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1 Introduction
We consider the system of nonlinear ordinary fractional differential equations

(S)

{
Dα

+u(t) + f (t, v(t)) = , t ∈ (, ), n –  < α ≤ n,
Dβ

+v(t) + g(t,u(t)) = , t ∈ (, ), m –  < β ≤m,

with the integral boundary conditions

(BC)

{
u() = u′() = · · · = u(n–)() = , u() =

∫ 
 u(s)dH(s),

v() = v′() = · · · = v(m–)() = , v() =
∫ 
 v(s)dK (s),

where n,m ∈ N, n,m ≥ ,Dα
+ andD

β
+ denote the Riemann-Liouville derivatives of orders

α and β , respectively, and the integrals from (BC) are Riemann-Stieltjes integrals.
Under sufficient conditions on functions f and g , which can be nonsingular or singular

in the points t =  and/or t = , we study the existence andmultiplicity of positive solutions
of problem (S)-(BC).Weuse theGuo-Krasnosel’skii fixed point theorem (see []) and some
theorems from the fixed point index theory (from [] and []). By a positive solution of
problem (S)-(BC) we mean a pair of functions (u, v) ∈ C([, ]) × C([, ]) satisfying (S)
and (BC) with u(t) ≥ , v(t) ≥  for all t ∈ [, ] and supt∈[,] u(t) > , supt∈[,] v(t) > .
The system (S) with α = n, β =m and the boundary conditions (BC) where H and K are
scale functions (that is, multi-point boundary conditions) has been investigated in [] (the
nonsingular case) and [] (the singular case). In [], the authors give sufficient conditions
for λ, μ, f , and g such that the system

(S)

{
Dα

+u(t) + λf (t,u(t), v(t)) = , t ∈ (, ), n –  < α ≤ n,
Dβ

+v(t) +μg(t,u(t), v(t)) = , t ∈ (, ), m –  < β ≤m,
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with the boundary conditions (BC) with H and K scale functions, has positive solutions
(u(t)≥ , v(t)≥  for all t ∈ [, ], and (u, v) �= (, )).
Fractional differential equations describemany phenomena in various fields of engineer-

ing and scientific disciplines such as physics, biophysics, chemistry, biology, economics,
control theory, signal and image processing, aerodynamics, viscoelasticity, electromagnet-
ics, and so on (see [–]).
In Section , we present the necessary definitions and properties from the fractional cal-

culus theory and some auxiliary results dealing with a nonlocal boundary value problem
for fractional differential equations. In Section , we give some existence and multiplicity
results for positive solutions with respect to a cone for our problem (S)-(BC), where f and
g are nonsingular functions. The case when f and g are singular at t =  and/or t =  is
studied in Section . Finally, in Section , we present two examples which illustrate our
main results.

2 Preliminaries and auxiliary results
We present here the definitions, some lemmas from the theory of fractional calculus and
some auxiliary results that will be used to prove our main theorems.

Definition . The (left-sided) fractional integral of order α >  of a function f : (,∞) →
R is given by

(
Iα+f

)
(t) =


�(α)

∫ t


(t – s)α–f (s)ds, t > ,

provided the right-hand side is pointwise defined on (,∞), where �(α) is the Euler
gamma function defined by �(α) =

∫ ∞
 tα–e–t dt, α > .

Definition . The Riemann-Liouville fractional derivative of order α ≥  for a function
f : (,∞)→R is given by

(
Dα

+f
)
(t) =

(
d
dt

)n(
In–α
+ f

)
(t) =


�(n – α)

(
d
dt

)n ∫ t



f (s)
(t – s)α–n+

ds, t > ,

where n = �α� + , provided that the right-hand side is pointwise defined on (,∞).

The notation �α� stands for the largest integer not greater than α. We also denote the
Riemann-Liouville fractional derivative of f byDα

+f (t). If α =m ∈N thenDm
+f (t) = f (m)(t)

for t > , and if α =  then D
+f (t) = f (t) for t > .

Lemma . ([]) Let α >  and n = �α� +  for α /∈N and n = α for α ∈ N; that is, n is the
smallest integer greater than or equal to α. Then the solutions of the fractional differential
equation Dα

+u(t) = ,  < t < , are

u(t) = ctα– + ctα– + · · · + cntα–n,  < t < ,

where c, c, . . . , cn are arbitrary real constants.
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Lemma . ([, ]) Let α > , n be the smallest integer greater than or equal to α (n–  <
α ≤ n) and y ∈ L(, ). The solutions of the fractional equation Dα

+u(t) + y(t) = ,  < t < ,
are

u(t) = –


�(α)

∫ t


(t – s)α–y(s)ds + ctα– + · · · + cntα–n,  < t < ,

where c, c, . . . , cn are arbitrary real constants.

We consider now the fractional differential equation

Dα
+u(t) + y(t) = ,  < t < , n –  < α ≤ n, ()

with the integral boundary conditions

u() = u′() = · · · = u(n–)() = , u() =
∫ 


u(s)dH(s), ()

where n ∈N, n≥ , and H : [, ] →R is a function of the bounded variation.

Lemma . If H : [, ]→R is a function of bounded variation, � =  –
∫ 
 s

α– dH(s) �= 
and y ∈ C([, ]), then the solution of problem ()-() is given by

u(t) = –


�(α)

∫ t


(t – s)α–y(s)ds +

tα–

��(α)

[∫ 


( – s)α–y(s)ds

–
∫ 



(∫ 

s
(τ – s)α– dH(τ )

)
y(s)ds

]
,  ≤ t ≤ . ()

Proof By Lemma ., the solutions of equation () are

u(t) = –


�(α)

∫ t


(t – s)α–y(s)ds + ctα– + · · · + cntα–n,

where c, . . . , cn ∈ R. By using the conditions u() = u′() = · · · = u(n–)() = , we obtain
c = · · · = cn = . Then we conclude

u(t) = ctα– –


�(α)

∫ t


(t – s)α–y(s)ds.

Now, by condition u() =
∫ 
 u(s)dH(s), we deduce

c –


�(α)

∫ 


( – s)α–y(s)ds =

∫ 



[
csα– –


�(α)

∫ s


(s – τ )α–y(τ )dτ

]
dH(s)

or

c
(
 –

∫ 


sα– dH(s)

)
=


�(α)

∫ 


( – s)α–y(s)ds

–


�(α)

∫ 



(∫ s


(s – τ )α–y(τ )dτ

)
dH(s).
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So, we obtain

c =


��(α)

∫ 


( – s)α–y(s)ds –


��(α)

∫ 



(∫ s


(s – τ )α–y(τ )dτ

)
dH(s)

=


��(α)

∫ 


( – s)α–y(s)ds –


��(α)

∫ 



(∫ 

τ

(s – τ )α– dH(s)
)
y(τ )dτ

=


��(α)

∫ 


( – s)α–y(s)ds –


��(α)

∫ 



(∫ 

s
(τ – s)α– dH(τ )

)
y(s)ds.

Therefore, we get the expression () for the solution of problem ()-(). �

Lemma . Under the assumptions of Lemma ., the Green’s function for the boundary
value problem ()-() is given by

G(t, s) = g(t, s) +
tα–

�

∫ 


g(τ , s)dH(τ ), (t, s) ∈ [, ]× [, ], ()

where

g(t, s) =


�(α)

{
tα–( – s)α– – (t – s)α–, ≤ s≤ t ≤ ,
tα–( – s)α–,  ≤ t ≤ s ≤ .

()

Proof By Lemma . and relation (), we conclude

u(t) =


�(α)

{∫ t



[
tα–( – s)α– – (t – s)α–

]
y(s)ds +

∫ 

t
tα–( – s)α–y(s)ds

–
∫ 


tα–( – s)α–y(s)ds +

tα–

�

[∫ 


( – s)α–y(s)ds

–
∫ 



(∫ 

s
(τ – s)α– dH(τ )

)
y(s)ds

]}
=


�(α)

{∫ t



[
tα–( – s)α– – (t – s)α–

]
y(s)ds

+
∫ 

t
tα–( – s)α–y(s)ds –


�

(
 –

∫ 


τα– dH(τ )

)
×

∫ 


tα–( – s)α–y(s)ds

+
tα–

�

[∫ 


( – s)α–y(s)ds –

∫ 



(∫ 

s
(τ – s)α– dH(τ )

)
y(s)ds

]}
=


�(α)

{∫ t



[
tα–( – s)α– – (t – s)α–

]
y(s)ds +

∫ 

t
tα–( – s)α–y(s)ds

+
tα–

�

[∫ 



(∫ 


τα–( – s)α– dH(τ )

)
y(s)ds

–
∫ 



(∫ 

s
(τ – s)α– dH(τ )

)
y(s)ds

]}
=


�(α)

{∫ t



[
tα–( – s)α– – (t – s)α–

]
y(s)ds +

∫ 

t
tα–( – s)α–y(s)ds
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+
tα–

�

[∫ 



(∫ s


τα–( – s)α– dH(τ )

)
y(s)ds

+
∫ 



(∫ 

s

[
τα–( – s)α– – (τ – s)α–

]
dH(τ )

)
y(s)ds

]}
=

∫ 


g(t, s)y(s)ds +

tα–

�

∫ 



(∫ 


g(τ , s)dH(τ )

)
y(s)ds

=
∫ 


G(t, s)y(s)ds,

where g and G are given in () and (), respectively. Hence u(t) =
∫ 
 G(t, s)y(s)ds for all

t ∈ [, ]. �

Lemma . ([]) The function g given by () has the properties:
(a) g : [, ]× [, ]→ R+ is a continuous function and g(t, s)≥  for all

(t, s) ∈ [, ]× [, ].
(b) g(t, s)≤ g(θ(s), s), for all (t, s) ∈ [, ]× [, ].
(c) For any c ∈ (, /),

min
t∈[c,–c]

g(t, s)≥ γg
(
θ(s), s

)
for all s ∈ [, ],

where γ = cα–, θ(s) = s if  < α ≤  (n = ), and

θ(s) =

⎧⎨⎩
s

–(–s)
α–
α–

, s ∈ (, ],
α–
α– , s = ,

if n –  < α ≤ n, n≥ .

Lemma . If H : [, ] → R is a nondecreasing function and � > , then the Green’s
function G of the problem ()-() is continuous on [, ] × [, ] and satisfies G(t, s) ≥ 
for all (t, s) ∈ [, ]× [, ].Moreover, if y ∈ C([, ]) satisfies y(t) ≥  for all t ∈ [, ], then
the unique solution u of problem ()-() satisfies u(t) ≥  for all t ∈ [, ].

Proof By using the assumptions of this lemma, we have G(t, s) ≥  for all (t, s) ∈ [, ] ×
[, ], and so u(t) ≥  for all t ∈ [, ]. �

Lemma . Assume that H : [, ] → R is a nondecreasing function and � > . Then the
Green’s function G of the problem ()-() satisfies the inequalities:
(a) G(t, s)≤ J(s), ∀(t, s) ∈ [, ]× [, ], where

J(s) = g
(
θ(s), s

)
+


�

∫ 


g(τ , s)dH(τ ), s ∈ [, ].

(b) For every c ∈ (, /), we have

min
t∈[c,–c]

G(t, s) ≥ γJ(s) ≥ γG
(
t′, s

)
, ∀t′, s ∈ [, ].

http://www.boundaryvalueproblems.com/content/2014/1/60
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Proof The first inequality (a) is evident. For part (b), for c ∈ (, /) and t ∈ [c,  – c], t′, s ∈
[, ], we deduce

G(t, s) ≥ cα–g
(
θ(s), s

)
+
cα–

�

∫ 


g(τ , s)dH(τ )

= cα–
(
g

(
θ(s), s

)
+


�

∫ 


g(τ , s)dH(τ )

)
= γJ(s)≥ γG

(
t′, s

)
.

Therefore, we obtain the inequalities (b) of this lemma. �

Lemma . Assume that H : [, ] → R is a nondecreasing function and � > , c ∈
(, /), and y ∈ C([, ]), y(t) ≥  for all t ∈ [, ]. Then the solution u(t), t ∈ [, ] of prob-
lem ()-() satisfies the inequality mint∈[c,–c] u(t) ≥ γmaxt′∈[,] u(t′).

Proof For c ∈ (, /), t ∈ [c,  – c], t′ ∈ [, ], we have

u(t) =
∫ 


G(t, s)y(s)ds≥ γ

∫ 


J(s)y(s)ds≥ γ

∫ 


G

(
t′, s

)
y(s)ds = γu

(
t′
)
.

Then we deduce the conclusion of this lemma. �

We can also formulate similar results as Lemmas .-. above for the fractional differ-
ential equation

Dβ
+v(t) + h(t) = ,  < t < , m –  < β ≤m, ()

with the integral boundary conditions

v() = v′() = · · · = v(m–)() = , v() =
∫ 


v(s)dK (s), ()

where m ∈ N, m ≥ , K : [, ] → R is a nondecreasing function and h ∈ C([, ]). We
denote by �, γ, g, θ, G, and J the corresponding constants and functions for the
problem ()-() defined in a similar manner as �, γ, g, θ, G, and J, respectively.

3 The nonsingular case
In this section, we investigate the existence and multiplicity of positive solutions for our
problem (S)-(BC) under various assumptions on nonsingular functions f and g .
We present the basic assumptions that we shall use in the sequel.
(H) H ,K : [, ] →R are nondecreasing functions, � =  –

∫ 
 s

α– dH(s) > ,
� =  –

∫ 
 s

β– dK (s) > .
(H) The functions f , g : [, ]× [,∞)→ [,∞) are continuous and f (t, ) = g(t, ) = 

for all t ∈ [, ].
A pair of functions (u, v) ∈ C([, ])× C([, ]) is a solution for our problem (S)-(BC) if

and only if (u, v) ∈ C([, ])×C([, ]) is a solution for the nonlinear integral system

{
u(t) =

∫ 
 G(t, s)f (s,

∫ 
 G(s, τ )g(τ ,u(τ ))dτ )ds, t ∈ [, ],

v(t) =
∫ 
 G(t, s)g(s,u(s))ds, t ∈ [, ].

http://www.boundaryvalueproblems.com/content/2014/1/60
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We consider the Banach space X = C([, ]) with supremum norm ‖ · ‖ and define the
cone P ⊂ X by P = {u ∈ X,u(t) ≥ ,∀t ∈ [, ]}.
We also define the operatorsA : P → X by

(Au)(t) =
∫ 


G(t, s)f

(
s,

∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds, t ∈ [, ],

and B : P → X, C : P → X by

(Bu)(t) =
∫ 


G(t, s)u(s)ds, (Cu)(t) =

∫ 


G(t, s)u(s)ds, t ∈ [, ].

Under the assumptions (H) and (H), using also Lemma ., it is easy to see that A,
B, and C are completely continuous from P to P. Thus the existence and multiplicity of
positive solutions of the system (S)-(BC) are equivalent to the existence and multiplicity
of fixed points of the operator A.

Theorem . Assume that (H)-(H) hold. If the functions f and g also satisfy the condi-
tions:
(H) There exist positive constants p ∈ (, ] and c ∈ (, /) such that

(i) f i∞ = lim inf
u→∞ inf

t∈[c,–c]
f (t,u)
up

∈ (,∞];

(ii) gi∞ = lim inf
u→∞ inf

t∈[c,–c]
g(t,u)
u/p

=∞.

(H) There exists a positive constant q ∈ (,∞) such that

(i) f s = lim sup
u→+

sup
t∈[,]

f (t,u)
uq

∈ [,∞);

(ii) gs = lim sup
u→+

sup
t∈[,]

g(t,u)
u/q

= ,

then the problem (S)-(BC) has at least one positive solution (u(t), v(t)), t ∈ [, ].

Proof Because the proof of the theorem is similar to that of Theorem . from [], we will
sketch some parts of it. From assumption (i) of (H), we deduce that there exist C,C > 
such that

f (t,u) ≥ Cup –C, ∀(t,u) ∈ [c,  – c]× [,∞). ()

Then for u ∈ P, by using (), Lemma ., and Lemma ., we obtain after some computa-
tions

(Au)(t)≥ C

∫ –c

c
G(t, s)

(∫ –c

c

(
G(s, τ )

)p(g(τ ,u(τ )))p dτ

)
ds–C, ∀t ∈ [, ], ()

where C = C
∫ –c
c J(s)ds.

http://www.boundaryvalueproblems.com/content/2014/1/60
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For c given in (H), we define the cone P = {u ∈ P, inft∈[c,–c] u(t) ≥ γ ‖u‖}, where γ =
min{γ,γ}. From our assumptions and Lemma ., for any y ∈ P, we can easily show that
u = By ∈ P and v = Cy ∈ P, that is, B(P) ⊂ P and C(P) ⊂ P.
Wenowconsider the function u(t) =

∫ 
 G(t, s)ds = (By)(t) ≥ , t ∈ [, ], with y(t) = 

for all t ∈ [, ]. We define the set

M = {u ∈ P; there exists λ ≥  such that u =Au + λu}.

We will show that M ⊂ P and M is a bounded subset of X. If u ∈ M, then there exists
λ ≥  such that u(t) = (Au)(t) + λu(t), t ∈ [, ]. From the definition of u, we have

u(t) = (Au)(t) + λ(By)(t) = B
(
Fu(t)

)
+ λ(By)(t) = B

(
Fu(t) + λy(t)

) ∈ P,

where F : P → P is defined by (Fu)(t) = f (t,
∫ 
 G(t, s)g(s,u(s))ds). Therefore,M ⊂ P, and

from the definition of P, we get

‖u‖ ≤ 
γ

inf
t∈[c,–c]

u(t), ∀u ∈M. ()

From (ii) of assumption (H), we conclude that for ε = (/(Cmmγγ
p
 ))/p >  there

exists C >  such that

(
g(t,u)

)p ≥ ε
p
u –C, ∀(t,u) ∈ [c,  – c]× [,∞), ()

wherem =
∫ –c
c J(τ )dτ > ,m =

∫ –c
c (J(τ ))p dτ > .

For u ∈M and t ∈ [c,  – c], by using Lemma . and the relations () and (), it follows
that

u(t) = (Au)(t) + λu(t)≥ (Au)(t)

≥ Cγγ
p


∫ –c

c
J(s)

(∫ –c

c

(
J(τ )

)p(
ε
p
u(τ ) –C

)
dτ

)
ds –C

≥ Cε
p
γγ

p


(∫ –c

c
J(s)ds

)(∫ –c

c

(
J(τ )

)pu(τ )dτ

)
–C

≥ Cε
p
γγ

p


(∫ –c

c
J(s)ds

)(∫ –c

c

(
J(τ )

)p dτ

)
· inf

τ∈[c,–c]
u(τ ) –C

=  inf
τ∈[c,–c]

u(τ ) –C,

where C = C +CCmmγγ
p
 > .

Hence, inft∈[c,–c] u(t) ≥  inft∈[c,–c] u(t) –C, and so

inf
t∈[c,–c]

u(t)≤ C, ∀u ∈M. ()

Now from relations () and (), one obtains ‖u‖ ≤ (inft∈[c,–c] u(t))/γ ≤ C/γ , for all
u ∈ M, that is,M is a bounded subset of X.

http://www.boundaryvalueproblems.com/content/2014/1/60
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Besides, there exists a sufficiently large L >  such that

u �=Au + λu, ∀u ∈ ∂BL ∩ P,∀λ ≥ .

From [], we deduce that the fixed point index of the operatorA over BL ∩ P with respect
to P is

i(A,BL ∩ P,P) = . ()

Next, from assumption (H), we conclude that there exist M >  and δ ∈ (, ) such
that

f (t,u) ≤Muq, ∀(t,u) ∈ [, ]× [, ];

g(t,u) ≤ εu/q, ∀(t,u) ∈ [, ]× [, δ],
()

where ε = min{/M, (/(MMM
q
))/q} > , M =

∫ 
 J(s)ds > , M =

∫ 
 J(s)ds > .

Hence, for any u ∈ Bδ ∩ P and t ∈ [, ], we obtain

∫ 


G(t, s)g

(
s,u(s)

)
ds≤ ε

∫ 


J(s)

(
u(s)

)/q ds≤ εM‖u‖/q ≤ . ()

Therefore, by () and (), we deduce that for any u ∈ Bδ ∩ P and t ∈ [, ]

(Au)(t) ≤ M

∫ 


G(t, s)

(∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)q

ds

≤ Mε
q
M

q
‖u‖

∫ 


J(s)ds =Mε

q
MM

q
‖u‖ ≤ 


‖u‖.

This implies that ‖Au‖ ≤ ‖u‖/ for all u ∈ ∂Bδ ∩ P. From [], we conclude that the fixed
point index of the operator A over Bδ ∩ P with respect to P is

i(A,Bδ ∩ P,P) = . ()

Combining () and (), we obtain

i
(
A, (BL \ Bδ )∩ P,P

)
= i(A,BL ∩ P,P) – i(A,Bδ ∩ P,P) = –.

We deduce thatA has at least one fixed point u ∈ (BL \ Bδ )∩ P, that is, δ < ‖u‖ < L.
Let v(t) =

∫ 
 G(t, s)g(s,u(s))ds. Then (u, v) ∈ P× P is a solution of (S)-(BC). In addi-

tion ‖v‖ > . Indeed, if we suppose that v(t) = , for all t ∈ [, ], then by using (H) we
have f (s, v(s)) = f (s, ) = , for all s ∈ [, ]. This implies u(t) =

∫ 
 G(t, s)f (s, v(s))ds = ,

for all t ∈ [, ], which contradicts ‖u‖ > . The proof of Theorem . is completed. �

Using similar arguments as those used in the proofs of Theorem . and Theorem .
in [], we also obtain the following results for our problem (S)-(BC).

Theorem . Assume that (H)-(H) hold. If the functions f and g also satisfy the condi-
tions:

http://www.boundaryvalueproblems.com/content/2014/1/60
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(H) There exists a positive constant r ∈ (,∞) such that

(i) f s∞ = lim sup
u→∞

sup
t∈[,]

f (t,u)
ur

∈ [,∞);

(ii) gs∞ = lim sup
u→∞

sup
t∈[,]

g(t,u)
u/r

= .

(H) There exists c ∈ (, /) such that

(i) f i = lim inf
u→+

inf
t∈[c,–c]

f (t,u)
u

∈ (,∞];

(ii) gi = lim inf
u→+

inf
t∈[c,–c]

g(t,u)
u

=∞,

then the problem (S)-(BC) has at least one positive solution (u(t), v(t)), t ∈ [, ].

Theorem . Assume that (H)-(H), and (H) hold. If the functions f and g also satisfy
the condition:
(H) For each t ∈ [, ], f (t,u) and g(t,u) are nondecreasing with respect to u, and there

exists a constant N >  such that

f
(
t,m

∫ 


g(s,N)ds

)
<

N
m

, ∀t ∈ [, ],

where m =max{K,K}, K =maxs∈[,] J(s), K =maxs∈[,] J(s), and J, J are
defined in Section , then the problem (S)-(BC) has at least two positive solutions
(u(t), v(t)), (u(t), v(t)), t ∈ [, ].

4 The singular case
In this section, we investigate the existence of positive solutions for our problem (S)-(BC)
under various assumptions on functions f and g which may be singular at t =  and/or
t = .
The basic assumptions used here are the following.

(H̃) ≡ (H).
(H̃) The functions f , g ∈ C((, ) × R+,R+) and there exist pi ∈ C((, ),R+), qi ∈ C(R+,

R+), i = , , with  <
∫ 
 pi(t)dt <∞, i = , , q() = , q() =  such that

f (t,x)≤ p(t)q(x), g(t,x) ≤ p(t)q(x), ∀t ∈ (, ), x ∈R+.

We consider the Banach space X = C([, ]) with supremum norm and define the cone
P ⊂ X by P = {u ∈ X,u(t)≥ ,∀t ∈ [, ]}. We also define the operator Ã : P → X by

(Ãu)(t) =
∫ 


G(t, s)f

(
s,

∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds.

Lemma . Assume that (H̃)-(H̃) hold. Then Ã : P → P is completely continuous.

http://www.boundaryvalueproblems.com/content/2014/1/60
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Proof Wedenote by α̃ =
∫ 
 J(s)p(s)ds and β̃ =

∫ 
 J(s)p(s)ds. Using (H̃), we deduce that

 < α̃ < ∞ and  < β̃ < ∞. By Lemma . and the corresponding lemma forG, we see that
Ãmaps P into P.
We shall prove that Ã maps bounded sets into relatively compact sets. Suppose D ⊂ P

is an arbitrary bounded set. Then there exists M >  such that ‖u‖ ≤ M for all u ∈D.
By using (H̃) and Lemma ., we obtain ‖Ãu‖ ≤ α̃M for all u ∈ D, where M =
supx∈[,β̃M] q(x), and M = supx∈[,M] q(x). In what follows, we shall prove that Ã(D) is
equicontinuous. By using Lemma ., we have

(Ãu)(t) =
∫ 


G(t, s)f

(
s,

∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds

=
∫ 



[
g(t, s) +

tα–

�

∫ 


g(τ , s)dH(τ )

]
f
(
s,

∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds

=


�(α)

∫ t



[
tα–( – s)α– – (t – s)α–

]
f
(
s,

∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds

+


�(α)

∫ 

t
tα–( – s)α–f

(
s,

∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds

+
tα–

�

∫ 



(∫ 


g(τ , s)dH(τ )

)
× f

(
s,

∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds, ∀t ∈ [, ].

Therefore, for any t ∈ (, ), we obtain

(Ãu)′(t) =


�(α)

∫ t



[
(α – )tα–( – s)α– – (α – )(t – s)α–

]
× f

(
s,

∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds

+


�(α)

∫ 

t
(α – )tα–( – s)α–f

(
s,

∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds

+
(α – )tα–

�

∫ 



(∫ 


g(τ , s)dH(τ )

)
f
(
s,

∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds.

So, for any t ∈ (, ), we deduce

∣∣(Ãu)′(t)
∣∣ ≤ 

�(α – )

∫ t



[
tα–( – s)α– + (t – s)α–

]
p(s)

× q
(∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds

+


�(α – )

∫ 

t
tα–( – s)α–p(s)q

(∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds

+
(α – )tα–

�

∫ 



(∫ 


g(τ , s)dH(τ )

)
p(s)

× q
(∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds

http://www.boundaryvalueproblems.com/content/2014/1/60
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≤ M

(


�(α – )

∫ t



[
tα–( – s)α– + (t – s)α–

]
p(s)ds

+


�(α – )

∫ 

t
tα–( – s)α–p(s)ds

+
(α – )tα–

�

∫ 



(∫ 


g(τ , s)dH(τ )

)
p(s)ds

)
. ()

We denote

h(t) =


�(α – )

∫ t



[
tα–( – s)α– + (t – s)α–

]
p(s)ds

+


�(α – )

∫ 

t
tα–( – s)α–p(s)ds,

μ(t) = h(t) +
(α – )tα–

�

∫ 



(∫ 


g(τ , s)dH(τ )

)
p(s)ds, t ∈ (, ).

For the integral of the function h, by exchanging the order of integration, we obtain

∫ 


h(t)dt =


�(α – )

∫ 



(∫ t



[
tα–( – s)α– + (t – s)α–

]
p(s)ds

)
dt

+


�(α – )

∫ 



(∫ 

t
tα–( – s)α–p(s)ds

)
dt

=


�(α – )

∫ 



(∫ 

s

[
tα–( – s)α– + (t – s)α–

]
p(s)dt

)
ds

+


�(α – )

∫ 



(∫ s


tα–( – s)α–p(s)dt

)
ds

=


�(α)

∫ 


( – s)α–p(s)ds <∞.

For the integral of the function μ, we have

∫ 


μ(t)dt =

∫ 


h(t)dt +

α – 
�

(∫ 



(∫ 


g(τ , s)dH(τ )

)
p(s)ds

)(∫ 


tα– dt

)
≤ 

�(α)

∫ 


( – s)α–p(s) +

H() –H()
�

∫ 


g

(
θ(s), s

)
p(s)ds

≤ 
�(α)

(
 +

H() –H()
�

)∫ 


( – s)α–p(s)ds <∞. ()

We deduce that μ ∈ L(, ). Thus for any given t, t ∈ [, ] with t ≤ t and u ∈ D, by
(), we conclude

∣∣(Ãu)(t) – (Ãu)(t)
∣∣ = ∣∣∣∣∫ t

t
(Ãu)′(t)dt

∣∣∣∣ ≤ M

∫ t

t
μ(t)dt. ()

From (), (), and the absolute continuity of the integral function, we find that Ã(D) is
equicontinuous. By the Ascoli-Arzelà theorem, we deduce that Ã(D) is relatively compact.

http://www.boundaryvalueproblems.com/content/2014/1/60
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Therefore Ã is a compact operator. Besides, we can easily show that Ã is continuous on P.
Hence Ã : P → P is completely continuous. �

Theorem . Assume that (H̃)-(H̃) hold. If the functions f and g also satisfy the condi-
tions:

(H̃) There exist α,α ∈ (,∞) with αα ≤  such that

(i) qs∞ = lim sup
x→∞

q(x)
xα

∈ [,∞); (ii) qs∞ = lim sup
x→∞

q(x)
xα

= .

(H̃) There exist β,β ∈ (,∞) with ββ ≤  and c ∈ (,  ) such that

(i) f̃ i = lim inf
x→+

inf
t∈[c,–c]

f (t,x)
xβ

∈ (,∞]; (ii) g̃i = lim inf
x→+

inf
t∈[c,–c]

g(t,x)
xβ

=∞,

then the problem (S)-(BC) has at least one positive solution (u(t), v(t)), t ∈ [, ].

Proof Because the proof of this theorem is similar to that of Theorem  in [], we will
sketch some parts of it. For c given in (H̃), we consider the cone P = {u ∈ X,u(t) ≥
,∀t ∈ [, ],mint∈[c,–c] u(t) ≥ γ ‖u‖}, where γ = min{γ,γ}. Under assumptions (H̃)-
(H̃), we obtain Ã(P) ⊂ P. By (H̃), we deduce that there exist C,C,C >  and ε ∈
(, (αCα̃β̃α )–/α ) such that

q(x)≤ Cxα +C, q(x) ≤ εxα +C, ∀x ∈ [,∞). ()

By using () and (H̃), for any u ∈ P, we conclude

(Ãu)(t) ≤
∫ 


G(t, s)p(s)q

(∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)
ds

≤ C

∫ 


G(t, s)p(s)

(∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ

)α

ds

+C

∫ 


J(s)p(s)ds

≤ C

∫ 


J(s)p(s)

[∫ 


G(s, τ )p(τ )

(
ε

(
u(τ )

)α +C
)
dτ

]α

ds + α̃C

≤ C

(∫ 


J(s)p(s)ds

)(∫ 


J(τ )p(τ )dτ

)α(
ε‖u‖α +C

)α + α̃C

≤ Cαε
α
 α̃β̃α‖u‖αα +Cα α̃β̃αCα

 + α̃C, ∀t ∈ [, ].

By the definition of ε, we can choose sufficiently large R >  such that

‖Ãu‖ ≤ ‖u‖, ∀u ∈ ∂BR ∩ P. ()

From (H̃), we deduce that there exist positive constants C > , x > , and ε ≥
(/(Cγγ

β
 γ ββθ θ

β
 ))/β such that

f (t,x)≥ Cxβ , g(t,x)≥ εxβ , ∀(t,x) ∈ [c,  – c]× [,x], ()

http://www.boundaryvalueproblems.com/content/2014/1/60
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where θ  =
∫ –c
c J(s)ds and θ =

∫ –c
c J(s)ds. From the assumption q() =  and the con-

tinuity of q, we conclude that there exists sufficiently small ε ∈ (,min{x, }) such that
q(x) ≤ β̃–x for all x ∈ [, ε], where β̃ =

∫ 
 J(s)p(s)ds. Therefore for any u ∈ ∂Bε ∩ P

and s ∈ [, ], we have

∫ 


G(s, τ )g

(
τ ,u(τ )

)
dτ ≤

∫ 


J(τ )p(τ )q

(
u(τ )

)
dτ ≤ x. ()

By (), (), Lemma ., and Lemma ., for any u ∈ ∂Bε ∩P and t ∈ [c,  – c], we obtain

(Ãu)(t) ≥ C

∫ –c

c
G(t, s)

(∫ –c

c
G(s, τ )g

(
τ ,u(τ )

)
dτ

)β

ds

≥ C

∫ –c

c
G(t, s)

(
ε

∫ –c

c
G(s, τ )

(
u(τ )

)β dτ

)β

ds

≥ Cγ

∫ –c

c
J(s)

(
(εγ)β

(∫ –c

c
J(τ )

(
u(τ )

)β dτ

)β)
ds

≥ Cγγ
β
 ε

β
 γ ββθ θ

β
 ‖u‖ββ ≥ ‖u‖ββ ≥ ‖u‖.

Therefore

‖Ãu‖ ≥ ‖u‖, ∀u ∈ ∂Bε ∩ P. ()

By (), (), and the Guo-Krasnosel’skii fixed point theorem, we deduce that Ã has at
least one fixed point u ∈ (BR \ Bε ) ∩ P. Then our problem (S)-(BC) has at least one
positive solution (u, v) ∈ P × P where v(t) =

∫ 
 G(t, s)g(s,u(s))ds. The proof of The-

orem . is completed. �

Using similar arguments as those used in the proof of Theorem  in [] (see also [] for
a particular case of the problem studied in []), we also obtain the following result for our
problem (S)-(BC).

Theorem . Assume that (H̃)-(H̃) hold. If the functions f and g also satisfy the condi-
tions:

(H̃) There exist r, r ∈ (,∞) with rr ≥  such that

(i) qs = lim sup
x→+

q(x)
xr

∈ [,∞); (ii) qs = lim sup
x→+

q(x)
xr

= .

(H̃) There exist l, l ∈ (,∞) with ll ≥  and c ∈ (,  ) such that

(i) f̃ i∞ = lim inf
x→∞ inf

t∈[c,–c]
f (t,x)
xl

∈ (,∞];

(ii) g̃i∞ = lim inf
x→∞ inf

t∈[c,–c]
g(t,x)
xl

=∞,

then the problem (S)-(BC) has at least one positive solution (u(t), v(t)), t ∈ [, ].
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Henderson and Luca Boundary Value Problems 2014, 2014:60 Page 15 of 17
http://www.boundaryvalueproblems.com/content/2014/1/60

5 Examples
Let α = / (n = ), β = / (m = ),

H(t) =

⎧⎪⎨⎪⎩
, t ∈ [, /),
, t ∈ [/, /),
, t ∈ [/, ],

and K (t) = t for all t ∈ [, ]. Then
∫ 
 u(s)dH(s) = u(  ) + u(  ) and

∫ 
 v(s)dK (s) =


∫ 
 s

v(s)ds.
We consider the system of fractional differential equations

(S)

{
D/

+ u(t) + f (t, v(t)) = , t ∈ (, ),
D/

+ v(t) + g(t,u(t)) = , t ∈ (, ),

with the boundary conditions

(BC)

{
u() = u′() = , u() = u(  ) + u(  ),
v() = , v() = 

∫ 
 s

v(s)ds.

Then we obtain � =  –
∫ 
 s

α– dH(s) =  – (  )
/ – (  )

/ = (–
√
)

 ≈ . > , � =
 –

∫ 
 s

β– dK (s) =  – 
∫ 
 s

/ ds = 
 = . > . We also deduce

g(t, s) = 

√

π

{
t/( – s)/ – (t – s)/, ≤ s ≤ t ≤ ,
t/( – s)/,  ≤ t ≤ s ≤ ,

g(t, s) = 
�(/)

{
t/( – s)/ – (t – s)/, ≤ s ≤ t ≤ ,
t/( – s)/, ≤ t ≤ s ≤ ,

θ(s) = 
–s+s and θ(s) = s for all s ∈ [, ].

For the functions J and J, we obtain

J(s) = g
(
θ(s), s

)
+


�

∫ 


g(τ , s)dH(τ )

= g
(


 – s + s

, s
)
+


�

[
g

(


, s

)
+ g

(


, s

)]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩



√

π
{ s(–s)/
(–s+s)/ +


(–

√
) [(( – s)/ – ( – s)/)

+ (
√
( – s)/ – ( – s)/)]},  ≤ s < 

 ,



√

π
{ s(–s)/
(–s+s)/ +


(–

√
) [( – s)/

+ (
√
( – s)/ – ( – s)/)]}, 

 ≤ s < 
 ,



√

π
[ s(–s)/
(–s+s)/ +

(+
√
)(–s)/

(–
√
) ], 

 ≤ s≤ 

and

J(s) = g
(
θ(s), s

)
+


�

∫ 


g(τ , s)dK (τ )

= g(s, s) +


�

∫ 


τ g(τ , s)dτ
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=


�(/)

(
s/( – s)/ + ( – s)/ – ( – s)/ –




s( – s)/

–


s( – s)/

)
, s ∈ [, ].

Example  We consider the functions

f (t,u) = a
(
uα + uβ

)
, g(t,u) = b

(
uγ + uδ

)
, t ∈ [, ], u ≥ ,

where α > ,  < β < , γ > ,  < δ < , a,b > . We have K = maxs∈[,] J(s) ≈
.,K =maxs∈[,] J(s)≈ .. Thenm =max{K,K} = K. The functions
f (t,u) and g(t,u) are nondecreasing with respect to u, for any t ∈ [, ], and for p = / and
c ∈ (, /) the assumptions (H) and (H) are satisfied; indeed we obtain

f i∞ = lim
u→∞

a(uα + uβ )
u/

=∞, gi∞ = lim
u→∞

b(uγ + uδ )
u

=∞,

f i = lim
u→+

a(uα + uβ )
u

=∞, gi = lim
u→+

b(uγ + uδ )
u

=∞.

We take N =  and then
∫ 
 g(s, )ds = b and f (t, bm) = a[(bm)α + (bm)β ]. If

a[(bm)α + (bm)β ] < 
m

⇔ a[mα+
 (b)α + mβ+

 (b)β ] < , then the assumption
(H) is satisfied. For example, if α = /, β = /, b = /, and a < 

m/
 +m/


(e.g. a ≤

.), then the above inequality is satisfied. By Theorem ., we deduce that the prob-
lem (S)-(BC) has at least two positive solutions.

Example  We consider the functions

f (t,x) =
xa

tζ ( – t)ρ
, g(t,x) =

xb

tζ ( – t)ρ
,

with a,b >  and ζ,ρ, ζ,ρ ∈ (, ). Here f (t,x) = p(t)q(x) and g(t,x) = p(t)q(x), where

p(t) =


tζ ( – t)ρ
, p(t) =


tζ ( – t)ρ

, q(x) = xa, q(x) = xb.

We have  <
∫ 
 p(s)ds <∞,  <

∫ 
 p(s)ds < ∞.

In (H̃), for r < a, r < b and rr ≥ , we obtain

lim sup
x→+

q(x)
xr

= , lim sup
x→+

q(x)
xr

= .

In (H̃), for l < a, l < b, ll ≥ , and c ∈ (,  ), we have

lim inf
x→∞ inf

t∈[c,–c]
f (t,x)
xl

=∞, lim inf
x→∞ inf

t∈[c,–c]
g(t,x)
xl

=∞.

For example, if a = /, b = , r = , r = /, l = , l = /, the above conditions are
satisfied. Then, by Theorem ., we deduce that the problem (S)-(BC) has at least one
positive solution.
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