B+

R(l, )
)

for large R > . This contradiction leads to G() ≤ G(τ ) for all τ ∈ [–, ]. By the same
discussion, G(–) ≤G(τ ) for all τ ∈ [–, ]. Thus we complete the proof. �

As in [], we construct a Hamiltonian equality which will be used in the proof of Theo-
rem .. For this purpose a lemma is in order, for whose proof see Lemma . in [].

http://www.boundaryvalueproblems.com/content/2014/1/41
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Lemma. Let u ∈ L∞(R
+) be a solution of (.).Then for every x ∈R,

∫ ∞
 ya|∇u| dy < ∞.

In addition, the integral can be differentiated with respect to x ∈R under the integral sign.
We have

lim
M→+∞

∫ ∞

M
ya|∇u| dy =  (.)

uniformly in x ∈R. If u is a layer solution of (.),

lim|x|→+∞

∫ ∞


ya|∇u| dy = . (.)

Proposition . (Hamiltonian equality) Let u be a layer solution of (.) for a ∈ (–,  ),
i.e., ⎧⎪⎨⎪⎩

–div(ya∇u) =  in R

+,

– limy↓+ ya ∂u
∂y =


ds b(x)f (u) on ∂R

+,
u(x, )→ ± as x → ∞.

For every x ∈R, the Hamiltonian equality holds:

ds
∫ ∞



ya


{
ux – uy

}
dy = b(x)

{
G

(
u(x, )

)
–G()

}
+

∫ ∞

x
b′(t)

{
G

(
u(t, )

)
–G()

}
dt. (.)

As a consequence,∫ +∞

–∞
b′(x)

{
G

(
u(x, )

)
–G()

}
dx = . (.)

Proof We note that the integral in (.) is well defined since s = –a
 ∈ (  , ) and

G
(
u(x, )

)
–G() =

G′′(t)


(
u(x, ) – 

) =O
(|x|–s) as |x| → ∞,

where t is some point between u(x, ) and .
By Lemma ., the left integral in (.) can be differentiated with respect to x,

d
dx

ds
∫ ∞



ya


{
ux – uy

}
dy = ds

∫ ∞


ya{uxuxx – uyuyx}dy

= ds
∫ ∞


ya

{
uxx + uyy +

a
y
uy

}
ux dy + ds lim

y→+
yauyux

= –b(x)f
(
u(x, )

)
ux(x, ).

In the second equality above we use the fact that limy→∞ yauyux =  (see []). We have

d
dx

{
b(x)

(
G

(
u(x, )

)
–G()

)
+

∫ +∞

x
b′(t)

(
G

(
u(t, )

)
–G()

)
dx

}
= –b(x)f

(
u(x, )

)
ux(x, ).

http://www.boundaryvalueproblems.com/content/2014/1/41


Hu Boundary Value Problems 2014, 2014:41 Page 8 of 20
http://www.boundaryvalueproblems.com/content/2014/1/41

Thus,

ds
∫ ∞



ya


{
ux – uy

}
dy≡ b(x)

{
G

(
u(x, )

)
–G()

}
+

∫ +∞

x
b′(t)

{
G

(
u(t, )

)
–G()

}
dt +C. (.)

Let x→ +∞, the left of (.) converging to zero by (.); thus C =  and (.) is proved.
Letting x → –∞, (.) is also obtained. �

To study asymptotic estimates of layer solutions of (.), we recall an explicit layer solu-
tion of the unperturbed problem (.).

Lemma . ([], Theorem .) Let s ∈ (, ). For every t > , the C∞ function

vts(x) = sign(x)

π

∫ ∞



sin(z)
z

e–t(
z
|x| )s dz (.)

is the layer solution to the fractional equation

(–∂xx)svts = f ts
(
vts

)
in R, (.)

for a nonlinearity f ts ∈ C([–, ]) which is odd and twice differentiable in [–, ] and which
satisfies

f ts () = f ts () = , f ts >  in (, ),
(
f ts

)′(±) = –

t
.

In addition, the following limits exist:

lim|x|→∞ |x|+s(∂xvts)(x) = t
s
π

sin(πs)�(s) >  (.)

and, as a consequence,

lim
x→±∞|x|s∣∣(vts)(x)∓ 

∣∣ = t

π
sin(πs)�(s) > . (.)

3 Existence and asymptotic estimates
To prove the existence of layer solutions, we introduce a Liouville result where a ≤  is
required. This is the reason why we restrict ourselves to the case s≥ 

 in Theorem ..

Proposition . Let a ≤ . Suppose u is a bounded nonnegative function which satisfies
weakly the problem

{
–div(ya∇u) ≤  in R


+,

– limy↓+ ya ∂u
∂y ≤  on ∂R

+.
(.)

Then u ≡ C a.e. in R

+.

http://www.boundaryvalueproblems.com/content/2014/1/41
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Proof Since a ≤ , Ra ≤  for R > . Let ξ be a smooth function with values in [, ], ξ = 
in BR and ξ =  outside of BR, |∇ξ | ≤ CR–. Multiplying (.) with uξ  and integrating by
parts, we have that∫

B+R

ya|∇u| ≤
∫
B+R

ya|∇u|ξ  ≤ 
∫
R

+

yaξu|∇u||∇ξ |

≤ 
{∫

B+R\B+R
ya|∇u|ξ 

} 

{∫

B+R\B+R
ya|∇ξ |u

} 


≤ C
{∫

B+R\B+R
ya|∇u|ξ 

} 
 (
RR+aR–) 



≤ C
{∫

B+R\B+R
ya|∇u|ξ 

} 

.

Thus
∫
R

+
ya|∇u| ≤ C for some constant C independent of R. Let R → ∞,∫

B+R\B+R y
a|∇u|ξ  → . We deduce that

∫
R

+
ya|∇u| =  and u≡ C a.e. in R


+. �

Next we prove an existence result about the local minimizer of E .

Lemma . Let � ⊂ R

+ be a bounded Lipschitz domain. Let w ∈ C(�)∩H(ya,�) be a

given function with |w| ≤ ; b is a bounded positive function.
Suppose that

f ()≤  ≤ f (–),

the energy functional E(u,�) admits a minimizer u ∈ Cw,a = {w ∈ H(ya,�), – ≤ w ≤
 a.e. in �,w = w on ∂+� in the weak sense}, which solves weakly

⎧⎪⎨⎪⎩
–div(ya∇u) =  in �,
– limy↓+ ya ∂u

∂y =

ds b(x)f (u(x, )) on ∂�,

u = w on ∂+�.
(.)

Moreover, u is a stable solution of (.), i.e.,

ds
∫

�

ya|∇ξ | dxdy –
∫

∂�

b(x)f ′(u)ξ  dx ≥ , (.)

for every ξ ∈H(�, ya) such that ξ ≡  on ∂+� in the weak sense.

Proof Consider the set Hw,a(�) = {w ∈ H(ya,�),w ≡ w on ∂+� in the weak sense} ⊃
Cw,a, Hw,a(�) �= ∅ since w ∈ Hw,a(�). Denote

f̃ =

⎧⎪⎨⎪⎩
f () if t ≥ ,
f if –  < t < ,
f (–) if t ≤ –,

and G̃ = –
∫ u
 f̃ . Up to an additive constant, G̃ =G in [–, ].

http://www.boundaryvalueproblems.com/content/2014/1/41
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Consider the energy functional

Ẽ(u,�) = ds
∫

�

ya


|∇u| dxdy +

∫
∂�

b(x)G̃
(
u(x, )

)
dx. (.)

If Ẽ has an absolute minimizer u in Cw,a(�), the statement of Lemma . is proved.
For every function w ∈ Hw,a(�), w – w ∈ H(ya,�) and vanishes on ∂+� in the weak

sense. We can extend w–w in R

+ by zeroes outside of � and w–w ∈H(ya,R

+). By the
trace theorem and the Sobolev imbedding theorem (see [, , ]),

H(ya,R
+
)
↪→ Lp(R)

for p = 
–s if s <


 or for any  ≤ p < ∞ if s≥ 

 . Moreover, H(ya,R
+) ↪→↪→ L(∂�).

Since G̃ has linear growth at infinity, Ẽ is well defined, bounded below and coercive in
Hw,a. There exists an absolute minimizer u ∈Hw,a. By the first order variation, we have{

–div(ya∇u) =  in �,
– limy↓+ ya ∂u

∂y =

ds b(x)̃f (u(x, )) on ∂�.

(.)

Multiply (u – )+ with (.) and integrate in �,

ds
∫

�

ya
∣∣∇(u – )+

∣∣ dxdy – ∫
∂�

b(x)f ()(u – )+ dx = .

Since f () ≤ ,
∫
�
ya|∇(u – )+| dxdy ≤ . Thus (u – )+ ≡  a.e. in �, i.e., u ≤  a.e. in �.

Similarly we also get u ≥ – a.e. in �. Hence u ∈ Cw,a(�). (.) follows from (.), and
(.) comes from the second order variation of E . �

Remark . Suppose that b is an even function, f and w are odd with respect to x, with a
slight modification we can also show that there is an odd minimizer in the admissible set
{w ∈ Cw,a|w(–x, y) = –w(x, y) for every y ≥ }.

Now we start to show the existence of layer solutions of (.).

Theorem . Let s ≥ 
 . Let b ∈ (C,γ ∩ L∞)(R) and f ∈ C,γ (R) ( < γ < ):

(a) b :R →R is an even positive function, b(x + ) = b(x) ∀x ∈R,
(b) f (–τ ) = –f (τ ) for any τ ∈ [–, ], f (–) = f () = f () = , f >  in (, ) and f <  in

(–, ).
Then there exists a layer solution u of (.) in R


+:{

–div(ya∇u) =  in R

+,

– limy↓+ ya ∂u
∂y =


ds b(x)f (u(x, )) on ∂R

+,
(.)

which is odd with respect to x, i.e., u(–x, y) = –u(x, y), and, for every y ≥ ,

lim
x→±∞u(x, y) = ±. (.)

http://www.boundaryvalueproblems.com/content/2014/1/41
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Furthermore, u is a local minimizer of the energy functional E under odd perturbations
in [–, ], and it is stable in the sense that

ds
∫
R

+

ya|∇ξ | dxdy –
∫
R

b(x)f ′(u(x, ))ξ  dx ≥  (.)

for every function ξ ∈ C(R
+) with compact support in R

+, ξ (–x, y) = –ξ (x, y) and u + ξ ∈
[–, ].

Proof The proof is divided into three parts. For simplicity, we make G() = G(–) =  by
adding a constant.
Step . We show that there exists a solution with values in [–, ] of (.) which is odd

with respect to the variable x for every y≥ .
Let QR = [–R,R]× [,R] and w = arctanx

arctanR . Define the admissible set

Cw,a,o =
{
w ∈ Cw,a(QR),∀y≥ ,w(–x, y) = –w(x, y)

}
.

By Remark ., there is a minimizer uR in Cw,a,o,⎧⎪⎨⎪⎩
–div(ya∇uR) =  in QR,
– limy↓+ ya ∂uR

∂y = 
ds b(x)f (uR(x, )) on ∂QR,

uR = w on ∂+QR.
(.)

Define

uR :=

{
uR(–x, y) if uR(x, y) <  and x > ,
uR(x, y) if uR(x, y)≥  and x > 

and uR(x, y) := –uR(–x, y) for x≤ . Thus uR ≥  for x >  and y ≥ . Obviously uR is still a
minimizer of E(·,QR).
By the regularity results in [], uR,∇xuR, ya ∂uR

∂y ∈ Cβ (QR) for some  < β <  and the
continuous module is uniform bounded. Up to a subsequence, uR → u, (uR)x → ux and
ya ∂uR

∂y → ya ∂u
∂y in C(B+

s ) as R → ∞ for all R > s + . By the canonical diagonal procedure,
u solves⎧⎪⎨⎪⎩

–div(ya∇u) =  in R

+,

– limy↓+ ya ∂u
∂y =


ds b(x)f (u(x, )) on ∂R

+,
u(–x, y) = –u(x, y) in R

+,
(.)

and by the Hopf maximum principle – < u < .
Step . We show that there exists at least a subsequence xn → ∞ such that u(xn, )→ .
First we claim that u is a local minimizer under odd perturbations in [–, ]. That is,

E(u,�) ≤ E(w,�)

for any � ⊂ R

+ and for any odd function w ∈ H(ya,�) with |w| ≤  and w = u on ∂+� in

the weak sense.
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Let ξ ∈ C
c (B+

s ∪ ∂B+
s ) is odd with respect to x for every y ≥  and uR + ξ ∈ [–, ]. Since

– < uR < , uR + ( – ε)ξ ∈ (–, ) for ε ∈ (, ). We have

E
(
uR,B+

s
) ≤ E

(
uR + ( – ε)ξ ,B+

s
)

for R > s + .

Let R → ∞, and

E
(
u,B+

s
) ≤ E

(
u + ( – ε)ξ ,B+

s
)

for every s >  and u + ( – ε)ξ ∈ [–, ]. Our claim is proved.
If w(–x, y) = –w(x, y),

E
(
w,B+

s
)
= E

(
w,B++

s
)
= 

{
ds

∫
B++s

ya


|∇w| dxdy +

∫
∂B++s

b(x)G(w)dx
}
,

where B++
s = {(x, y) ∈ B+

s ,x > , y ≥ }. Therefore u is also a local minimizer of E in R
n+
++ =

{(x, y) ∈R

+,x > , y≥ } with perturbations in [–, ], i.e.,

E(u,�) ≤ E(w,�)

for any � ⊂R

++ and for any w ∈H(ya,�) with |w| ≤  and w = u on ∂+� in weak sense.

Suppose u(xn, ) �  for any sequence xn → ∞ by contradiction. |u(x, )| <  – ε for
some  < ε <  and x ∈ R. Hence  ≤ u(x, y) <  – ε for all x >  and y ≥  by the fact that
u(·, y) = Ps(·, y) ∗ u(·, ).
Let R > . Let ϕR be a cut-off function with values  in B+

(–η)R and zeroes outside of B+
R,

|∇ϕR| ≤ C
ηR for some  < η <  determined later.

Denote ϕR = ϕR(|(x– l, y)|). Letw =  ·ϕR+(–ϕR)u ∈ H(ya,B+
R(l, )),w≡ u on ∂+BR(l, ).

For l > R,

E
(
w,B+

R(l, )
)
= ds

∫
B+R(l,)

ya


∣∣( – ϕR)∇u + ( – u)∇ϕR

∣∣ dxdy + ∫
∂B+R(l,)

b(x)G(w)dx

≤ds
∫
B+R(l,)

ya


|∇u| dxdy + ds

∫
B+R(l,)

ya


|∇ϕR| dxdy

+ ds
{∫

B+R(l,)
ya|∇u| dxdy

} 

{∫

B+R
ya|∇ϕR| dxdy

} 


+
∫

∂(B+R\B+(–η)R)
b(x)G(w)dx

≤ ds
∫
B+R(l,)

ya


|∇u| dxdy + (

Cη–R–RR+a)
+

{
CR

[∫ R


yay– dy +

∫ 



(
ya + y–a

)
dy

]} 
 (
Cη–Ra) 



+ bmax
[,]

G · ηR

≤ ds
∫
B+R(l,)

ya


|∇u| dxdy +Cη–Ra +Cη–R

+a
 + bmax

[,]
G · ηR.
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Here the constant C does not depend on R, we use the gradient estimates (see []) in the
second line from the bottom.
On the other hand,

E
(
u,B+

R(l, )
) ≥ ds

∫
B+R(l,)

ya


|∇u| dxdy + b min

[,–ε]
G · R.

Choose η = bmin[,–ε]G
bmax[,]G

, E(u,B+
R(l, )) > E(w,B+

R(l, )) for large R. This contradiction leads
to the result that there exists at least a sequence xn → ∞ such that u(xn, )→ .
Step . We show that u is the layer solution, i.e., limx→±∞ u(x, ) = ±.
Let un(x, y) = u(x + n, y) and n ∈ Z

+. By the regularity results [], up to a subsequence,

un → u∞ in C
loc

(
R

+
)
,

unx → u∞
x in C

loc
(
R

+
)
,

ya
∂un

∂y
→ ya

∂u∞

∂y
in C

loc
(
R

+
)

as n→ ∞.⎧⎪⎨⎪⎩
–div(ya∇u∞) =  in R


+,

– limy↓+ ya ∂u∞
∂y = 

ds b(x)f (u
∞(x, )) on ∂R

+,
≤ u∞ ≤  in R


+.

(.)

Define ũ =  – u∞, we have⎧⎪⎨⎪⎩
–div(ya∇ũ) =  in R


+,

– limy↓+ ya ∂ũ
∂y = – 

ds b(x)f (u
∞(x, ))≤  on ∂R

+,
≤ ũ ≤  in R


+.

(.)

ũ ≡ C by Proposition ., f (u∞(x, )) = f (C) ≡  and u∞ ≡  or . Thus u∞ ≡  by step .
That is, u →  as x→ ∞. u → – as x→ –∞ is achieved by odd symmetry.
u is the desired layer solution. �

Proof of Theorem . It follows from Theorem .; for the regularity of v see []. �

Lastly we give asymptotic estimates for layer solutions of (.) as |x| → ∞.

Proof of Theorem . Let v be a layer solution of (.),

{
(–∂xx)sv(x) = b(x)f (v(x)) in R,
limx→±∞ v =±.

(.)

Then

(–∂xx)s( – v) – b(x)f ′(ξ)( – v) =  in R, (.)

where ξ is some point between v(x) and .

http://www.boundaryvalueproblems.com/content/2014/1/41
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Consider the layer solution vts of the unperturbed problem in Lemma .,

(–∂xx)s
(
 – vts

)
–

(
f ts

)′(ξ)
(
 – vts

)
=  in R (.)

with ξ is some point between vts(x) and .
Since –(f ts )′() =


t , choose t large enough such that 

t < –bf ′() and choose x ∈ R such
that –(f ts )′(ξ) <


t < –bf ′(ξ) for all x > x.

Choose C >  such that C( – vts) >  – v in (–∞,x], which can be done since vts, v→ –
as x→ –∞.
Define

d(x) =

{

t in (x, +∞),
Cf ts (vts)–b(x)f (v)
C(–vts)–(–v)

in (–∞,x],

d(x) ∈ L∞. We have

{
(–∂xx)s{C( – vts) – ( – v)} + d(x){C( – vts) – ( – v)} ≥  in R,
C( – vts) – ( – v) >  in (–∞,x].

(.)

Obviously, if infR{C( – vts) – ( – v)} < , it is achieved at some point x ∈ (x, +∞). Since
d >  in (x, +∞), (–∂xx)s{C(– vts)– (– v)}(x) ≥  from the first inequality of (.), which
contradicts with the fact that

(–∂xx)s
{
C

(
 – vts

)
– ( – v)

}
(x)

=
∫
R

{C( – vts) – ( – v)}(x) – {C( – vts) – ( – v)}(y)
|x – y|+s dy < .

Therefore ( – v)≤ C( – vts) for C >  given from above.
On the other hand, choose small t >  such that –bf ′() < 

t and choose x
 ∈R such that

–bf ′(ξ) < 
t < –(f ts )′(ξ) for all x > x. Choose c >  such that c( – vts) <  – v in (–∞,x].

Define

d̃(x) =

{

t in (x, +∞),
b(x)f (v)–cf ts (vts)
(–v)–c(–vts)

in (–∞,x]

and obviously d̃(x) ∈ L∞.
Then,

{
(–∂xx)s{( – v) – c( – vts)} + d̃(x){( – v) – c( – vts)} ≥  in R,
( – v) – c( – vts) >  in (–∞,x].

(.)

If infR{( – v) – c( – vts)} < , it is only achieved at some point x ∈ (x, +∞). Since d̃ >
 in (x, +∞), (–∂xx)s{( – v) – c( – vts)}(x) ≥  from the first inequality of (.), which
contradicts the fact that (–∂xx)s{( – v) – c( – vts)}(x) < . Thus c( – vts) ≤ ( – v) for some
 < c < C given from above.

http://www.boundaryvalueproblems.com/content/2014/1/41
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Therefore,

cx–s ≤ | – v| ≤ Cx–s for x > 

by Lemma .. Similarly,

c|x|–s ≤ | + v| ≤ C|x|–s for x < –.

Here c and C maybe different from above. �

4 Asymptotic as s ↑ 1
In this section we prove Theorem ., which consists of two lemmas.

Lemma . Let {vsk } be a sequence of layer solutions of (.) in Theorem .. Then there
exists a subsequence denoted again by {vsk }, converging locally uniformly to v which solves
the local elliptic equation

–vxx(x) = b(x)f
(
v

)
in R. (.)

Proof Consider uak , the s-extension of vsk , which solves{
–div(yak∇uak ) =  in R


+,

–( + ak) limy↓+ yak∂yuak = Cakb(x)f (uak (x, )) on ∂R
+,

(.)

where ak =  – sk and Cak =
+ak
dsk

= (–sk )
dsk

. Obviously ak ↓ – as sk ↑ .

Let ξ ∈ C
c (R

+). Multiplying (.) with ξ and integrating in R

+,

( + ak)
∫
R

+

yak∇uak∇ξ dxdy –Cak

∫
R

b(x)f
(
uak (x, )

)
ξ dx = . (.)

Choose ξ (x, y) = ξ(x)ξ(y), ξ ∈ C
c (R) and ξ is a cut-off function which equals  in [, ]

and  in [,∞), |ξ ′
| ≤ C for some constant C > . Thus (.) can be rewritten as

( + ak)
∫
R

+

yak
{
ξ ′
(x)ξ(y)∂xuak + ξ(x)ξ ′

(y)∂yuak
}
dxdy

= Cak

∫
R

b(x)f
(
uak (x, )

)
ξ(x)dx. (.)

By the regularity results in [], the continuousmodule does not depend on s for s > s > 
 .

Up to a subsequence,

uak → u– in C
loc

(
R

+
)
,

(uak )x → (u–)x in C
loc

(
R

+
)

and

Cak =
( – sk)

dsk
=

( – sk)
sk– �(sk )

�(–sk )

→ 

http://www.boundaryvalueproblems.com/content/2014/1/41
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as sk ↑  (or equivalently ak ↓ –). Then

Cak

∫
R

b(x)f
(
uak (x, )

)
ξ dx →

∫
R

b(x)f
(
u–(x, )

)
ξ dx as ak ↓ –. (.)

For the first integral in (.), we consider

( + ak)
∫ ∞


yak ξ(y)∂xuak dy

= ( + ak)
∫ δ


yak ξ(y)

{
∂xuak – u′

–(x)
}
dy

+ ( + ak)
∫ δ


yak ξ(y)u′

–(x)dy + ( + ak)
∫ ∞

δ

yak ξ(y)∂xuak dy

= I + I + I, (.)

|I| ≤ ( + ak)
∫ δ


yak ξ(y)

∣∣∂xuak – u′
–(x)

∣∣dy≤ εδ+ak (.)

for  < δ <  and small ε > . Here we use the fact that ∂xuak → u′
–(x) locally uniformly in

R
+. We have

I = u′
–(x)( + ak)

∫ δ


yak dy = δ+aku′

– → u′
– as ak ↓ –. (.)

Since |∇uak | ≤ C
y for y >  and C independent of ak (see []),

|I| ≤ C( + ak)
∫ ∞

δ

yak– dy = C
 + ak
ak

δak →  as ak ↓ –. (.)

By (.)-(.),

( + ak)
∫ ∞


yak ξ(y)∂xuak dy→ u′

–

and

( + ak)
∫
R

+

yak ξ ′
(x)ξ(y)∂xuak dxdy→

∫
R

ξ ′
(x)u

′
– dx, (.)∣∣∣∣( + ak)

∫
R

+

yak ξ(x)ξ ′
(y)∂yuak dxdy

∣∣∣∣
≤

∫
R

∣∣ξ(x)∣∣dx( + ak)
∫ 


yak

∣∣ξ ′
(y)

∣∣|∂yuak |dy
≤ C( + ak)

∫ 


yak– dy = C

 + ak
ak

(
ak – 

) →  (.)

as ak ↓ –.
Therefore, by (.), (.), (.), and (.),∫

R

u′
–(x)ξ

′
(x)dx =

∫
R

b(x)f
(
u–(x)

)
ξ(x)dx. (.)

http://www.boundaryvalueproblems.com/content/2014/1/41
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That is,

–vxx = b(x)f
(
v

)
(.)

in the weak sense (u– = v). By the regularity theory of elliptic equations, v is also a clas-
sical solution of (.). �

Lemma . v is also a layer solution of (.), i.e., v → ± as x± ∞.

Proof Claim . v is a local minimizer in (,∞) under perturbations in [–, ]. That is,

F
(
v, I

) ≤F
(
v + ξ, I

)
(.)

for any bounded open interval I ⊂ (,∞) and for any ξ ∈ C
(I) such that |v + ξ| ≤ ,

where

F (w, I) :=
∫
I

{ |wx|


+ b(x)G(w)
}
dx for every w ∈ H(I).

Indeed, for the test function ξ in Lemma . with the additional property that |uak +ξ | ≤
, we have

 ≤ E
(
uak + ( – ε)ξ , I × [,R]

)
– E

(
uak , I × [,R]

)
=
 + ak


∫
I×[,R]

yak
∣∣∇(

uak + ( – ε)ξ
)∣∣ dxdy +Cak

∫
I
b(x)G

(
uak + ( – ε)ξ

)
dx

–
 + ak


∫
I×[,R]

yak |∇uak | dxdy –Cak

∫
I
b(x)G(uak )dx

=
 + ak


∫
I×[,R]

yak
∣∣∂xuak + ( – ε)ξ ′

(x)ξ(y)
∣∣ dxdy

–
 + ak


∫
I×[,R]

yak |∂xuak | dxdy

+ ( + ak)
∫
I×[,R]

yak∂yuak ( – ε)ξ(x)ξ ′
(y)dxdy

+
 + ak


∫
I×[,R]

yak
(
( – ε)ξ(x)ξ ′

(y)
) dxdy

+Cak

∫
I
b(x)G

(
uak + ( – ε)ξ(x)

)
dx –Cak

∫
I
b(x)G(uak )dx. (.)

As in the discussions in Lemma ., let ak ↓ –, and we have

 + ak


∫
I×[,R]

yak (∂xuak )
 dxdy →

∫
I

(u′
–)


dx, (.)

( + ak)
∫
I×[,R]

yak∂xuak ( – ε)ξ ′
(x)ξ(y)dxdy →

∫
I
u′
–(x)( – ε)ξ ′

(x)dx, (.)

http://www.boundaryvalueproblems.com/content/2014/1/41
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 + ak


∫
I×[,R]

yak
(
( – ε)ξ ′

(x)ξ(y)
) dxdy

=



∫
I
( – ε)

(
ξ ′
(x)

) dx{∫ 


( + ak)yak dy +

∫ R


( + ak)yak

(
ξ(y)

) dy}
→ 



∫
I

(
( – ε)ξ ′

(x)
) dx. (.)

By (.)-(.),

 + ak


∫
I×[,R]

yak
(
∂xuak + ( – ε)ξ ′

(x)ξ(y)
) dxdy

–
 + ak


∫
I×[,R]

yak (∂xuak )
 dxdy

→ 


∫
I

(
u′
–(x) + ( – ε)ξ ′

(x)
) dx – 



∫
I

(
u′
–(x)

) dx, (.)

( + ak)
∫
I×[,R]

yak∂yuak ξ(x)ξ
′
(y)dxdy

= ( + ak)
∫
I×[,]

yak∂yuak ξ(x)ξ
′
(y)dxdy

≤ C( + ak)
∫ 


yak– dy

=
C( + ak)

ak

{
ak – 

} →  as ak ↓ –, (.)

( + ak)


∫
I

∫ R


yak

(
ξ(x)ξ ′

(y)
) dxdy = ( + ak)



∫
I

∫ 


yak

(
ξ(x)ξ ′

(y)
) dxdy

≤ C( + ak)
∫ 


yak dy

= C
(
ak+ – 

) →  as ak ↓ –, (.)

Cak

∫
I
b(x)G

(
uak + ( – ε)ξ(x)

)
dx –Cak

∫
I
b(x)G(uak )dx

→
∫
I
b(x)G

(
u– + ( – ε)ξ(x)

)
dx –

∫
I
b(x)G(u–)dx. (.)

By (.), (.)-(.), our claim is proved.
Claim . v →  as x → ∞.
Define v,n(x) = v(x + n) for n ∈ Z

+, up to a subsequence, v,n → v,∞ in C
loc as n→ ∞,{

–v,∞xx (x) = b(x)f (v,∞(x)), x ∈R,
 ≤ v,∞ ≤ .

(.)

Since f ≥  and b > , –v,∞xx ≥  in R and v,∞ ≡  or .
We show that v →  or  as x → ∞. Indeed, if there are two sequences {xn} and {yn}

such that v(xn) →  and v(yn) →  as n → ∞, there must exist zn ∈ (xn, yn) such that
v(zn) = 

 .
Denote ṽn(x) = v(x+[zn]) where [zn] is the integer part of zn. ṽn(zn–[zn]) = v(zn) = 

 and
up to a subsequence ṽn → ṽ∞ in C

loc, ṽ
∞ solves equation (.). Therefore ṽ∞ ≡  or .
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For the above subsequence, there is a subsubsequence such that zn – [zn] → z∗ ∈ [, ] as
n→ ∞ and ṽ∞(z∗) = 

 . This contradiction verifies v →  or  as x→ ∞.
To check v →  as x→ ∞, suppose that v →  as x → ∞ by contradiction. Then,

lim inf
l→+∞

F
(
v, (l – R, l + R)

)
= lim inf

l→+∞

∫ l+R

l–R

{ |v|


+ b(x)G
(
v

)}
dx ≥ bRε

for some ε > .
Let ξ ∈ C

(l – R, l + R), ξ =  if |x – l| < ( – η)R and ξ =  if |x – l| > R where η will be
determined later, |ξ ′| ≤ 

ηR . Define w =  · ξ + ( – ξ )v, then w(l ± R) = v(l ± R). We have

lim sup
l→+∞

F
(
w, (l – R, l + R)

)
= lim sup

l→+∞

∫ l+R

l–R

(


∣∣( – ξ )vx +

(
 – v

)
ξx

∣∣ + b(x)G
(
 · ξ + ( – ξ )v

))
dx

≤
∫ l+R

l–R
ξ 
x dx + bmax

[–,]
G · ηR

≤ 
ηR

+ bmax
[–,]

G · ηR.

Choose η = εb
bmax[–,]G

,

lim sup
l→+∞

F
(
w, (l – R, l + R)

)
< lim inf

l→+∞
F

(
v, (l – R, l + R)

)
forR >  large enough. Therefore v →  as x→ ∞, by odd symmetry, v → – as x→ –∞,
i.e., v is a layer solution of the local elliptic equation (.).
By the Hamiltonian equality (.),

b(x)
{
G

(
v(x)

)
–G()

}
+

∫ +∞

x
b′(t)

{
G

(
v(t)

)
–G()

}
dt

=


(
vx

) = lim
ak↓–

( + ak)
∫ ∞



yak

(∂xuak )



= lim
ak↓–

( + ak)
∫ ∞



yak

(∂yuak )



+ lim
ak↓–

Cakb(x)
{
G

(
uak (x, )

)
–G()

}
+ lim

ak↓–
Cak

∫ ∞

x
b′(t)

{
G

(
uak (t, )

)
–G()

}
dt.

Therefore,

lim
a↓–( + a)

∫ ∞



ya


(∂yua) =

∫ +∞

x
b′(t)

{
G

(
v(t)

)
–G()

}
dt

– lim
ak↓–

Cak

∫ ∞

x
b′(t)

{
G

(
uak (t, )

)
–G()

}
dt. �

Proof of Theorem . It follows from Lemmas . and .. �
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