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Abstract
We use the variational minimizing method to study the existence of new nontrivial
periodic solutions with a prescribed energy for second order Hamiltonian systems
with singular potential V ∈ C1(Rn\{0},R), which may have an unbounded potential
well.
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1 Introduction andmain results
For singular Hamiltonian systems with a fixed energy h ∈ R,

q̈ +V ′(q) = , (.)



|q̇| +V (q) = h. (.)

Ambrosetti-Coti Zelati [, ] used Ljusternik-Schnirelmann theory on an C manifold to
get the following theorem.

Theorem . (Ambrosetti-Coti Zelati []) Suppose V ∈ C(Rn\{},R) satisfies
(A)

V (u) → –∞, u→ ,

(A)

V ′(u) · u +
(
V ′′(u)u,u

) �= ,

(A)

V ′(u) · u > , u �= ,

(A) ∃α > , s.t.

V ′(u) · u ≤ –αV (u),
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(A) ∃β > , r > , s.t.

V ′(u) · u≥ –βV (u),  < |u| < r,

(A)

lim sup
|u|→+∞

[
V (u) +



V ′(u)u

]
≤ .

Then (.)-(.) have at least one non-constant periodic solution.

After Ambrosetti-Coti Zelati, a lot of mathematicians studied singular Hamiltonian sys-
tems. Here we onlymention a related recent paper of Carminati-Sere-Tanaka [], in which
they used complex variational and geometrical and topological methods to generalize
Pisani’s results []. They got the following theorems.

Theorem . Suppose h > , L >  and V ∈ C∞(Rn\{},R) satisfies (A), (A), and
(B) V (q) ≤ ;
(B) V (q) + 

V
′(q)q ≤ h, ∀|q| ≥ eL ;

(B) V (q) + 
V

′(q)q ≥ h, ∀|q| ≤ e–L .
Then (.)-(.) have at least one periodic solution with the given energy h and whose action
is at most πr with

r =max
{[

(
h –V (q)

)] 
 ; |q| = 

}
.

Theorem . Suppose h > , ρ >  and V ∈ C∞(Rn\{},R) satisfies (B), (A), and
(B′) lim|q|→+∞ V ′(q) = ;
(B′) V (q) + 

V
′(q)q ≥ h, ∀|q| ≤ ρ.

Then (.)-(.) have at least one periodic solution with the given energy h and whose action
is at most πr.

Using variational minimizing methods, we get the following theorem.

Theorem . Suppose V ∈ C(Rn\{},R) satisfies
(V) ∃α > , β > , r > , s.t.

V (q) ≤ –α|q|–β ,  < |q| < r;

(V)

V (q) < , q �= ;

(V)

V (–q) = V (q), q �= .

Then for any h > , (.)-(.) have at least one non-constant periodic solution with the
given energy h.
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2 A few lemmas
Let

H =W ,(R/Z,Rn) = {
u : R→ Rn,u ∈ L, u̇ ∈ L,u(t + ) = u(t)

}
.

Then the standard H norm is equivalent to

‖u‖ = ‖u‖H =
(∫ 


|u̇| dt

)/

+
∣∣∣∣
∫ 


u(t)dt

∣∣∣∣.

Let

� =
{
u ∈H|u(t) �= ,∀t}.

By symmetry condition (V), similar to Ambrosetti-Coti Zelati [], let

� =
{
u ∈H =W ,(R/Z,Rn),u(t + /) = –u(t),u(t) �= 

}
.

We define the equivalent norm in E = {u ∈ H =W ,(R/Z,Rn),u(t + 
 ) = –u(t)}:

‖u‖ = ‖u‖E =
(∫ 


|u̇| dt

)/

.

Lemma . ([, ]) Let f (u) = 

∫ 
 |u̇| dt ∫ 

 (h –V (u))dt and ũ ∈ � be such that f ′(ũ) = 
and f (ũ) > . Set


T =

∫ 
 (h –V (ũ))dt


∫ 
 | ˙̃u| dt . (.)

Then q̃(t) = ũ(t/T) is a non-constant T-periodic solution for (.)-(.). Furthermore, if
V (x) < h, ∀x �= , then f (u) ≥  on � and f (u) = , ∀u ∈ � if and only if u is a nonzero
constant.
If ũ ∈ � such that f ′(ũ) =  and f (ũ) > , thenwe find that q̃(t) = ũ(t/T) is a non-constant

T-periodic solution for (.)-(.).

Lemma . (Gordon []) Let V satisfy the so-called Gordon Strong Force condition: There
exist a neighborhood N of  and a function U ∈ C(�,R) such that:

(i) lims→U(x) = –∞;
(ii) –V (x) ≥ |U ′(x)| for every x ∈N – {}.

Let

∂� =
{
u ∈H =W ,(R/Z,Rn),∃t,u(t) = 

}
.

Then we have

∫ 


V (u)dt → –∞, ∀un ⇀ u ∈ ∂�.
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Let

∂� =
{
u ∈H =W ,(R/Z,Rn),u

(
t +




)
= –u(t),∃t,u(t) = 

}
.

Then we have

∫ 


V (u)dt → –∞, ∀un ⇀ u ∈ ∂�.

Lemma . Let X be a Banach space, and let E ⊂ X be a weakly closed subset. Suppose
that φ(u) is defined on an open subset � ⊂ X and φ(u) �= –∞ for any u ∈ �. Let φ(u) = +∞
for u ∈ ∂�. Assume φ(u) �≡ +∞ and is weakly lower semi-continuous on �̄ ∩ E, and that it
is coercive on � ∩ E:

φ(u) → +∞, ‖u‖ → +∞

and

φ(un) → +∞, un ⇀ u ∈ ∂�.

Then φ attains its infimum in � ∩ E.

Proof We set

c = inf
�∩Eφ(u).

Then

–∞ < c < +∞,

in fact, by the assumptions, it is obvious that c < +∞. Now if c = –∞, then there exists
{un} ⊂ � ∩ E such that φ(un) → –∞. Then we know that {un} is bounded, since φ is co-
ercive. By the Eberlein-Schmulyan theorem, {un} has a weakly convergent subsequence.
Finally, by the definition for c and the assumption for the weakly lower semi-continuity
for φ(u), we know φ(u) = –∞. This is a contradiction.
Now we know that there exists minimizing sequence {un} such that φ(un) → c. Fur-

thermore by the coercivity of φ we know that {un} is bounded; then {un} has a weakly
convergent subsequence. We claim the weak limit u ∈ �, since otherwise φ(u) = +∞ by
the assumption. On the other hand, by the definition of the infimum c and the assumption
for the weak lower semi-continuity for φ(u) on �̄ ∩ E, we know φ(u) = c < +∞. This is a
contradiction. So the weak limit u ∈ � ∩ E and φ(u) = c. �

3 The proof of Theorem 1.4
Lemma . Assume (V) hold, then for any weakly convergent sequence un ⇀ u ∈ ∂�,we
have

f (un) → +∞.
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Proof Notice that (V) imply Gordon’s strong force condition. By the weak limit u ∈ ∂�

and V satisfying Gordon’s strong force condition, we have

∫ 


–V (un)dt → +∞, ∀un ⇀ u ∈ ∂�.

By un ⇀ u in the Hilbert space H, we know that ‖un‖ is bounded.
() If u ≡ , then by Sobolev’s embedding theorem, we have the uniform convergence

property:

|un|∞ → , n→ +∞.

By the symmetry of u(t + /) = –u(t), we have
∫ 
 u(t)dt = , then we have Sobolev’s in-

equality:

∫ 



∣∣u̇(t)∣∣ dt ≥ 
∣∣u(t)∣∣∞.

Then we have

f (un) ≥ |un|–β
∞ → +∞, n→ +∞.

So in this case we have

lim inf f (un) = +∞ ≥ f (u).

() If u �= , then we have the following. By the weakly lower semi-continuity for the
norm, we have

lim inf‖un‖ ≥ ‖u‖ > .

So, by Gordon’s lemma, we have

lim inf f (un) = lim inf

(



∫ 


|u̇n| dt

)∫ 



(
h –V (un)

)
dt = +∞

≥ 


∫ 


|u̇| dt

∫ 



(
h –V (u)

)
dt = f (u). �

Lemma . f (u) is weakly lower semi-continuous on �̄.

Proof For any {un} ⊂ �̄ : un ⇀ u, by Sobolev’s embedding theorem, we have uniform
convergence:

∣∣un(t) – u(t)
∣∣∞ → .

(i) If u ∈ �, then by V ∈ C(Rn\{},R), we have
∣∣V (

un(t)
)
–V

(
u(t)

)∣∣∞ → .
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By the weakly lower semi-continuity for norm, we have

lim inf‖un‖ ≥ ‖u‖.

Hence

lim inf f (un) = lim inf

(



∫ 


|u̇n| dt

)∫ 



(
h –V (un)

)
dt

≥ 


∫ 


|u̇| dt

∫ 



(
h –V (u)

)
dt = f (u).

(ii) If u ∈ ∂�, then by � satisfying Gordon’s strong force condition, we have

∫ 


–V (un)dt → +∞, ∀un ⇀ u ∈ ∂�.

() If u≡ , then

|un|∞ → , n→ +∞.

Then we have

f (un) ≥ |un|–β
∞ → +∞, n→ +∞.

So in this case we have

lim inf f (un) = +∞ ≥ f (u).

() If u �= . By the weakly lower semi-continuity for norm, we have

lim inf‖un‖ ≥ ‖u‖ > .

So by Gordon’s lemma, we have

lim inf f (un) = lim inf

(



∫ 


|u̇n| dt

)∫ 



(
h –V (un)

)
dt = +∞

≥ 


∫ 


|u̇| dt

∫ 



(
h –V (u)

)
dt = f (u). �

Lemma . �̄ is a weakly closed subset of H.

Proof By Sobolev’s embedding theorems, the proof is obvious. �

Lemma . The functional f (u) is coercive on �.

Proof By the definition of f (u) and the assumption (V), we have

f (u) =



∫ 


|u̇| dt

∫ 



(
h –V (u)

)
dt ≥ h



∫ 


|u̇| dt, ∀u ∈ �. �
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Lemma . The functional f (u) attains the infimum on �; furthermore, the minimizer is
non-constant.

Proof By Lemma . and Lemmas .-., we know that the functional f (u) attains the
infimum in �; furthermore, we claim that

inf
�

f (u) > ,

since otherwise, u(t) = const attains the infimum , then by the symmetry of �, we have
u(t) ≡ , which contradicts the definition of �. Now we know that the minimizer is
non-constant. �
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