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Abstract
This paper addresses the study of the controllability for a one-dimensional wave
equation in domains with moving boundary. This equation characterizes the motion
of a string with a fixed endpoint and the other one moving. When the speed of the
moving endpoint is less than 1 – 2

1+e2
, by the Hilbert Uniqueness Method, the exact

controllability of this equation is established. Also, the explicit dependence of the
controllability time on the speed of the moving endpoint is given.
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1 Introduction
Given T > . Let us consider the non-cylindrical domain Q̂k

T , defined by

Q̂k
T =

{
(y, t) ∈R

;  < y < αk(t), for all t ∈ (,T)
}
,

where

αk(t) =  + kt,  < k < . (.)

Consider the following controlled wave equation in the non-cylindrical domain Q̂k
T :⎧⎪⎨⎪⎩

utt – uyy =  in Q̂k
T ,

u(, t) = v(t), u(αk(t), t) =  on (,T),
u() = u, ut() = u in (, ),

(.)

where u is the state variable, v is the control variable and (u,u) ∈ L(, ) × H–(, )
is any given initial value. Equation (.) may describe the motion of a string with a fixed
endpoint and amoving one. The constant k is called the speed of themoving endpoint. By
[], for  < k < , any (u,u) ∈ L(, ) × H–(, ) and v ∈ L(,T), (.) admits a unique
solution in the sense of a transposition.
The main purpose of this paper is to study the exact controllability of (.). As we all

know, there exists much literature on the controllability problems of wave equations in a
cylindrical domain. However, there are only a few works on the exact controllability for
wave equations defined in non-cylindrical domains. We refer to [–], and [] for some
known results in this respect. In [], the exact controllability of a multi-dimensional wave
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equation with constant coefficients in a non-cylindrical domain was established, while
the control entered the system through the whole non-cylindrical domain. In [] and [],
some controllability results for the wave equations with Dirichlet boundary conditions
in suitable non-cylindrical domains were investigated, respectively. But some additional
conditions on the moving boundary were required, which entail the method used in []
and [] not to be applicable to the controllability problems of (.). In [] and [] in the
one-dimensional case, the following condition seems necessary:

∫ ∞



∣∣α′
k(t)

∣∣dt < ∞.

It is easy to check that this condition is not satisfied for the moving boundary in (.). The
control system of this paper is similar to that of []. But the control is put on a different
boundary. We mainly use the multiplier method to overcome these difficulties and drop
the additional conditions for the moving boundary. But the simple multiplier in [] is not
applicable to the controllability problem of (.). We choose the complicated multiplier
which satisfies the first-order linear differential equation. But the result in this paper is
not satisfactory. We hope that the controllability result is obtained when k ∈ (, ). We
hope that we obtain a modified multiplier in the forthcoming papers.
The rest of this paper is organized as follows. In Section , we give some preliminaries

and the main results. In Section , we prove that the Hilbert Uniqueness Method (HUM)
works very well for (.). Section  contains the proofs of the important inequalities used
in Section .

2 Preliminaries andmain results
The goal of this paper is to study the exact controllability of (.) in the following sense.

Definition . Equation (.) is called exactly controllable at the time T , if for any initial
value (u,u) ∈ L(, ) × H–(, ) and any target (ud,u


d) ∈ L(,αk(T)) × H–(,αk(T)),

one can always find a control v ∈ L(,T) such that the corresponding solution u of (.)
in the sense of a transposition satisfies

u(T) = ud and ut(T) = ud.

Denote T∗
k for a controllability time. The main result of this paper is stated as follows.

Theorem . Suppose that  < k <  – 
+e . For any given T > T∗

k , (.) is exactly control-
lable at time T in the sense of Definition ..

Remark . It seems natural to expect that the exact controllability of (.) holds when
k ∈ (, ). However, we did not have success in extending the approach developed in The-
orem . to this case.

In order to proveTheorem., we first transform (.) into awave equationwith variable
coefficients in a cylindrical domain. To this aim, set

x =
y

αk(t)
and w(x, t) = u(y, t) = u

(
αk(t)x, t

)
for (y, t) ∈ Q̂k

T .
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Then, it is easy to check that (x, t) varies in Q := (, ) × (,T). Also, (.) is transformed
into the following equivalent wave equation in the cylindrical domain Q:⎧⎪⎨⎪⎩

wtt – [ βk (x,t)
αk (t)

wx]x + γk (x)
αk (t)

wtx =  in Q,
w(, t) = v(t), w(, t) =  on (,T),
w() = w, wt() = w in (, ),

(.)

where

βk(x, t) =
 – kx

αk(t)
, γk(x) = –kx, w = u, w = u + kxux . (.)

Equation (.) admits a unique solution in the sense of a transposition,

w ∈ C
(
[,T];L(, )

) ∩C([,T];H–(, )
)

(see []).
Therefore, the exact controllability of (.) (Theorem .) is reduced to the following

main controllability result for the wave equation (.).

Theorem . Suppose that  < k <  – 
+e . Let T > T∗

k . Then, for any initial value
(w,w) ∈ L(, ) × H–(, ) and target (w

d,w

d) ∈ L(, ) × H–(, ), there exists a con-

trol v ∈ L(,T) such that the corresponding solution w of (.) in the sense of transposition
satisfies

w(T) = w
d and wt(T) = w

d.

The key proof of Theorem . is to prove two important inequalities for the following
homogeneous wave equation in cylindrical domains. We have⎧⎪⎨⎪⎩

αk(t)ztt – [βk(x, t)zx]x + γk(x)ztx =  in Q,
z(, t) = , z(, t) =  on (,T),
z() = z, zt() = z in (, ),

(.)

where k ∈ (, ), (z, z) ∈H
(, )×L(, ) is any given initial value, and αk , βk , and γk are

the functions given in (.). Similar to Theorem . in [], we see that (.) has a unique
weak solution

z ∈ C
(
[,T];H

(, )
) ∩C([,T];L(, )).

Define the following weighted energy for (.):

E(t) =



∫ 



[
αk(t)

∣∣zt(x, t)∣∣ + βk(x, t)
∣∣zx(x, t)∣∣]dx for t ≥ ,

where z is the solution of (.). It follows that

E � E() =



∫ 



[∣∣z(x)∣∣ + βk(x, )
∣∣zx (x)∣∣]dx.
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In the sequel, we denote by C a positive constant depending only on T and k, whichmay
be different from one place to another.
We obtain the following two lemmas whose proof are found in [].

Lemma . For any (z, z) ∈H
(, )× L(, ) and t ∈ [,T], we have

E(t) =


αk(t)
E. (.)

Lemma . Suppose that q ∈ C([, ]) is any given function. Then any solution z of (.)
satisfies the following estimate:[




∫ T


βk(x, t)q(x)

∣∣zx(x, t)∣∣ dt]∣∣∣


=



∫ T



∫ 



[
qx(x)αk(t)

∣∣zt(x, t)∣∣ + (
qx(x)βk(x, t) – βk,x(x, t)q(x)

)∣∣zx(x, t)∣∣]dxdt
–

∫ T



∫ 


αk,t(t)q(x)zt(x, t)zx(x, t)dxdt

+
∫ 



[
αk(t)q(x)zt(x, t)zx(x, t) +



γk(x)q(x)

∣∣zx(x, t)∣∣]dx∣∣∣T

. (.)

In order to prove Theorem ., we need the following two important inequalities. The
proofs of two important inequalities are given in Section .

Theorem . Let T > . For any (z, z) ∈ H
(, )× L(, ), there exists a constant C > 

such that the corresponding solution z of (.) satisfies

∫ T


βk(, t)

∣∣zx(, t)∣∣ dt ≤ C
(∣∣z∣∣H

(,)
+

∣∣z∣∣L(,)). (.)

Theorem. Let T > T∗
k . For any (z, z) ∈H

(, )×L(, ), there exists a constant C > 
such that the corresponding solution z of (.) satisfies

∫ T


βk(, t)

∣∣zx(, t)∣∣ dt ≥ C
(∣∣z∣∣H

(,)
+

∣∣z∣∣L(,)). (.)

3 Application of HUM
In this section, we prove the exact controllability for the wave equation (.) in the cylin-
drical domain Q (Theorem .) by HUM.

Proof of Theorem . We divide the proof of Theorem . into three parts. We use certain
inequalities proved later in Section .
Step . First, we define a linear operator � :H

(, )× L(, )→H–(, )× L(, ).
For any (z, z) ∈ H

(, ) × L(, ), denote by z the corresponding solution of (.).
Consider the following homogeneous wave equation:⎧⎪⎨⎪⎩

ηtt – [ βk (x,t)
αk (t)

ηx]x + γk (x)
αk (t)

ηtx =  in Q,
η(, t) = zx(, t), η(, t) =  on (,T),
η(T) = ηt(T) =  in (, ).

(.)

http://www.boundaryvalueproblems.com/content/2014/1/47
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Then it is well known that (.) admits a unique solution in the sense of a transposition,

η ∈ C
(
[,T];L(, )

) ∩C([,T];H–(, )
)
.

Moreover, by Theorem . in Section , there exists a constant C such that

|η|C([,T];L(,))∩C([,T];H–(,)) ≤ C
∣∣zx(, ·)∣∣L(,T) ≤ C

(∣∣z∣∣H
(,)

+
∣∣z∣∣L(,)). (.)

Define a linear operator �:

� :H
(, )× L(, )→H–(, )× L(, ),(

z, z
) 
→ (

–ηt(·, ) – γk(·)ηx(·, ) + kη(·, ),η(·, )),
where we use z to denote the solution of (.) associated to z and z, and η denotes the
solution of and (.) associated to z.
Step . That � is an isomorphism is equivalent to the exact controllability of (.).
In fact, for any target (w

d,w

d) ∈ L(, )×H–(, ), the following wave equation:⎧⎪⎨⎪⎩

ξtt – [ βk (x,t)
αk (t)

ξx]x + γk (x)
αk (t)

ξtx =  in Q,
ξ (, t) = , ξ (, t) =  on (,T),
ξ (T) = w

d, ξt(T) = w
d in (, )

(.)

has a unique solution ξ ∈ C([,T];L(, ))∩C([,T];H–(, )).
Suppose that � is an isomorphism, for any initial value (w,w) ∈ L(, ) × H–(, ),

there exists (z, z) ∈H
(, )× L(, ) such that

�
(
z, z

)
=

(
–
[
w – ξt()

]
+ k

[
w – ξ ()

]
– γk

[
w
x – ξx()

]
,
[
w – ξ ()

])
. (.)

Note that η is the solution of (.) and that z is the solution of (.) associated to (z, z).
Then, by the definition of �, we have

�
(
z, z

)
=

(
–ηt(·, ) – γk(·)ηx(·, ) + kη(·, ),η(·, )). (.)

By (.) and (.), it follows that (η(),ηt()) = (w – ξ (),w – ξt()). If we set w = ξ + η,
by the uniqueness of (.), then w is the solution of (.) associated to v = zx(, ·). Fur-
thermore, (w(),wt()) = (w,w) and (w(T),wt(T)) = (w

d,w

d). Therefore, we get the exact

controllability of (.).
Step . Now we prove that � is an isomorphism, when T > T∗

k .
Write F =H

(, )× L(, ) and denote by F ′ its conjugate space. Also, define a bilinear
form A on (H

(, )× L(, )) as follows:

A
((
z, z

)
,
(
y, y

))
�

〈
�

(
z, z

)
,
(
y, y

)〉
F ′ ,F

=
〈
–ηt(·, ) – γk(·)ηx(·, ), y

〉
H–,H


+

∫ 



[
kη(x, )y(x) + η(x, )y(x)

]
dx,

for any (z, z), (y, y) ∈ H
(, )× L(, ), where η denotes the solution of (.).

http://www.boundaryvalueproblems.com/content/2014/1/47
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Multiplying the first equation of (.) by αk(t)z and integrating on Q, by (.), we obtain

∫ T


βk(, t)

∣∣zx(, t)∣∣ dt
=

〈
–ηt(·, ) – γk(·)ηx(·, ), z

〉
H–,H


+

∫ 



[
kη(x, )z(x) + η(x, )z(x)

]
dx.

Combining the above equality with the definition of �, we have

∫ T


βk(, t)

∣∣zx(, t)∣∣ dt = 〈
�

(
z, z

)
,
(
z, z

)〉
F ′ ,F . (.)

By Theorem . and Theorem ., it suffices to prove that � is surjective. Notice that
Theorem . and (.) imply A is a coercive bilinear form. Moreover, by (.), it is easy
to check that A is bounded. Therefore, by the Lax-Milgram Theorem, � is a surjection. It
follows that � is an isomorphism. �

Remark . By the equivalent transformation in Section , Theorem . implies the exact
controllability for in the non-cylindrical domain Q̂k

T at the time T > T∗
k (Theorem .).

4 The proofs of important inequalities
In this section, we give proofs of Theorem . and Theorem ..

Proof of Theorem . First, we choose q(x) = x– for x ∈ [, ] in (.). Noting that α′
k(t) =

k, βk,x(x, t) = –kx
+kt and γk(x) = –kx, it follows that




∫ T


βk(, t)

∣∣zx(, t)∣∣ dt
=

∫ T


E(t)dt –

∫ T



∫ 


k(x – )zt(x, t)zx(x, t)dxdt

+
∫ T



∫ 



kx(x – )
 + kt

∣∣zx(x, t)∣∣ dxdt
+

∫ 



[
αk(t)(x – )zt(x, t)zx(x, t) – kx(x – )

∣∣zx(x, t)∣∣]dx∣∣∣T

. (.)

Next, we estimate every terms on the right side of (.). Notice that  ≤ αk(t) ≤  + kT
and  < –k

+kT ≤ βk(x, t)≤  for any (x, t) ∈Q. By (.), we have

∫ T


E(t)dt –

∫ T



∫ 


k(x – )zt(x, t)zx(x, t)dxdt +

∫ T



∫ 



kx(x – )
 + kt

∣∣zx(x, t)∣∣ dxdt
≤

∫ T


E(t)dt +C

∫ T



∫ 



[∣∣zt(x, t)∣∣ + ∣∣zx(x, t)∣∣]dxdt
≤

∫ T


E(t)dt +C

∫ T



∫ 



[
αt(t)

∣∣zt(x, t)∣∣ + βk(x, t)
∣∣zx(x, t)∣∣]dxdt

≤ C
∫ T


E(t)dt ≤ CE. (.)

http://www.boundaryvalueproblems.com/content/2014/1/47
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On the other hand, for each t ∈ [,T], we have∣∣∣∣∫ 



[
αk(t)(x – )zt(x, t)zx(x, t) – kx(x – )

∣∣zx(x, t)∣∣]dx∣∣∣∣
≤ CE(t)≤ CE. (.)

Therefore, by (.)-(.), we have




∫ T


βk(, t)

∣∣zx(, t)∣∣ dt ≤ CE ≤ C
(∣∣z∣∣H

(,)
+

∣∣z∣∣L(,)). �

Remark . Theorem . implies that for any (z, z) ∈H
(, )×L(, ), the correspond-

ing solution z of (.) satisfies zx(, ·) ∈ L(,T).

In the following, we give a proof of Theorem ..

Proof of Theorem . First, let q be the solution of the following problem:{
q′(x) =  + βk,x(x,t)

βk (x,t)
q(x), x ∈ [, ),

q() = ,
(.)

e.g.,

q(x) =
 – kx

k

[
ln

 + kx
 – kx

– ln
 + k
 – k

]
.

It is easy to check that

q(x) ≤ , x ∈ [, ];

q′(x)≥ , x ∈ [, ];

q′(x)βk(x, t) – βk,x(x, t)q(x) = βk(x, t);

M� max
≤x≤

∣∣q(x)∣∣ = ∣∣q()∣∣ = 
k

ln
 + k
 – k

.

(.)

Set

g(x) =
k

 – kx
q(x), x ∈ [, ],

then it is easy to check that

M � max
≤x≤

∣∣g(x)∣∣ = kq() = kM.

By (.) and (.), after calculating, we have

–


q()

∫ T


βk(, t)

∣∣zx(, t)∣∣ dt
=



∫ T



∫ 



[
qx(x)αk(t)

∣∣zt(x, t)∣∣ + βk(x, t)
∣∣zx(x, t)∣∣]dxdt

http://www.boundaryvalueproblems.com/content/2014/1/47
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–
∫ T



∫ 


αk,t(t)q(x)zt(x, t)zx(x, t)dxdt

+
∫ 



[
αk(t)q(x)zt(x, t)zx(x, t) +



γk(x)q(x)

∣∣zx(x, t)∣∣]dx∣∣∣T


≥ 


∫ T



∫ 



[
αk(t)

∣∣zt(x, t)∣∣ + βk(x, t)
∣∣zx(x, t)∣∣]dxdt

–
∫ T



∫ 


αk,t(t)q(x)zt(x, t)zx(x, t)dxdt

+
∫ 



[
αk(t)q(x)zt(x, t)zx(x, t) +



γk(x)q(x)

∣∣zx(x, t)∣∣]dx∣∣∣T

. (.)

From (.), it follows that

–


q()

∫ T


βk(, t)

∣∣zx(, t)∣∣ dt
≥

∫ T


E(t)dt –

∫ T



∫ 


kq(x)zt(x, t)zx(x, t)dxdt

+
∫ 



[
αk(t)q(x)zt(x, t)zx(x, t) +



γk(x)q(x)

∣∣zx(x, t)∣∣]dx∣∣∣T

. (.)

Next, we estimate the terms on the right side of (.). For each t ∈ [,T] and ε > , we
have ∣∣∣∣∫ 



[
αk(t)q(x)zt(x, t)zx(x, t) +



γk(x)q(x)

∣∣zx(x, t)∣∣]dx∣∣∣∣
≤

∣∣∣∣∫ 


αk(t)q(x)zt(x, t)zx(x, t)dx

∣∣∣∣ + k
∣∣∣∣∫ 


xq(x)

∣∣zx(x, t)∣∣ dx∣∣∣∣
≤ √

 + kt
[

ε

∫ 


αk(t)

∣∣zt(x, t)∣∣ dx + ε



∫ 


q(x)

∣∣zx(x, t)∣∣ dx]
+ kM

∫ 



∣∣zx(x, t)∣∣ dx
≤

√
 + kt
ε

∫ 


αk(t)

∣∣zt(x, t)∣∣ dx + √
 + ktεM + kM



∫ 



∣∣zx(x, t)∣∣ dx
≤

√
 + kt
ε




∫ 


αk(t)

∣∣zt(x, t)∣∣ dx
+
(
√
 + ktεM + kM)( + kt)

 – k



∫ 


βk(x, t)

∣∣zx(x, t)∣∣ dx.
Take ε = –k√

+ktM
, then it is easy to check that

ε >  and
√
 + kt
ε

=
(
√
 + ktεM + kM)( + kt)

 – k
=
M( + kt)
 – k

.

This implies that for any t ∈ [,T],∣∣∣∣∫ 



[
αk(t)q(x)zt(x, t)zx(x, t) +



γk(x)q(x)

∣∣zx(x, t)∣∣]dx∣∣∣∣ ≤ M( + kt)
 – k

E(t) =
M
 – k

E.
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It follows that∣∣∣∣∫ 



[
αk(t)q(x)zt(x, t)zx(x, t) +



γk(x)q(x)

∣∣zx(x, t)∣∣]dx∣∣∣T


∣∣∣∣ ≤ M
 – k

E. (.)

On the other hand, for any given ε ∈ (, ), we have

∣∣∣∣∫ T



∫ 


kq(x)zt(x, t)zx(x, t)dxdt

∣∣∣∣
=

∣∣∣∣∫ T



∫ 



√
 + ktzt(x, t)

√
 – kx√
 + kt

zx(x, t)
kq(x)√
 – kx

dxdt
∣∣∣∣

≤ ε



∫ T



∫ 


αk(t)

∣∣zt(x, t)∣∣ dxdt + 
ε

∫ T



∫ 


βk(x, t)

∣∣zx(x, t)∣∣g(x)dxdt
≤ ε



∫ T



∫ 


αk(t)

∣∣zt(x, t)∣∣ dxdt + 
ε

kM
∫ T



∫ 


βk(x, t)

∣∣zx(x, t)∣∣ dxdt.
Take ε = kM < , then it is easy to check that

ε = kM =
kM

ε
< .

By the value ofM, we have

k

k

ln
 + k
 – k

< .

From this, it follows that

k <  –


 + e
.

Then when

k ∈
(
,  –


 + e

)
,

we obtain∣∣∣∣∫ T



∫ 


kp(x)zt(x, t)zx(x, t)dxdt

∣∣∣∣ ≤ kM
∫ T


E(t)dt. (.)

Hence, by (.)-(.), we derive

–


q()

∫ T


βk(, t)

∣∣zx(, t)∣∣ dt
≥ ( – kM)

∫ T


E(t)dt –

M
 – k

E

=
[
 – kM

k
ln( + kT) –

M
 – k

]
E. (.)
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Let

T∗
k =

e
kM

(–k)(–kM) – 
k

.

If T > T∗
k , we have

–kM
k ln( + kT) – M

–k > . Also,

–


q()

∫ T


βk(, t)

∣∣zx(, t)∣∣ dt
≥ C

[
 – kM

k
ln( + kT) –

M
 – k

](∣∣z∣∣H
(,)

+
∣∣z∣∣L(,)).

From this we get (.). This completes the proof of Theorem .. �

Remark . It is easy to check that

T∗
 � lim

k→
T∗
k = lim

k→

e
kM

(–k)(–kM) – 
k

= lim
k→

kM
(–k)(–kM)

k

= lim
k→

M = lim
k→



k

ln
 + k
 – k

= lim
k→

ln +k
–k
k

= .

It is well known that the wave equation (.) in the cylindrical domain is null controllable
at any time T > T∗

 . However, we do not knowwhether the controllability time T∗
k is sharp.
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