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1 Introduction
In this paper, we are concerned with the existence of symmetric positive solutions of the
following fourth-order boundary-value problem with integral boundary conditions:

(
φp

(
u′′))′′(t) = λw(t)f

(
t,u(t),u′(t)

)
, t ∈ (, ), (.)

u() = u() =
∫ 


g(s)u(s)ds,

φp
(
u′′()

)
= φp

(
u′′()

)
=

∫ 


h(s)φp

(
u′′(s)

)
ds, (.)

where λ > , φp is the p-Laplacian operator, i.e., φp(s) = |s|p–s, p >  and (φp)– = φq with

p +


q = .

Now, let us list the following conditions which are to be used in our theorems:
(H) w ∈ C([, ], [, +∞)) is symmetric on [, ] and w(t) �≡  on any subinterval of

[, ];
(H) f ∈ C([, ]× [, +∞)×R, [, +∞)) and for (t,u,υ) ∈ [, ]× [, +∞)×R,

f (t,u,υ) is symmetric in t and even υ , i.e., f satisfies f ( – t,u,υ) = f (t,u,υ) and
f (t,u,υ) = f (t,u, –υ);

(H) g,h ∈ C([, ], [, +∞)) are symmetric functions on [, ] and μ ∈ (,  ], ν ∈ (, ),
where

μ =
∫ 


g(s)ds, ν =

∫ 


h(s)ds.
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Boundary-value problems with integral boundary conditions for ordinary differential
equations represent a very interesting and important class of problems. They include
two-, three-, multi-point and nonlocal boundary-value problems as special cases. For an
overview of the literature on integral boundary-value problems and symmetric solutions,
see [–] and the references therein.
We would like to mention the results of Zhang and Liu [], Zhang and Ge [], Ma [].
In [], Zhang and Liu considered the following fourth-order boundary-value problems

with p-Laplacian operator:

(φp
(
u′′(t)

)′′ = f
(
t,u(t)

)
,  < t < ,

u() = , u() = au(ξ ),

u′′() = , u′′() = bu′′(η),

where φp(t) = |t|p–t, p > ,  < ξ , η < , f ∈ C((, )× (, +∞), [, +∞)) may be singular at
t =  and/or  and u = .
In [], Zhang and Ge considered the existence and nonexistence of positive solutions of

the following fourth-order boundary-value problems with integral boundary conditions:

x(t) = w(t)f
(
t,x(t),x′′(t)

)
,  < t < ,

x() =
∫ 


g(s)x(s)ds, x() = ,

x′′() =
∫ 


h(s)x′′(s)ds, x′′() = ,

where wmay be singular at t =  and (or) t = , f ∈ C([, ]× [, +∞)× (–∞, ], [, +∞)),
and g,h ∈ L[, ] are nonnegative.
In [], Ma considered the existence of a symmetric positive solution for the fourth-

order nonlocal boundary-value problem (BVP). The author obtained at least one sym-
metric positive solution by using the fixed-point index in cones. We have

u′′′′(t) = h(t)f (t,u),  < t < ,

u() = u() =
∫ 


p(s)u(s)ds,

u′′() = u′′() =
∫ 


q(s)u(s)ds,

where p,q ∈ L[, ], h : (, ) → [, +∞) is continuous, symmetric on (, ), and maybe
singular at t =  and t = . f : [, ] × [, +∞) → [, +∞) is continuous and f (·,u) is sym-
metric on [, ], for all u ∈ [, +∞).
Motivated by the above works, we consider the existence of one andmultiple symmetric

positive solutions for the BVP (.)-(.).
The organization of the paper is as follows. In Section , we present some necessary lem-

mas that will be used to prove our main results. In Section , we use the Leray-Schauder
nonlinear alternative to get the existence of at least one symmetric positive solution for the
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nonlinear BVP (.)-(.). In Section , we use the Krasnoselkii fixed-point theorem to get
the existence of multiple symmetric positive solutions for the nonlinear BVP (.)-(.).
In this paper, a symmetric positive solution u of (.)-(.) means a solution of (.)-(.)

satisfying u >  and u(t) = u( – t), t ∈ [, ].

2 Preliminaries
To state and prove themain results of this paper, wewill make use of the following lemmas.

Lemma . Assume that (H) holds. Then for any v ∈ C[, ], the BVP

φp
(
u′′(t)

)
= υ(t), t ∈ (, ), (.)

u() = u() =
∫ 


g(s)u(s)ds, (.)

has a unique solution u and u can be expressed in the form

u(t) = –
∫ 


H(t, s)φq

(
υ(s)

)
ds, (.)

where

H(t, s) =G(t, s) +


 –μ

∫ 


G(s, τ )g(τ )dτ ,

G(t, s) =

{
t( – s),  ≤ t ≤ s≤ ,
s( – t),  ≤ s≤ t ≤ .

(.)

Proof First suppose that u ∈ C[, ] is a solution of the BVP (.)-(.). We have

u′′(t) = φq
(
υ(t)

)
.

It is easy to see by integration of both sides of (.) on [, t] that

u′(t) – u′() =
∫ t


φq

(
υ(s)

)
ds.

Integrating again, we get

u(t) = u() + u′()t +
∫ t


(t – s)φq

(
υ(s)

)
ds. (.)

Letting t =  in (.), we find

u′() = –
∫ 


( – s)φq

(
υ(s)

)
ds. (.)

Substituting u() =
∫ 
 g(s)u(s)ds, we obtain

u(t) =
∫ 


g(s)u(s)ds –

∫ 


t( – s)φq

(
υ(s)

)
ds +

∫ t


(t – s)φq

(
υ(s)

)
ds

= –
∫ 


G(t, s)φq

(
υ(s)

)
ds +

∫ 


g(s)u(s)ds, (.)
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where
∫ 


g(s)u(s)ds =

∫ 


g(s)

[
–

∫ 


G(s, τ )φq

(
υ(τ )

)
dτ +

∫ 


g(τ )u(τ )dτ

]
ds,

and so
∫ 


g(s)u(s)ds =

–
 –

∫ 
 g(s)ds

∫ 


g(s)

[∫ 


G(s, τ )φq

(
υ(τ )

)
dτ

]
ds. (.)

Substituting (.) into (.) we have

u(t) = –
∫ 


G(t, s)φq

(
υ(s)

)
ds –


 –μ

∫ 


g(s)

[∫ 


G(s, τ )φq

(
υ(τ )

)
dτ

]
ds

= –
∫ 


H(t, s)φq

(
υ(s)

)
ds, (.)

where H(t, s) is defined in (.).
Next let u be as in (.), then

u(t) = –
∫ t


s( – t)φq

(
υ(s)

)
ds –

∫ 

t
t( – s)φq

(
υ(s)

)
ds

–


 –μ

∫ 


g(s)

[∫ 


G(s, τ )φq

(
υ(τ )

)
dτ

]
ds. (.)

Taking the derivative of (.), we get

u′(t) =
∫ t


sφq

(
v(s)

)
ds –

∫ 

t
( – s)φq

(
υ(s)

)
ds,

and

u′′ = φq
(
υ(t)

)
,

and it is easy to verify that u() = u() =
∫ 
 g(s)u(s)ds. The proof is complete. �

Lemma . Assume that (H) is satisfied. Then for any u ∈ C[, ], the BVP

v′′(t) = λw(t)f
(
t,u(t),u′(s)

)
, t ∈ (, ), (.)

υ() = υ() =
∫ 


h(s)v(s)ds (.)

has a unique solution v

v(t) = –λ

∫ 


H(t, s)w(s)f

(
s,u(s),u′(s)

)
ds, (.)

where

H(t, s) =G(t, s) +


 – ν

∫ 


G(s, τ )h(τ )dτ . (.)
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Lemma . [] If (H) holds, then, for all t, s ∈ [, ], the following results are true.
(i) G(t, s)≥ , H(t, s)≥ , H(t, s)≥ ;
(ii) G( – t,  – s) =G(t, s), H( – t,  – s) =H(t, s), H( – t,  – s) =H(t, s);
(iii) ρe(s)≤H(t, s) ≤ γ e(s), ρe(s) ≤H(t, s)≤ γe(s)

where

e(s) = s( – s), ρ =
∫ 
o e(s)g(s)ds

 –μ
, ρ =

∫ 
o e(s)h(s)ds

 – ν
,

γ =


 –μ
, γ =


 – ν

;

(iv) e(t)e(s)≤G(t, s) ≤G(t, t) = t( – t) = e(t) ≤ e∗ =maxt∈[,] e(t) = 
 ,

where H(t, s), G(t, s), H(t, s) are defined by (.) and (.), respectively.

Lemma . If u≥  and υ ≥  then

φp(u + υ) =

{
φp(u) + φp(υ),  < p < ;
p–(φp(u) + φp(υ)), p≥ .

To obtain the existence of symmetric positive solutions of the BVP (.)-(.), the follow-
ing Leray-Schauder nonlinear alternative and Krasnoselkii fixed-point theorem are useful.

Lemma . [] Let E be a Banach space with P ⊆ E closed and convex. Assume U is an
open subset of P with  ∈U and T :U → P is a continuous and compact map. Then either

(i) T has a fixed point in U , or
(ii) there exist u ∈ ∂U and λ ∈ (, ) such that u = λTu.

Lemma . [] Let P be a cone of a real Banach space E,� and� be two bounded open
sets in E such that  ∈ � ⊆ � ⊆ �. Let operator T : P ∩ (�\�) → P be completely
continuous. Suppose that one of the two conditions

(i) ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂�, ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂�,
(ii) ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂�, ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂�,

is satisfied. Then T has at least one fixed point in P ∩ (�\�).

Let the space E = C[, ] equipped with the norm ‖u‖ = ‖u‖ + ‖u′‖ =maxt∈[,] |u(t)| +
maxt∈[,] |u′(t)| be our Banach space. Define P to be cone in E by

P =
{
u ∈ E : u(t) ≥ ,u concave, symmetric on [, ]

}
.

Assume that u is a solution of the BVP (.)-(.). Then from Lemma ., we get

u(t) = –
∫ 


H(t, s)φq

(
υ(s)

)
ds.

From Lemma ., we have

u(t) = –
∫ 


H(t, s)φq

(
–λ

∫ 


H(s, τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)
ds.
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3 The existence of one symmetric positive solution
In order to state the following results we need to introduce the notation:

A = φq

(∫ 


w(τ )r(τ )dτ

)
, B = φq

(∫ 


w(τ )

(
p(τ ) + q(τ )

)
dτ

)
,

A′ =
(

γ γ
q–
 + γ

q–


q

)
max

{
, q–

}
A, B′ =

(
γ γ

q–
 + γ

q–


q

)
max

{
, q–

}
B.

Theorem . Assume that (H)-(H) are satisfied and f : [, ]× [, +∞)×R → [, +∞)
is continuous, f (t, , ) �≡ , t ∈ [, ] and there exist nonnegative functions q,q,q ∈ L

such that

f (t,u,υ) ≤ q(t)
∣∣u(t)∣∣p– + q(t)

∣∣υ(t)∣∣p– + q(t), a.e. (t,u,υ) ∈ [, ]× [, +∞)×R,

and there exist to ∈ [, ] such that q(to) �=  or q(to) �= . Then there exists a constant
λ∗ >  such that for any  < λ ≤ λ∗, the BVP (.)-(.) has at least one nontrivial symmetric
positive solution u ∈ P.

Proof It is easy to see that the BVP (.)-(.) has a solution u = u(t) if and only if u is a
fixed point of the operator equation

Tu(t) =
∫ 


H(t, s)φq

(
λ

∫ 


H(s, τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)
ds. (.)

For all u ∈ P, we have by

(Tu)′(t) =
∫ 

t
( – s)φq

(
λ

∫ 


H(s, τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

–
∫ t


sφq

(
λ

∫ 


H(s, τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)
ds,

(Tu)′′(t) = –φq

(
λ

∫ 


H(s, τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)
ds,

≤ ,

which implies Tu is concave on [, ].
On the other hand, using (H)-(H) and Lemma . we have

(Tu)() =
∫ 


H(, s)φq

(
λ

∫ 


H(s, τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)
ds≥ ,

for all t ∈ [, ]. In a similar way (Tu)()≥ .
It follows that Tu(t) ≥  for t ∈ [, ]. Noticing that w(t) is symmetric on [, ], u(t) is

symmetric on [, ] and f (t,u,u′) is symmetric on [, ] and even in υ we have

Tu( – t) =
∫ 


H( – t, s)φq

(
λ

∫ 


H(s, τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

=
∫ 


H( – t,  – s)φq

(
λ

∫ 


H( – s, τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

http://www.boundaryvalueproblems.com/content/2014/1/44
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=
∫ 


H(t, s)φq

(
λ

∫ 


H( – s, τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

=
∫ 


H(t, s)φq

(
λ

∫ 


H( – s,  – τ )w( – τ )

× f
(
 – τ ,u( – τ ),u′( – τ )

)
d( – τ )

)
ds

=
∫ 


H(t, s)φq

(
λ

∫ 


H(s, τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

= (Tu)(t),

i.e., (Tu)( – t) = (Tu)(t), t ∈ [, ]. Therefore, (Tu)(t) is symmetric on [, ]. So Tu ∈ P
and T(P) ⊂ P. By applying the Arzela-Ascoli theorem, we can see that T(P) is relatively
compact. In view of Lebesgue convergence theorem, it is obvious that T is a continuous
operator. Hence, T : P �→ P is completely continuous operator. By a similar argument in
[] we may proceed; we omit the details here.
f (t, , )≤ q(t), for all t ∈ [, ], and w(t) �≡ , t ∈ [, ], we know that A > , B > . Thus

A′ > , B′ > . Let

r =
A′

B′ , � =
{
u ∈ P : ‖u‖ < r

}
.

Suppose u ∈ ∂�,  < μ <  such that u = μTu. Then

r = μ‖Tu‖ = μ
(‖Tu‖ + ∥∥(Tu)′∥∥)

.

By Lemma .

‖Tu‖ = max
t∈[,]

∣∣Tu(t)∣∣
≤

∫ 


γ e(s)φq

(
λ

∫ 


γe(τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≤ γ γ
q–





(



)q–

φq

(
λ

∫ 


w(τ )

[
q(τ )

∣∣u(τ )∣∣p–
+ q(τ )

∣∣u′(τ )
∣∣p– + q(τ )

]
dτ

)

≤ γ γ
q–


(



)q

φq

(
λ

∫ 


w(τ )

[‖u‖p–
(
q(τ ) + q(τ )

)
+ q(τ )

]
dτ

)

≤ γ γ
q–


(



)q

φq

(
λ

[
‖u‖p–

∫ 


w(τ )

(
q(τ ) + q(τ )

)
dτ +

∫ 


w(τ )q(τ )dτ

])

≤
(

γ γ
q–

q

)
max

{
, q–

}
φq(λ)‖u‖φq

(∫ 


w(τ )

(
q(τ ) + q(τ )

)
dτ

)

+
(

γ γ
q–

q

)
max

{
, q–

}
φq(λ)φq

(∫ 


w(τ )q(τ )dτ

)

≤ γ
q–


(



)q–

φq

(
λ

∫ 


w(τ )

[
q(τ )

∣∣u(τ )∣∣p– + q(τ )
∣∣u′(τ )

∣∣p– + q(τ )
]
dτ

)

http://www.boundaryvalueproblems.com/content/2014/1/44
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≤
(

γ



)q–

max
{
, q–

}
φq(λ)‖u‖φq

(∫ 


w(τ )

(
q(τ ) + q(τ )

)
dτ

)

+
(

γ



)q–

max
{
, q–

}
φq(λ)φq

(∫ 


w(τ )q(τ )dτ

)
.

So,

‖Tu‖ ≤ φq(λ)‖u‖B′ + φq(λ)A′.

Choose λ∗ = ( 
B′ )p–. Then when  < λ < λ∗, we have

r = ‖u‖ = μ‖Tu‖ ≤ μ

(

B′B

′‖u‖ + A′

B′

)
,

r ≤ μ

(


r +



r
)
.

Consequently, μ ≥ . This contradicts  < μ <  period, by (i) of Lemma ., T has a fixed
point u ∈ �, since f (t, , ) �≡ , then when  < λ ≤ λ∗, the BVP (.)-(.) has a nontrivial
symmetric positive solution u ∈ P. The proof is complete. �

Theorem . Assume that (H)-(H) are satisfied and f : [, ]× [, +∞)×R → [, +∞)
is continuous, f (t, , ) �≡ , t ∈ [, ] and

 ≤ L = lim sup
|u|+|υ|→+∞

max
t∈[,]

f (t,u,υ)
|u|p– + |υ|p– < +∞. (.)

Then there exists a constant λ∗ >  such that for any  < λ ≤ λ∗, the BVP (.)-(.) has
at least one nontrivial symmetric positive solution u ∈ P.

Proof Let ε >  such that L + ε > . By (.), there exists H >  such that

f (t,u,υ) ≤ (L + ε)
(|u|p– + |υ|p–), |u| + |υ| ≥H , ≤ t ≤ .

Let K =maxt∈[,],|u|+|υ|≤H f (t,u,υ). Then for any (t,u,υ) ∈ [, ]×R
+ ×R, we have

f (t,u,υ) ≤ (L + ε)
(|u|p– + |υ|p–) +K .

From Theorem ., we know that the BVP (.)-(.) has at least one nontrivial symmetric
positive solution u ∈ P. The proof is complete. �

Corollary . Assume that (H)-(H) are satisfied and f : [, ]× [, +∞)×R → [, +∞)
is continuous, f (t, , ) �≡ , t ∈ [, ] and

 ≤ L = lim sup
|u|+|υ|→+∞

max
t∈[,]

f (t,u,υ)
|u|p– < +∞, or

 ≤ L = lim sup
|u|+|υ|→+∞

max
t∈[,]

f (t,u,υ)
|υ|p– < +∞.

http://www.boundaryvalueproblems.com/content/2014/1/44
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Then there exists a constant λ∗ > , such that for any  < λ ≤ λ∗, the BVP (.)-(.) has at
least one nontrivial solution u ∈ P.

Example . We consider the following fourth-order BVP.
Let p = , w(t) =  in (.) and h(t) = g(t) = 

 . Then

(
φ

(
u′′))′′(t) = λf

(
t,u(t),u′(t)

)
, t ∈ (, ), (.)

u() = u() =



∫ 


u(s)ds,

φ
(
u′′()

)
= φ

(
u′′()

)
=



∫ 


φp

(
u′′(s)

)
ds, (.)

where

f (t,u,υ) = u +
(
t –




)

| sinυ| + t( – t) + 

for (t,u,υ) ∈ [, ]× [, +∞)× (–∞, +∞).

It is obvious that f : [, ]× [, +∞)× (–∞, +∞) → [, +∞) is continuous, symmetric on
the interval [, ] and even υ , we have

u +
(
t –




)

| sinυ| + t( – t) +  ≤ |u| + (
t + 

)|υ| + t +  and

f (t, , ) �≡ , t ∈ [, ].

It follows from a direct calculation that

B = φq

(∫ 



(
s + 

)
ds

)
= 

√



and γ = γ = ;

B′ =
(

γ γ
q–
 + γ

q–


q

)
max

{
, q–

}
B

=
(
 √ +  √

√

)


√



� , .

So,

λ∗ =

B′ � ..

Then by Theorem . we know that the BVP (.)-(.) has a nontrivial symmetric positive
solution u ∈ P for any λ ∈ (,λ∗].

4 The existence of multiple symmetric positive solutions
In this section, we impose growth conditions on f which allows us to apply Lemma . to
establish the existence of two symmetric positive solutions of the BVP (.)-(.), and we

http://www.boundaryvalueproblems.com/content/2014/1/44
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begin by introducing some notation:

σ ∗ = ρρ
q–


∫ 


e(s)dsφq

(∫ 


e(τ )w(τ )dτ

)
,

σ = γ
q–
 φq

(∫ 


e(τ )w(τ )dτ

)
.

Theorem . Assume that (H)-(H) are satisfied and f satisfies the following conditions
for t ∈ [, ].

(i) There exist numbers  < r < R < +∞ such that f (t,u,υ) ≤ 
λ
φp( u+υ

σ ) for
 ≤ |u| + |υ| ≤ r and R ≤ |u| + |υ|.

(ii) There exist numbers  < r < p < R < +∞ such that f (t,u,υ) > 
λ
φp( pσ∗ ) for

 ≤ |u| + |υ| ≤ p.
Then the BVP (.)-(.) has at least two nontrivial symmetric positive solution u ∈ P.

Proof Let the operator T be defined by (.).

� =
{
u ∈ P : ‖u‖ < r

}
and � =

{
u ∈ P : ‖u‖ < p

}
.

We first show that

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂�.

For u ∈ P ∩ ∂�, we obtain |u| + |u′| ∈ [, r], which implies f (t,u,u′) ≤ 
λ
φp( u+υ

σ ). Hence
for t ∈ [, ], by Lemma .,

Tu(t) ≤ γ γ
q–



φq

(
λ

∫ 


e(τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)

≤ γ γ
q–



φq

(
λ

∫ 


e(τ )w(τ )


λ

φp

(
u + υ

σ

)
dτ

)

≤ γ


‖u‖.

Note that  < γ ≤ . Thus, u ∈ P ∩ ∂� implies

‖Tu‖ ≤ ‖u‖


, (.)

and

(Tu)′(t)≤ φq

(
λ

∫ 


γe(τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)

≤ γ
q–
 φq

(
λ

∫ 


e(τ )w(τ )


λ

φp

(
u + υ

σ

)
dτ

)

≤ ‖u‖


.

Thus, u ∈ P ∩ ∂� implies

∥∥(Tu)′∥∥ ≤ ‖u‖


. (.)

http://www.boundaryvalueproblems.com/content/2014/1/44
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By (.) and (.), we obtain

‖Tu‖ = ‖Tu‖ + ∥∥(Tu)′∥∥ ≤ ‖u‖


+
‖u‖


= ‖u‖ for u ∈ P ∩ ∂�. (.)

Next we show that

‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂�.

For u ∈ P∩ ∂�, we obtain |u|+ |u′| ∈ [,p], which implies f (t,u,u′) > 
λ
φp( pσ∗ ). Hence for

t ∈ [, ], by Lemma .,

Tu(t) ≥ ρρ
q–


∫ 


e(s)dsφq

(
λ

∫ 


e(τ )w(τ )f

(
τ ,u(τ ),u′(τ )

)
dτ

)

> ρρ
q–


∫ 


e(s)dsφq

(
λ

∫ 


e(τ )w(τ )


λ

φp

(
p
σ ∗

)
dτ

)

> p = ‖u‖. (.)

By (.), we obtain

‖Tu‖ = ‖Tu‖ + ∥∥(Tu)′∥∥ > ‖u‖ for u ∈ P ∩ ∂�. (.)

Applying Lemma. to (.) and (.) shows thatT has a fixed point u ∈ P∩(�\�) with
 < r ≤ ‖u‖ < p. Also, letR∗ = γγ q–

ρρq–
R and note that  < ρρq–

γγ q– < . So u(t) ≥ ρρq–

γγ q– u(s) for

s ∈ [, ]. Then� = {u ∈ P : ‖u‖ < R∗} and u ∈ P∩∂�, andwe obtain u(t) ≥ ρρq–

γγ q–R∗ = R.
Applying Theorem .(i) for |u| + |u′| ∈ [R, +∞), we have ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂�.
From Lemma ., T has a fixed point u∗

 ∈ P ∩ (�\�) with p < ‖u‖ ≤ R∗.
Then the BVP (.)-(.) has two nontrivial symmetric positive solutions u,u ∈ P with

 < ‖u‖ < p < ‖u‖ ≤ R∗. The proof is complete. �
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