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Abstract
In this paper, we consider the following system of nonlinear third-order nonlocal
boundary value problems (BVPs for short):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

–u′′′(t) = f (t, v(t), v′(t)), t ∈ (0, 1),

–v′′′(t) = g(t,u(t),u′(t)), t ∈ (0, 1),

u(0) = 0, au′(0) – bu′′(0) = α[u], cu′(1) + du′′(1) = β[u],

v(0) = 0, av′(0) – bv′′(0) = α[v], cv′(1) + dv′′(1) = β[v],

where f ,g ∈ C([0, 1]× R+ × R+,R+), α[u] =
∫ 1
0 u(t)dA(t) and β[u] =

∫ 1
0 u(t)dB(t) are linear

functionals on C[0, 1] given by Riemann-Stieltjes integrals and are not necessarily
positive functionals; a, b, c, d are nonnegative constants with ρ := ac + ad + bc > 0. By
using the Guo-Krasnoselskii fixed point theorem, some sufficient conditions are
obtained for the existence of at least one or two positive solutions and nonexistence
of positive solutions to the above problem. Two examples are also included to
illustrate the main results.
MSC: 34B15
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1 Introduction
The theory of BVPs with integral boundary conditions for ordinary differential equations
arises in different areas of appliedmathematics and physics. For example, heat conduction,
chemical engineering, underground water flow, thermo-elasticity, and plasma physics can
be reduced to nonlocal problemswith integral boundary conditions.Moreover, BVPs with
Riemann-Stieltjes integral boundary condition (BC for short) have been considered re-
cently as both multipoint and Riemann integral type BCs are treated in a single frame-
work. For more comments on Stieltjes integral BC and its importance, we refer the reader
to the papers by Webb and Infante [–] and their other related works.
In recent years, third-order nonlocal BVPs have received much attention from many

authors; see, for example [–]. It is worth mentioning that Sun and Li [] studied the
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third-order BVP with integral boundary conditions
⎧⎨
⎩
u′′′(t) + f (t,u(t),u′(t)) = ,  < t < ,

u() = u′() = , u′() =
∫ 
 g(t)u

′(t)dt.
(.)

Their main tool was the Guo-Krasnoselskii fixed point theorem. Recently, we [] were
concerned with the existence of a monotone positive solution for the third-order BVP

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′′′(t) + f (t,u(t),u′(t)) = ,  < t < ,

u() = ,

au′() – bu′′() = α[u],

cu′() + du′′() = β[u],

(.)

by applying monotone iterative techniques, where f ∈ C([, ] × R+ × R+,R+), α[u] =∫ 
 u(t)dA(t) and β[u] =

∫ 
 u(t)dB(t) are linear functionals on C[, ] given by Riemann-

Stieltjes integrals.
Furthermore, motivated by the wide applications of systems of differential equations in

biomathematics, the study of systems of BVPs has received increased interest; see [–]
and the references therein. In particular, Henderson and Luca [] established the exis-
tence of positive solutions for the system of BVPs with multi-point boundary conditions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–u′′(t) + λc(t)f (u(t), v(t)) = , t ∈ (,T),

–v′′(t) +μd(t)g(u(t), v(t)) = , t ∈ (,T),

αu() – βu′() = , u(T) =
∑m–

i= aiu(ξi), m ≥ ,

γ v() – δv′() = , v(T) =
∑n–

i= biv(ηi), m ≥ 

(.)

by applying the fixed point index theory.
Yang [] studied the existence of positive solutions for the system of second-order non-

local BVPs
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

–u′′(t) = f (t,u, v),

–v′′(t) = g(t,u, v),

u() = v() = ,

u() =H(
∫ 
 u(τ )dα(τ )),

v() =H(
∫ 
 v(τ )dβ(τ ))

(.)

by using fixed point index theory in a cone.
Infante and Pietramala [] studied the existence of positive solutions for a system of

perturbed Hammerstein integral equations by fixed point index theory for compact maps
and illustrated their theory by studying the following system of BVPs:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′′(t) + g(t)f(t,u(t), v(t)) = ,  < t < ,

v′′(t) + g(t)f(t,u(t), v(t)) = ,  < t < ,

u() =H(β[u]), u() =H(β[u]),

v() =H(β[v]), v′() =H(β[v]).

(.)

http://www.boundaryvalueproblems.com/content/2014/1/61
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The result was quite general and covered a wide class of systems of BVPs. Here βij[w] was
of the form βij[w] =

∫ 
 w(t)dBij(t) involving positive Riemann-Stieltjes measures.

Inspired greatly by the above-mentioned excellentworks, in this paper, we are concerned
with the following system of third-order BVPs:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–u′′′(t) = f (t, v(t), v′(t)), t ∈ (, ),

–v′′′(t) = g(t,u(t),u′(t)), t ∈ (, ),

u() = , au′() – bu′′() = α[u], cu′() + du′′() = β[u],

v() = , av′() – bv′′() = α[v], cv′() + dv′′() = β[v],

(.)

where f , g ∈ C([, ]× R+ × R+,R+), α[u] =
∫ 
 u(t)dA(t) and β[u] =

∫ 
 u(t)dB(t) are linear

functionals on C[, ] given by Riemann-Stieltjes integrals with signed measures; a, b, c,
d are nonnegative constants with ρ := ac + ad + bc > . To the best of our knowledge, the
study of existence of positive solutions of third-order differential systems (.) has not
been done.
A vector (u, v) ∈ C(, ) × C(, ) is said to be a positive solution of BVP (.) if and

only if u, v satisfy BVP (.) and u, v are positive on (, ). The proof of our main results is
based on the well-known Guo-Krasnoselskii fixed point theorem, which we present now.

Theorem . Let E be a Banach space, K ⊂ E be a cone, and � and � be bounded open
subsets of E with  ∈ �, � ⊂ �. Assume that A : K ∩ (�\�) → K is a completely
continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂� and ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂�; or
(ii) ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂� and ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂�.

Then A has a fixed point in K ∩ (�\�).

2 Preliminary lemmas
In this section, we adopt the ideas and themethodwhich have beenwidely used andwhich
are due to Webb and Infante in [, ].
In our case, the existence of positive solutions of nonlocal BVP

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u′′′(t) + f (t,u(t),u′(t)) = ,  < t < ,

u() = ,

au′() – bu′′() = α[u],

cu′() + du′′() = β[u]

(.)

with two nonlocal boundary terms α[u], β[u] can be studied via a perturbedHammerstein
integral equation of the type

u(t) = γ (t)α[u] + δ(t)β[u] +
∫ 


G(t, s)f

(
s,u(s),u′(s)

)
ds =: Tu(t). (.)

Here γ (t), δ(t) are linearly independent and given by

–γ ′′′(t) = , γ () = , aγ ′() – bγ ′′() = , cγ ′() + dγ ′′() = ,

–δ′′′(t) = , δ() = , aδ′() – bδ′′() = , cδ′() + dδ′′() = ,

http://www.boundaryvalueproblems.com/content/2014/1/61
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which imply γ (t) = ct+dt–ct
ρ and δ(t) = at+bt

ρ , t ∈ [, ]. Let ‖ ·‖∞ be the usual supremum
norm in C[, ]. A direct calculation shows that for t ∈ [θ ,  – θ ],  < θ < 

 ,

γ (t) ≥ c‖γ ‖∞, δ(t) ≥ c‖δ‖∞,

γ ′(t)≥ d
∥∥γ ′∥∥∞ and δ′(t)≥ d

∥∥δ′∥∥∞,
(.)

where c = cθ+dθ–cθ
c+d , c = aθ+bθ

a+b , d = cθ+d
c+d and d = aθ+b

a+b ; G(t, s) is Green’s function for
the corresponding problem with local terms when α[u] and β[u] are identically , i.e.,

G(t, s) =

⎧⎨
⎩

(at+bt)(c(–s)+d)
ρ – (t–s)

 , ≤ s ≤ t ≤ ,
(at+bt)(c(–s)+d)

ρ , ≤ t ≤ s ≤ .

In the remainder of this paper, we always assume that
(H)  ≤ α[γ ],β[δ] < , α[δ],β[γ ]≥  and D := ( – α[γ ])( – β[δ]) – α[δ]β[γ ] > ;
(H) A, B are functions of bounded variation, and KA(s),KB(s)≥  for s ∈ [, ], where

KA(s) :=
∫ 


G(t, s)dA(t) and KB(s) :=

∫ 


G(t, s)dB(t).

As shown in Theorem . in [], if u is a fixed point of T in (.), then u is a fixed point
of S, which is now given by

Su(t) :=
γ (t)
D

((
 – β[δ]

)∫ 


KA(s)f

(
s,u(s),u′(s)

)
ds + α[δ]

∫ 


KB(s)f

(
s,u(s),u′(s)

)
ds

)

+
δ(t)
D

(
β[γ ]

∫ 


KA(s)f

(
s,u(s),u′(s)

)
ds

+
(
 – α[γ ]

)∫ 


KB(s)f

(
s,u(s),u′(s)

)
ds

)
+

∫ 


G(t, s)f

(
s,u(s),u′(s)

)
ds

=:
∫ 


GS(t, s)f

(
s,u(s),u′(s)

)
ds

in our case. The kernel GS is Green’s function corresponding to BVP (.). By Lemma .
and Lemma . in [], we can get the following properties of Green’s function.

Lemma . Let ρ := ac + ad + bc > , c =
ρ

∫ θ
 �(τ )dτ

(a+b)(c+d) ,  < θ < . Then G(t, s) satisfies

G(t, s)≤ �(s) for t ∈ [, ], s ∈ [, ],

G(t, s)≥ c�(s) for t ∈ [θ ,  – θ ], s ∈ [, ],

where �(s) = 
ρ
(b + as)(d + c( – s)), s ∈ [, ].

Lemma . Let c =min{c, c, c}. Then GS(t, s) satisfies

GS(t, s) ≤ �(s) for t ∈ [, ], s ∈ [, ],

GS(t, s) ≥ c�(s) for t ∈ [θ ,  – θ ], s ∈ [, ],

http://www.boundaryvalueproblems.com/content/2014/1/61
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where�(s) := ‖γ ‖∞
D ((–β[δ])KA(s)+α[δ]KB(s))+ ‖δ‖∞

D (β[γ ]KA(s)+(–α[γ ])KB(s))+�(s),
s ∈ [, ].

Lemma . Let d =min{d,d,d}, d = ρmint∈[θ ,–θ ] �(t)
(a+b)(c+d) ,  < θ < , and

�(s) :=
‖γ ′‖∞
D

[(
 – β[δ]

)
KA(s) + α[δ]KB(s)

]

+
‖δ′‖∞
D

[
β[γ ]KA(s) +

(
 – α[γ ]

)
KB(s)

]
+�(s).

Then ∂GS(t,s)
∂t satisfies

∂GS(t, s)
∂t

≤ �(s) for t ∈ [, ], s ∈ [, ],

∂GS(t, s)
∂t

≥ d�(s) for t ∈ [θ ,  – θ ], s ∈ [, ].

Proof For s ∈ [, ], by the fact

∂G(t,s)
∂t

�(s)
=

⎧⎨
⎩

(b+as)(d+c(–t))
(b+as)(d+c(–s)) =

(b+at)(d+c(–t))
(b+at)(d+c(–s)) ≥ ρ�(t)

(a+b)(c+d) ,  ≤ s≤ t ≤ ,
(b+at)(d+c(–s))
(b+as)(d+c(–s)) =

(b+at)(d+c(–t))
(b+as)(d+c(–t)) ≥ ρ�(t)

(a+b)(c+d) , ≤ t ≤ s≤ ,

so ∂G(t,s)
∂t ≥ ρmint∈[θ ,–θ ] �(t)

(a+b)(c+d) �(s), t ∈ [θ ,  – θ ], s ∈ [, ], which together with (.) shows that
∂GS(t,s)

∂t ≥ d�(s) holds. �

Let E = {C[, ] : u() = } equipped with the norm ‖u‖ = max{‖u‖∞,‖u′‖∞}, where
‖u‖∞ is the usual supremum norm in C[, ]. Similar to Lemma . in [], we can get the
following lemma.

Lemma . If u ∈ E, then ‖u‖∞ ≤ ‖u′‖∞. And so, E is a Banach space when it is endowed
with the norm ‖u‖ = ‖u′‖∞.

Define

K =
{
u ∈ E : u(t) ≥ ,u′(t) ≥ , t ∈ [, ], min

t∈[θ ,–θ ]
u′(t)≥ d‖u‖

}
.

Then it is easy to verify that K is a cone in E.
For u ∈ K , we define

(Tu)(t) =
∫ 


GS(t, s)f

(
s,

∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,

∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds, t ∈ [, ].

It is easy to see that if x is a fixed point of T in K , then BVP (.) has one solution (u, v),
where

⎧⎨
⎩
u(t) = x(t),

v(t) =
∫ 
 GS(t, s)g(s,x(s),x′(s))ds.

http://www.boundaryvalueproblems.com/content/2014/1/61
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Lemma . T : K → K .

Proof It is obvious that (Tu)(t) ≥  and (Tu)′(t) ≥ .Moreover, for t ∈ [, ], by Lemma .,
we have

(Tu)′(t) =
∫ 



∂GS(t, s)
∂t

f
(
s,

∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,

∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≤
∫ 


�(s)f

(
s,

∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,

∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

and hence

‖Tu‖ ≤
∫ 


�(s)f

(
s,

∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,

∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds.

Moreover, it follows from Lemma . that for t ∈ [θ ,  – θ ],

(Tu)′(t) =
∫ 



∂GS(t, s)
∂t

f
(
s,

∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,

∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≥ d
∫ 


�(s)f

(
s,

∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,

∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≥ d‖Tu‖.

Then we get

min
t∈[θ ,–θ ]

(Tu)′(t) ≥ d‖Tu‖,

which shows that TK ⊂ K . �

Similar to the proof of Lemma . in [], we can get the following lemma.

Lemma . T : K → K is completely continuous.

3 Main results
Denote

f  = lim sup
x+y→+

max
t∈[,]

f (t,x, y)
x + y

and g = lim sup
x+y→+

max
t∈[,]

g(t,x, y)
x + y

,

http://www.boundaryvalueproblems.com/content/2014/1/61
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f = lim inf
x+y→+

min
t∈[θ ,–θ ]

f (t,x, y)
x + y

and g = lim inf
x+y→+

min
t∈[θ ,–θ ]

g(t,x, y)
x + y

,

f ∞ = lim sup
x+y→+∞

max
t∈[,]

f (t,x, y)
x + y

and g∞ = lim sup
x+y→+∞

max
t∈[,]

g(t,x, y)
x + y

,

f∞ = lim inf
x+y→+∞ min

t∈[θ ,–θ ]

f (t,x, y)
x + y

and g∞ = lim inf
x+y→+∞ min

t∈[θ ,–θ ]

g(t,x, y)
x + y

,

A =
∫ 


�(s)ds, B = 

∫ 



(
�(s) +�(s)

)
ds,

A = d
∫ –θ

θ

�(s)ds, B = d
∫ –θ

θ

(
c�(s) + d�(s)

)
ds.

Theorem . Assume that Af  <  < Af∞ and Bg <  < Bg∞. Then BVP (.) has at
least one positive solution.

Proof In view of Af  <  and Bg < , there exists ε >  such that

A
(
f  + ε

) ≤ , B
(
g + ε

) ≤ . (.)

By the definition of f , g, we may choose σ >  so that

f (t,x, y) ≤ (
f  + ε

)
(x + y),

g(t,x, y) ≤ (
g + ε

)
(x + y), t ∈ [, ], (x + y) ∈ [,σ].

(.)

Set � = {u ∈ E|‖u‖ < σ/}. It follows from (.), (.), Lemmas . and . that for any
u ∈ K ∩ ∂�, s ∈ [, ],

∫ 



(
GS(s, τ ) +

∂GS(s, τ )
∂s

)
g
(
τ ,u(τ ),u′(τ )

)
dτ

≤
∫ 



(
�(τ ) +�(τ )

)(
g + ε

)(
u(τ ) + u′(τ )

)
dτ

≤ ‖u‖(g + ε
)∫ 



(
�(τ ) +�(τ )

)
dτ

≤ σ. (.)

Then, by (.), (.) and (.), we have

(Tu)′(t) =
∫ 



∂GS(t, s)
∂t

f
(
s,

∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,

∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≤
∫ 


�(s)

(
f  + ε

)(∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ

+
∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≤
∫ 


�(s)

(
f  + ε

)(∫ 



(
�(τ ) +�(τ )

)(
g + ε

)(
u(τ ) + u′(τ )

)
dτ

)
ds

http://www.boundaryvalueproblems.com/content/2014/1/61
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≤
∫ 


�(s)ds

(
f  + ε

)(∫ 



(
�(s) +�(s)

)
ds

)(
g + ε

)
‖u‖

≤ ‖u‖, t ∈ [, ].

Therefore,

‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�. (.)

On the other hand, since  < Af∞ and  < Bg∞, there exists ε >  such that

A(f∞ – ε) ≥ , B(g∞ – ε) ≥ . (.)

By the definition of f∞, g∞, we may choose σ ′
 > σ so that

f (t,x, y) ≥ (f∞ – ε)(x + y),

g(t,x, y) ≥ (g∞ – ε)(x + y), t ∈ [θ ,  – θ ], (x + y) ∈ [σ ′
, +∞).

(.)

Let σ = max{σ,σ ′
/d} and set � = {u ∈ E|‖u‖ < σ}. Then u ∈ K ∩ ∂� implies that

σ ′
 ≤ d‖u‖ ≤ u′(t), t ∈ [θ ,  – θ ]. So, for s ∈ [θ ,  – θ ], in view of Lemmas . and ., we

have
∫ 



(
GS(s, τ ) +

∂GS(s, τ )
∂s

)
g
(
τ ,u(τ ),u′(τ )

)
dτ

≥
∫ –θ

θ

(
c�(τ ) + d�(τ )

)
(g∞ – ε)

(
u(τ ) + u′(τ )

)
dτ

≥ ‖u‖(g∞ – ε)d
∫ –θ

θ

(
c�(τ ) + d�(τ )

)
dτ ≥ σ. (.)

Then, for t ∈ [θ ,  – θ ], by (.), (.), (.), Lemmas . and ., we have

(Tu)′(t) =
∫ 



∂GS(t, s)
∂t

f
(
s,

∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,

∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≥ d
∫ –θ

θ

�(s)(f∞ – ε)
(∫ 



(
GS(s, τ ) +

∂GS(s, τ )
∂s

)
g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≥ d
∫ –θ

θ

�(s)ds(f∞ – ε)σ

≥ ‖u‖, t ∈ [, ].

Therefore,

‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�. (.)

Therefore, it follows from the first part of Theorem . that T has a fixed point u ∈ K ∩
(�\�). Consequently, BVP (.) has a positive solution (u, v) ∈ K ×K , here

⎧⎨
⎩
u(t) = u(t),

v(t) =
∫ 
 GS(t, s)g(s,u(s),u′

(s))ds. �

http://www.boundaryvalueproblems.com/content/2014/1/61
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Theorem . Assume that Af ∞ <  < Af and Bg∞ <  < Bg. Then BVP (.) has at
least one positive solution.

Proof The proof is similar to Theorem . and therefore omitted. �

Theorem . Assume that Af > , Af∞ > , Bg > , Bg∞ > , Bg <  and there is a
μ >  such that

max
{
g(t,x, y), t ∈ [, ], (x + y) ∈ [,μ]

}
<
μ
B

; (.)

max
{
f (t,x, y), t ∈ [, ], (x + y) ∈ [,μ]

}
<

μ

A
. (.)

Then BVP (.) has at least two positive solutions.

Proof Firstly, in view of Af >  and Bg > , there exists ε >  such that

A(f – ε) ≥ , B(g – ε) ≥ . (.)

By the definition of f, g, we may choose σ̂ >  so that

f (t,x, y) ≥ (f – ε)(x + y),

g(t,x, y) ≥ (g – ε)(x + y), t ∈ [, ], (x + y) ∈ [, σ̂].
(.)

Moreover, from Bg < , take ρ satisfying  < ρ < B
B

σ̂ < μ such that

g(t,x, y) ≤ ρ

B
, ∀t ∈ [, ],x + y ∈ [,ρ].

Set � = {u ∈ E|‖u‖ < ρ/}. It follows from (.), (.), Lemmas . and . that for any
u ∈ K ∩ ∂�,

∫ 



(
GS(s, τ ) +

∂GS(s, τ )
∂s

)
g
(
τ ,u(τ ),u′(τ )

)
dτ ≤ ρ

B

∫ 



(
�(τ ) +�(τ )

)
dτ

=
B

B
ρ < σ̂, s ∈ [, ]. (.)

Then, for t ∈ [θ ,  – θ ], by (.), (.), (.), Lemmas . and ., we have

(Tu)′(t) =
∫ 



∂GS(t, s)
∂t

f
(
s,

∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,

∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≥ d
∫ –θ

θ

�(s)(f – ε)
(∫ 



(
GS(s, τ ) +

∂GS(s, τ )
∂s

)
g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

≥ d
∫ –θ

θ

�(s)(f – ε)
(∫ –θ

θ

(
GS(s, τ ) +

∂GS(s, τ )
∂s

)
g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

http://www.boundaryvalueproblems.com/content/2014/1/61
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≥ d
∫ –θ

θ

�(s)(f – ε)

×
(∫ –θ

θ

(
c�(τ ) + d�(τ )

)
(g – ε)

(
u(τ ) + u′(τ )

)
dτ

)
ds

≥ d
∫ –θ

θ

�(s)ds(f – ε)
(∫ –θ

θ

(
c�(τ ) + d�(τ )

)
dτ

)
(g – ε)d‖u‖

≥ ‖u‖, t ∈ [, ].

Thus,

‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�. (.)

Secondly, similar to the proof of (.), we may choose σ > μ and set � = {u ∈ E|‖u‖ <
σ}, and easily get

‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�. (.)

Let � = {u ∈ E|‖u‖ < μ/}. Then, for any u ∈ K ∩ ∂�, it follows by (.) and (.) that
∫ 



(
GS(s, τ ) +

∂GS(s, τ )
∂s

)
g
(
τ ,u(τ ),u′(τ )

)
dτ ≤ μ

B

∫ 



(
�(τ ) +�(τ )

)
dτ

≤ μ, s ∈ [, ] (.)

and

(Tu)′(t) =
∫ 



∂GS(t, s)
∂t

f
(
s,

∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,

∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

<
∫ 


�(s)ds

μ

A
=

μ


= ‖u‖, t ∈ [, ].

Thus,

‖Tu‖ < ‖u‖, u ∈ K ∩ ∂�, (.)

which together with (.), (.) shows that T has at least two fixed points in u ∈ K ∩
(�\�) and u ∈ K ∩ (�\�). �

Similarly, we can get the following theorem.

Theorem . Assume that Af  < , Af ∞ < 
 , Bg < , Bg∞ > d and there exists η > 

such that

max
{
g(t,x, y), t ∈ [θ ,  – θ ], (x + y) ∈ [dη, +∞)

}
>
d
η

B
; (.)

max
{
f (t,x, y), t ∈ [θ ,  – θ ], (x + y) ∈ [dη, +∞)

}
>

η

A
. (.)

Then BVP (.) has at least two positive solutions.

http://www.boundaryvalueproblems.com/content/2014/1/61
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Theorem . If Af (t,x, y) < (x + y) and Bg(t,x, y) < (x + y) for t ∈ [, ] and (x + y) ∈
[, +∞), then BVP (.) has no monotone positive solution.

Proof Suppose on the contrary that u is a monotone positive solution of BVP (.). Then
u(t) ≥  and u′(t)≥  for t ∈ [, ], and

u′(t) =
∫ 



∂GS(t, s)
∂t

f
(
s,

∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ ,

∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

<

A

∫ 


�(s)

(∫ 


GS(s, τ )g

(
τ ,u(τ ),u′(τ )

)
dτ

+
∫ 



∂GS(s, τ )
∂s

g
(
τ ,u(τ ),u′(τ )

)
dτ

)
ds

<

A


B

∫ 


�(s)ds

∫ 



(
�(s) +�(s)

)
ds

∫ 



(
u(τ ) + u′(τ )

)
dτ

< ‖u‖,

which shows that ‖u‖ < ‖u‖. This is a contradiction. �

Similarly, we can prove the following theorem.

Theorem . If Af (t,x, y) > (x + y) and Bg(t,x, y) > (x + y) for t ∈ [θ ,  – θ ] and (x + y) ∈
[, +∞), then BVP (.) has no monotone positive solution.

4 Example
In this section, we give an example to illustrate our main results.
Consider the BVP:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–u′′′(t) = f (t, v(t), v′(t)), t ∈ (, ),

–v′′′(t) = g(t,u(t),u′(t)), t ∈ (, ),

u() = , u′() = α[u] =
∫ 
 ( – s)u(s)ds, u′() = β[u] =

∫ 
 su(s)ds,

v() = , v′() = α[v] =
∫ 
 ( – s)v(s)ds, v′() = β[v] =

∫ 
 sv(s)ds.

(.)

For this BCs, the corresponding γ (t) = t–t
 and δ(t) = t

 . A simple calculation shows that

α[γ ] =


, α[δ] =




, β[γ ] =



, β[δ] =


,

D =
(
 – α[γ ]

)(
 – β[δ]

)
– α[δ]β[γ ] =




,

KA(s) :=
∫ 


G(t, s)( – t)dt =

s

–
s


+
s


–

s


,

KB(s) :=
∫ 


G(t, s)t dt =

s


–
s


+

s


,

�(s) =
s


–
s


+
s


–

s


, �(s) =

s


–
s


+
s


–

s


.
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Let θ = /, then A = /, ≈ ., A = ,/,, ≈ ., B =
,/, ≈ ., B = ,,/,, ≈ ..

Example . Let

f
(
t, v(t), v′(t)

)
=


 + t

[
v(t) + v′(t)
ev(t)+v′(t)

+
,(v(t) + v′(t))

 + v(t) + v′(t)

]
,

g
(
t,u(t),u′(t)

)
=


( + t)

[
u(t) + u′(t)
eu(t)+u′(t) +

,(u(t) + u′(t))

 + u(t) + u′(t)

]
.

It is easy to compute that f  = , f∞ = ,
 , g = 

 , g∞ = 
 , which show that Af  <  <

Af∞ and Bg <  < Bg∞. So, it follows from Theorem . that BVP (.) has at least one
positive solution.

Example . Let

f
(
t, v(t), v′(t)

)
=


 + t

[
(v(t) + v′(t))

ev(t)+v′(t)
+

(v(t) + v′(t))

, + v(t) + v′(t)

]
,

g
(
t,u(t),u′(t)

)
=

[
 +

(
t –




)][
(u(t) + u′(t))
e(u(t)+u′(t)) +

(u(t) + u′(t))

, + u(t) + u′(t)

]
.

It is easy to compute that f = 
 , f∞ = 

 , g = , g∞ =  and g = 
 , which show

that Af > , Af∞ > , Bg > , Bg∞ >  and Bg < .
Choose μ = ,

max
{
g(t,x, y), t ∈ [, ], (x + y) ∈ [, ]

}
=

e

+
,


<  <
μ
B

;

max
{
f (t,x, y), t ∈ [, ], (x + y) ∈ [, ]

}
=



(

e

+
,


)
<  <

μ

A
.

So, it follows from Theorem . that BVP (.) has at least two positive solutions.

Competing interests
The author declares that she has no competing interests.

Author’s contributions
The author read and approved the final manuscript.

Acknowledgements
The work is supported by the Science and Technology Foundation of Hebei Province (Z2013016) and the Science and
Technology Plan Foundation of Tangshan (12110233b) and the Scientific Research Foundation of Tangshan College
(13011B). The author would like to thank the anonymous referees very much for helpful comments and suggestions
which led to the improvement of presentation and quality of the work.

Received: 8 December 2013 Accepted: 6 March 2014 Published: 21 Mar 2014

References
1. Webb, JRL, Infante, G: Positive solutions of nonlocal boundary value problems: a unified approach. J. Lond. Math. Soc.

74(2), 673-693 (2006)
2. Webb, JRL, Infante, G: Nonlocal boundary value problems of arbitrary order. J. Lond. Math. Soc. 79(2), 238-258 (2009)
3. Webb, JRL: Positive solutions of some higher order nonlocal boundary value problems. Electron. J. Qual. Theory

Differ. Equ. 29, 1-15 (2009)
4. Boucherif, A, Bouguima, SM, Al-Malki, N, Benbouziane, Z: Third order differential equations with integral boundary

conditions. Nonlinear Anal. 71, e1736-e1743 (2009)

http://www.boundaryvalueproblems.com/content/2014/1/61


Zhang Boundary Value Problems 2014, 2014:61 Page 13 of 13
http://www.boundaryvalueproblems.com/content/2014/1/61

5. Du, Z, Ge, W, Zhou, M: Singular perturbations for third-order nonlinear multi-point boundary value problem. J. Differ.
Equ. 218, 69-90 (2005)

6. El-Shahed, M: Positive solutions for nonlinear singular third order boundary value problems. Commun. Nonlinear Sci.
Numer. Simul. 14, 424-429 (2009)

7. Graef, JR, Webb, JRL: Third order boundary value problems with nonlocal boundary conditions. Nonlinear Anal. 71,
1542-1551 (2009)

8. Graef, JR, Yang, B: Positive solutions of a third order nonlocal boundary value problem. Discrete Contin. Dyn. Syst.,
Ser. S 1, 89-97 (2008)

9. Henderson, J, Tisdell, CC: Five-point boundary value problems for third-order differential equations by solution
matching. Math. Comput. Model. 42, 133-137 (2005)

10. Hopkins, B, Kosmatov, N: Third-order boundary value problems with sign-changing solutions. Nonlinear Anal. 67,
126-137 (2007)

11. Ma, R: Multiplicity results for a third order boundary value problem at resonance. Nonlinear Anal. 32, 493-499 (1998)
12. Sun, JP, Li, HB: Monotone positive solution of nonlinear third-order BVP with integral boundary conditions. Bound.

Value Probl. 2010, Article ID 874959 (2010). doi:10.1155/2010/874959
13. Zhao, JF, Wang, PG, Ge, WG: Existence and nonexistence of positive solutions for a class of third order BVP with

integral boundary conditions in Banach spaces. Commun. Nonlinear Sci. Numer. Simul. 16, 402-413 (2011)
14. Zhang, HE, Sun, JP: Existence and iteration of monotone positive solutions for third-order nonlocal BVPs involving

integral conditions. Electron. J. Qual. Theory Differ. Equ. 18, 1-9 (2012)
15. Du, ZJ: Singularly perturbed third-order boundary value problem for nonlinear systems. Appl. Math. Comput. 189(1),

869-877 (2007)
16. Henderson, J, Luca, R: On a system of higher-order multi-point boundary value problems. Electron. J. Qual. Theory

Differ. Equ. 49, 1-14 (2012)
17. Henderson, J, Luca, R: Positive solutions for a system of second-order multi-point boundary value problems. Appl.

Math. Comput. 218, 6083-6094 (2012)
18. Infante, G, Pietramala, P: Eigenvalues and non-negative solutions of a system with nonlocal BCs. Nonlinear Stud. 16,

187-196 (2009)
19. Infante, G, Pietramala, P: Existence and multiplicity of non-negative solutions for systems of perturbed Hammerstein

integral equations. Nonlinear Anal. 71, 1301-1310 (2009)
20. Infante, G, Minhós, FM, Pietramala, P: Non-negative solutions of systems of ODEs with coupled boundary conditions.

Commun. Nonlinear Sci. Numer. Simul. 17, 4952-4960 (2012)
21. Infante, G, Pietramala, P: Multiple positive solutions of systems with coupled nonlinear BCs. arXiv:1306.5556
22. Li, YH, Guo, YP, Li, GG: Existence of positive solutions for systems of nonlinear third-order differential equations.

Commun. Nonlinear Sci. Numer. Simul. 14, 3792-3797 (2009)
23. Li, SJ, Zhang, XG, Wu, YH, Caccetta, L: Extremal solutions for P-Laplacian differential systems via iterative computation.

Appl. Math. Lett. 26(12), 1151-1158 (2013)
24. Li, WT, Sun, JP: Multiple positive solutions of BVPs for third-order discrete difference systems. Appl. Math. Comput.

149, 389-398 (2004)
25. Jankowski, T: Nonnegative solutions to nonlocal boundary value problems for systems of second-order differential

equations dependent on the first-order derivatives. Nonlinear Anal. 87, 83-101 (2013)
26. Wang, GW, Zhou, MR, Sun, L: Existence of solutions of boundary value problem for 3rd order nonlinear system. Appl.

Math. Comput. 189, 1131-1138 (2007)
27. Yang, Z: Positive solutions to a system of second-order nonlocal boundary value problems. Nonlinear Anal. 62,

1251-1265 (2005)
28. Zhang, HE, Sun, JP: Existence of positive solution to singular systems of second-order four-point BVPs. J. Appl. Math.

Comput. 29, 325-339 (2009)
29. Zhong, Y, Chen, SH, Wang, CP: Existence results for a fourth-order ordinary differential equation with a four-point

boundary condition. Appl. Math. Lett. 21, 465-470 (2008)

10.1186/1687-2770-2014-61
Cite this article as: Zhang:Multiple positive solutions of nonlinear BVPs for differential systems involving integral
conditions. Boundary Value Problems 2014, 2014:61

http://www.boundaryvalueproblems.com/content/2014/1/61
http://dx.doi.org/10.1155/2010/874959
http://arxiv.org/abs/arXiv:1306.5556

	Multiple positive solutions of nonlinear BVPs for differential systems involving integral conditions
	Abstract
	MSC
	Keywords

	Introduction
	Preliminary lemmas
	Main results
	Example
	Competing interests
	Author's contributions
	Acknowledgements
	References


