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University, Poříčí 31, Brno, 60300,
Czech Republic

Abstract
We consider the nonlinear equation (r(t)G(y′))′ = p(t)F(y), where r, p are positive
continuous functions and F(| · |), G(| · |) are continuous functions which are both
regularly varying at zero of index one. The existence and asymptotic behavior of
decreasing slowly varying solutions are studied. Our observations can be understood
at least in two ways: as a nonlinear extension of results for linear equations; and as an
analysis of the border case (‘between sub-linearity and super-linearity’) for a certain
generalization of Emden-Fowler type equation.
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1 Introduction
We consider the nonlinear equation

(
G

(
y′))′ = p(t)F(y), ()

where p is a positive continuous function on [a,∞) and F ,G are continuous functions onR
with uF(u) > , uG(u) >  for u �= . To simplify our considerations we suppose that F and
G are increasing and odd. Nonlinearities F and G are further assumed to have regularly
varying behavior of index  at zero. More precisely, we require

F
(| · |),G(| · |) ∈RV(); ()

the classRV being defined below. This condition justifies the terminology a nearly linear
equation. Indeed, if we make the trivial choice F = G = id, then () reduces to a linear
equation. It is, however, clear that in contrast to linear equations, the solution space of
() is generally neither additive nor homogeneous. Examples of F(u) and G(u) which lead
to a nonlinear equation and can be treated within our theory are u| ln |u||, u/| ln |u||, or
u/

√
± u, and many others.

The theory of regular variation has been shown to be very useful in studying asymptotic
properties of linear and nonlinear differential equations; see e.g. [–]. As for nonlinear
equations, typically Emden-Fowler type equations have been studied, e.g. of the form y′′ =
q(t)|y|γ sgn y or, more generally,

y′′ = q(t)ϕ(y), ()
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where ϕ(| · |) ∈RV(γ ) or ϕ(| · |) ∈RV(γ ), γ > ; see e.g. [, –]. Usually the sub-linearity
condition resp. the super-linearity condition is assumed, i.e., γ <  resp. γ > , and such
conditions play an important role in the proofs. Notice that from this point of view, our
equation () (which arises as a variant of () with specific nonlinearities) is neither super-
linear nor sub-linear, since the indices of regular variation of F andG are the same. There-
fore, asymptotic analysis of () in the framework of regular variation requires an approach
which is different from the usual ones for the above-mentioned Emden-Fowler equation
with γ �= . The crucial property is now the fact that the nonlinearities in () are in some
sense close to each other (they can differ by a slowly varying function). It turns out that
a modification of some methods known from the linear theory is a useful tool. However,
as we will see, some phenomena may occur for () which cannot happen in the linear
case.
In addition to the above-mentioned works where the analysis of linear and nonlinear

equations is made in the framework of regular variation, we recommend the monograph
[] where various asymptotic properties of linear and nonlinear differential equations are
investigated.
We are interested in asymptotic behavior of solutions y to () such that y(t)y′(t) < 

for large t. Without loss of generality, we restrict our study to eventually positive de-
creasing solutions of (); such a set is denoted as DS . As we will see, for any y ∈ DS ,
limt→∞ y′(t) = .
The paper is organized as follows. In the remaining part of this section we recall a few

essentials from the theory of regular variation. In the next section we present the main
results, proofs, examples, and comments. We give conditions guaranteeing thatDS solu-
tions are slowly varying and, in particular, establish asymptotic formulas and estimates for
them. The results can be understood at least in two ways: first, as a nonlinear extension of
the existing linear results; and second, as an analysis of the border case in the sense of the
above described sub-linear and super-linear setting in (), where, in addition, a nonlinear-
ity can be present also in the differential term. In the last part of the paper, we discuss an
extension to the equation

(
r(t)G

(
y′))′ = p(t)F(y), ()

where r and p are positive continuous functions on [a,∞).
We use the usual convention: For eventually positive functions f , g we denote f (t) ∼ g(t)

resp. f (t) = o(g(t)) as t → ∞ if limt→∞ f (t)/g(t) =  resp. limt→∞ f (t)/g(t) = .
We start with recalling the definition of regularly varying functions introduced by

J Karamata in .

Definition  A measurable function f : [a,∞) → (,∞) is called regularly varying (at
infinity) of index ϑ if limt→∞ f (λt)

f (t) = λϑ for every λ > ; we write f ∈ RV(ϑ). The class of
slowly varying functions (at infinity), denoted by SV , is defined as SV =RV().

It is clear that f ∈ RV(ϑ) iff f (t) = tϑL(t), where L ∈ SV . The following proposition in-
cludes very important and useful properties. The proofs can be found in [, Chapter ] or
[, Chapter ].
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Proposition 
(i) (The uniform convergence theorem) The relation in the definition holds uniformly on

each compact λ-set in (,∞).
(ii) (The representation theorem) f ∈RV(ϑ) iff

f (t) = tϑϕ(t) exp
{∫ t

a

ψ(s)
s

ds
}
,

where ϕ, ψ are measurable functions with limt→∞ ϕ(t) = C ∈ (,∞) and
limt→∞ ψ(t) = .

(iii) (Karamata theorem (direct half )) If L ∈ SV , then
∫ ∞
t sζL(s) ds ∼ 

–ζ– t
ζ+L(t)

provided ζ < –, and
∫ t
a s

ζL(s) ds ∼ 
ζ+ t

ζ+L(t) provided ζ > –. The integral∫ ∞
a L(s)/sds may or may not converge. The function L̃(t) =

∫ ∞
t

L(s)
s ds resp.

L̃(t) =
∫ t
a

L(s)
s ds is a new SV function and such that L(t)/L̃(t) →  as t → ∞.

If ϕ(t) ≡ C in the above representation, then we speak of normalized regularly varying
functions of index ϑ ; we write f ∈NRV(ϑ). We denoteNSV =NRV().

Definition  A measurable function f : (,a] → (,∞) is said to be regularly varying at
zero of index ϑ if limt→+

f (λt)
f (t) = λϑ for every λ > ; we write f ∈RV(ϑ).

Since regular variation of f (·) at zero of index ϑ means in fact regular variation of f (/t)
at infinity of index –ϑ , properties of RV functions can be deduced from theory of RV
functions.
Here are some further useful properties of regularly varying functions.

Proposition 
(i) If f ∈RV(ϑ), then f α ∈RV(αϑ) for every α ∈R.
(ii) If fi ∈RV(ϑi), i = , , f(t) → ∞ as t → ∞, then f ◦ f ∈RV(ϑϑ).
(iii) If fi ∈RV(ϑi), i = , , then ff ∈RV(ϑ + ϑ). If L ∈ SV and ϑ > , then

tϑL(t)→ ∞, t–ϑL(t)→  as t → ∞.
(iv) For a continuous δ in the representation of a normalized regularly varying function

f (t) = C exp{∫ t
a

δ(s)
s ds} of index ϑ , we have tf ′(t)/f (t) = δ(t) → ϑ as t → ∞.

(v) If s positive function f ∈ C satisfies tf ′(t)/f (t) → ϑ as t → ∞, then f ∈NRV(ϑ).
(vi) If f ∈RV(ϑ), ϑ ∈R, then ln f (t)/ ln t → ϑ as t → ∞.
(vii) If f ∈RV(ϑ) with ϑ ≤  and f (t) =

∫ ∞
t g(s) ds with g nonincreasing, then

tf ′(t)/f (t) → ϑ as t → ∞.
(viii) Let g ∈RV(ϑ) with ϑ >  be increasing in a right neighborhood of zero. Then

g– ∈RV(/ϑ), where g– stands for the inverse of g .

Proof The proofs of (i)-(vi) can be found [, Chapter ] or [, Chapter ]. Or see [, Ap-
pendix] which includes also (vii).
(viii) Since g ∈ RV(ϑ), we have g(/t) ∈ RV(–ϑ). Denote g̃(t) = /g(/t). Then g̃ ∈

RV(ϑ) and hence the inverse of g̃ satisfies g̃– ∈ RV(/ϑ) by [, Theorem ..]. We
have g–(u) = /g̃–(/u). Hence, g–(/t) = /g̃–(t) ∈ RV(–/ϑ), which implies g–(u) ∈
RV(/ϑ). �
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We use the convention that a slowly varying component of f ∈ RV(ϑ) (or f ∈ RV(ϑ))
is denoted as Lf , i.e., Lf (t) = f (t)/tϑ .
The de Haan theory (which includes the class 
 defined next) can be seen as a refine-

ment of the Karamata theory of regularly varying functions; see [, Chapter ] and [,
Chapter ].

Definition  Ameasurable function f : [a,∞)→R is said to belong to the class
 if there
exists a function w : (,∞) → (,∞) such that for λ > , limt→∞ f (λt)–f (t)

w(t) = lnλ; we write
f ∈ 
 or f ∈ 
(w).

The function w is called an auxiliary function for f . The class 
 of functions f is, af-
ter taking absolute values, a proper subclass of SV . Auxiliary function is unique up to
asymptotic equivalence.
For more information as regards the classesRV and 
 see, e.g., the monographs [, ].

2 Results
We start with the simple result which gives the conditions guaranteeing slow variation of
any solution in DS .

Theorem  Assume that

lim
t→∞ t

∫ ∞

t
p(s) ds = , ()

lim sup
u→+

LF (u) < ∞ and lim inf
u→+

LG(u) > . ()

Then

∅ �=DS ⊂NSV .

Proof Rewrite () as an equivalent system of the form

y′ = –G–(u), u′ = –p(t)F(y),

where G– is the inverse of G. Then we apply the existence result [, Theorem ] to obtain
DS �= ∅.
Take y ∈DS , i.e., y(t) > , y′(t) < , t ≥ t. Then limt→∞ y′(t) = . Indeed,G(y′) is negative

increasing and so is y′. If limt→∞ y′(t) = –c < , then y(t)–y(t) ∼ –c(t–t) as t → ∞, which
contradicts eventual positivity of y. Integration of () from t to ∞ yields

–G
(
y′(t)

)
=

∫ ∞

t
p(s)F

(
y(s)

)
ds.

Hence,

∣∣y′(t)
∣∣LG(∣∣y′(t)

∣∣) =
∫ ∞

t
p(s)y(s)LF

(
y(s)

)
ds ≤ y(t)

∫ ∞

t
p(s)LF

(
y(s)

)
ds.
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Thus,

–ty′(t)
y(t)

≤ t
LG(|y′(t)|)

∫ ∞

t
p(s)LF

(
y(s)

)
ds ≤ tM

N

∫ ∞

t
p(s) ds, ()

where M, N are some positive constants which exist thanks to (). Since the expression
on the right hand side of () tends to zero, we get ty′(t)/y(t)→  as t → ∞, and y ∈NSV
follows. �

Remark  Condition () is somehow necessary. Indeed, take y ∈ DS ∩ SV and assume
that lim infu→+ LF (u) >  and lim supu→+ LG(u) < ∞. First note that because of mono-
tonicity of y′, we have ty′(t)/y(t)→ , and so y ∈NSV . Set w =G(y′)/y. Then w satisfies

w′ = p(t)
F(y)
y

–w
y′

y
()

for large t. There exists N ∈ (,∞) such that

 < –tw(t) ≤ –Nt
y′(t)
y(t)

→ 

as t → ∞. Hence,
∫ ∞

w(s)
y′(s)
y(s)

ds < ∞ and lim
t→∞ t

∫ ∞

t
w(s)

y′(s)
y(s)

ds = .

Integration () from t to ∞ and multiplying by t, we get

–tw(t) = t
∫ ∞

t
p(s)

F(y(s))
y(s)

ds – t
∫ ∞

t
w(s)

y′(s)
y(s)

ds,

which implies limt→∞ t
∫ ∞
t p(s)LF (y(s)) ds = . SinceM ∈ (,∞) exists such that LF (y(t)) ≥

M for large t, condition () follows.
A necessity is discussed from certain point of view also in Remark .

Remark  Observe that in Theorem we are dealingwith allSV solutions of (). It follows
from the fact that SV solutions cannot increase. Indeed, for a positive increasing solution
u of (), due to convexity, we have u′(t) ≥ K for some K > . By integrating, u(t) ≥ Kt +
K, which contradicts the fact the u ∈ SV .

Remark  The statements of Theorem  and Remark  can be understood as a nonlinear
extension of a part of [, Theorem .].

In the next result, we derive asymptotic formulas forSV solutions provided p is regularly
varying of index –. Define

F̂(x) =
∫ x



du
F(u)

, x > .

The function F̂(x) is increasing on (,∞). The constant  in the integral is unimportant;
it can be replaced by any positive constant. Denote the inverse of F̂ by F̂–. We have |F̂| ∈

http://www.boundaryvalueproblems.com/content/2014/1/62
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SV and in general limu→+ |F̂(u)| can be finite or infinite. Denote

H(t) =
tp(t)

LG(/t)

and note that H ∈RV(–) provided p ∈RV(–).

Theorem  Assume that p ∈RV(–), limu→+ |F̂(u)| =∞, and

LG
(
ug(u)

) ∼ LG(u) as u → +, ()

for all g ∈ SV. If y ∈DS ∩ SV , then –y ∈ 
(–ty′(t)).Moreover:
(i) If

∫ ∞
a H(s) ds =∞, then

y(t) = F̂–
{
–

∫ t

a

(
 + o()

)
H(s) ds

}
()

(and y(t) → ) as t → ∞.
(ii) If

∫ ∞
a H(s) ds < ∞, then

y(t) = F̂–
{
F̂
(
y(∞)

)
+

∫ ∞

t

(
 + o()

)
H(s) ds

}
()

(and y(t) → y(∞) ∈ (,∞)) as t → ∞.

Proof Take y ∈DS ∩ SV and let t be such that y(t) > , y′(t) <  for t ≥ t. Then

(
G

(
y′))′ = pF(y) ∈RV(– +  · ) =RV(–)

provided y(t) →  as t → ∞. If y(t) → C ∈ (,∞), then we get the same conclusion since
F(y(t))→ F(C) ∈ (,∞), and so pF(y) ∈ RV(–). Thus

G
(
–y′(t)

)
= –G

(
y′(t)

)
=

∫ ∞

t

(
G

(
y′(s)

))′ ds ∈RV(–).

In view of –y′ =G–(G(–y′)), we get –y′ ∈RV(–). Hence,

–y(λt) + y(t)
–ty′(t)

=
∫ λt

t

–y′(u)
–ty′(t)

du =
∫ λ



–y′(st)
–y′(t)

ds →
∫ λ



ds
s
= lnλ ()

as t → ∞, thanks to the uniformity. This implies –y ∈ 
(–ty′(t)). Define

�(t) = tG
(
y′(t)

)
–

∫ t

t
G

(
y′(s)

)
ds.

Then � ′(t) = tp(t)F(y(t)) ∈RV(–), which implies � ∈ 
(t� ′(t)), similarly as in (). Fur-
ther, we claim � ∈ 
(–tG(y′(t))). Indeed, fix λ > , and then

�(λt) –�(t)
–tG(y′(t))

=
λG(y′(λt))
–G(y′(t))

+  –
∫ λt
t G(y′(s)) ds
–tG(y′(t))

=
λG(y′(λt))
–G(y′(t))

+  +
∫ λ



G(y′(tu))
G(y′(t))

du →
∫ λ



du
u

= lnλ
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as t → ∞, thanks to G(–y′) ∈ RV(–) and the uniformity. From the uniqueness of the
auxiliary function up to asymptotic equivalence, we obtain

–G
(
y′(t)

) ∼ tp(t)F
(
y(t)

)
()

as t → ∞. Condition () is equivalent to LG(v(t)/t) ∼ LG(/t) as t → ∞, for all v ∈ SV .
Hence,

–G
(
y′(t)

)
= –y′(t)LG

(
L|y′|(t)/t

) ∼ –y′(t)LG(/t)

as t → ∞. Combining this relation with (), we get

–y′(t)
F(y(t))

∼ tp(t)
LG(/t)

as t → ∞, that is,

y′(t)
F(y(t))

= –
(
 + o()

)
H(t) ()

as t → ∞. By integrating this relation over (t, t) we obtain

F̂
(
y(t)

)
= F̂

(
y(t)

)
–

∫ t

t

(
 + o()

)
H(s) ds, ()

which implies () provided
∫ ∞
a H(s) ds = ∞. Clearly then y(t) →  as t → ∞, otherwise

we get a contradiction with the divergence of the integral in (). If
∫ ∞
a H(s) ds < ∞ holds,

then we integrate () over (t,∞) obtaining (). In this case, y(t) must tend to a positive
constant as t → ∞. Indeed, if y(t) →  as t → ∞, then the left-hand side of () becomes
unbounded which is a contradiction. �

Remark  A closer examination of the proof of Theorem  shows that the condition
limu→+ |F̂(u)| = ∞ is somehow needed. Indeed, if we assume that this limit is finite and
that

∫ ∞
a H(s) ds = ∞, then in view of () we get contradiction. As a by-product we then

have a non-existence of SV solutions. If limu→+ |F̂(u)| < ∞ holds when
∫ ∞
a H(s) ds < ∞,

then no conclusion whether y(∞) =  or y(∞) >  can generally be drawn. Note that such
phenomena cannot occur in the linear case.

Remark  There exists an alternative way to prove (). Indeed, denote L̃(t) = Lp(t)F(y(t))
and observe that L̃ ∈RV( +  · ) = SV . Therefore,

∫ ∞

t
p(s)F

(
y′(s)

)
ds =

∫ ∞

t
s–L̃(s) ds ∼ 

t
L̃(t) = tp(t)F

(
y(t)

)

as t → ∞ by the Karamata theorem. Since –G(y′(t)) =
∫ ∞
t p(s)F(y(s)) ds, we obtain ().

Remark  Observe that to prove asymptotic formulas for decreasing SV solutions of ()
we do not require (even one-sided) boundedness conditions on LF and LG such as (). As
for condition () from Theorem , it is not too restrictive. Many functions satisfy it, for
example, LG(u) → C ∈ (,∞) as u → +, or LG(u) = | ln |u||α | ln | ln |u|||α , α,α ∈R.

http://www.boundaryvalueproblems.com/content/2014/1/62
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Remark  Observe that the value –which is required for the index of regular variation of
p is natural and consistentwithin our setting. Indeed, sinceweworkwith SV solutions, the
expression on the left-hand side of (), which is somehow close to the second derivative,
is expected to be inRV(–).

Corollary  Assume that p ∈ RV(–) and limt→∞ Lp(t) = . Let () and () hold. Then
any solution y ∈DS belongs toNSV .Moreover, –y ∈ 
(–ty′(t)) and asymptotic formulas
() or () hold.

Proof By the Karamata theorem,

t
∫ ∞

t
p(s) ds = t

∫ ∞

t
s–Lp(s) ds ∼ Lp(t)→ 

as t → ∞, and so () follows. Further, in view of lim supu→+ LF (u) < ∞, there existsM > 
such that we have for x < ,

F̂(x)≤ –
∫ 

x

du
uM

=
lnx
M

,

which implies limx→+ F̂(x) = –∞. The statement now follows from Theorem  and The-
orem . �

Remark  Corollary  can be seen as a nonlinear extension of [, Theorem .-A].

Example  Consider the equation

(
y′LG

(∣∣y′∣∣))′ =
Lp(t)y
t| ln |y|| , ()

where LG ∈ SV and Lp ∈ SV . Then F̂(x) = –(lnx)
 , x ∈ (, ), F̂(x) → –∞ as x → +, and

F̂–(u) = exp{–√
–u}, u < . We restrict our considerations to positive (decreasing) so-

lutions y of () such that y(t) <  for t ≥ t; we have this requirement because we need
F(u) to be increasing at least in a certain neighborhood of zero (here it is (, )). Note
that a slight modification of F , namely F(u) = x/| ln |x/k||, k ∈ (,∞), ensures the required
monotonicity of F on the (possibly bigger) interval (,k).
(i) Let G(u) = u| ln |u|| and Lp(t) = 

ln t+h(t) , where h is a continuous function on [a,∞)
with |h(t)| = o(ln t) as t → ∞, and such that ln t + h(t) >  for t ∈ [a,∞). Examples of h
are h(t) = cos t or h(t) = ln(ln t). Note that the required monotonicity of G is ensured in a
small neighborhood of zero. But this is not a problem since we have y′ as the argument
of G, and y′(t) tends to zero as t → ∞. Nevertheless, we could modify G similarly as the
above-mentioned modification of F . The function H reads

H(t) =


t(ln t + h(t))| ln(/t)| =


t(ln t + h(t)) ln t
∼ 

t(ln t)

as t → ∞. Thus,
∫ ∞ H(s) ds < ∞ and we have

∫ ∞
t H(s) ds ∼ 

ln t as t → ∞. From Corol-
lary , we see that for any eventually decreasing positive solution y of () (with y(t) <  for

http://www.boundaryvalueproblems.com/content/2014/1/62
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large t), –y is in 
 (y is inNSV), y tends to y(∞) >  and satisfies the formula

y(t) = exp

{
–
√(

ln y(∞)
) – ( + o())

ln t

}

as t → ∞.
(ii) Let Lp be the same as in (i) and G(u) = u√

±u
. Note that such a particular case of

G arises when searching radial solutions of PDEs with the mean curvature operator (the
sign ‘+’) resp. the relativity operator (the sign ‘–’). Then

H(t) =

√
± 

t

t(ln t + h(t))
∼ 

t ln t

as t → ∞. Note that (ln(ln t))′ = 
t ln t , and so

∫ ∞ H(s) ds =∞. FromCorollary , we see that
for any eventually decreasing positive solution y of (), –y is in 
 (y is in NSV), y tends
to zero and satisfies the formula

y(t) = exp
{
–
√(

 + o()
)
ln(ln t)

}

as t → ∞.
(iii) Let Lp(t) = 

(ln t+h(t)) , where h is as in (i), and G = id. Then

H(t) =


t(ln t + h(t))
∼ 

t(ln t)

as t → ∞. Applying Corollary , we see that any eventually decreasing positive solution y
of () (with y(t) <  for large t) obeys the same asymptotic behavior as y in (i).
Among others, the above examples show how the convergence/divergence of the inte-

gral
∫ ∞ H(s) ds can be affected by the behavior of both p and G.

Under the conditions of Theorem (i), it does not follow that y(t)∼ F̂–{– ∫ t
a H(s) ds} as

t → ∞; this fact was observed already in the linear case; see [, Remark ]. However, we
can give a lower estimate under quitemild assumptions. For technical reasons we consider
positive decreasing solutions () on [,∞) (provided p ∈ C([,∞)).

Theorem 
(i) Let lim infu→+ LG(u) >  and () hold. Then y ∈DS ∩ SV satisfies the estimate

lim inf
t→∞

y(t)
F̂–{F̂(y()) –M

∫ t
 sp(s) ds}

≥ , ()

where M is some positive constant. The constantM can be taken such that
M = / infu∈[,|y′()|] LG(u).

(ii) In addition to the conditions in (i), assume that lim supu→+ LF (u) < ∞ holds. Then
y ∈DS implies y ∈NSV and

lim inf
t→∞ y(t) exp

{
N

∫ t


sp(s) ds

}
≥ y(),
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where N is some positive constant. The constant N can be taken such that
N = supu∈[,y()] LF (u)/ infu∈[,|y′()|] LG(u).

Proof (i) Take y(t) ∈DS ∩ SV , t ≥ . For λ ∈ (, ), we have

–G(y′(λt)) +G(y′(t))
F(y(λt))

=


F(y(λt))

∫ t

λt
p(s)F

(
y(s)

)
ds ≤

∫ t

λt
p(s) ds, ()

t > . Thanks to lim infu→+ LG(u) > , there existsM >  such that

–y′(λt)
MF(y(λt))

+
G(y′(t))
F(y(λt))

≤ –y′(λt)LG(|y′(t)|)
F(y(λt))

+
G(y′(t))
F(y(λt))

≤
∫ t

λt
p(s) ds, ()

t > , where the last estimate follows from (). Integration over λ ∈ (, ) yields

–
Mt

[
F̂
(
y(t)

)
– F̂

(
y()

)]
+
G(y′(t))

t

∫ t



ds
F(y(s))

≤ 
t

∫ t


sp(s) ds, ()

where we substituted s = λt in
∫ 


dλ
F(y(λt)) and we applied the Fubini theorem in

∫ 



∫ t

λt
p(s) dsdλ.

From (), we get

y(t) ≥ F̂–
{
F̂
(
y()

)
+MG

(
y′(t)

)∫ t



ds
F(y(s))

–M
∫ t


sp(s) ds

}
. ()

Since F(y) ∈ SV , the Karamata theorem yields

 < –G
(
y′(t)

)∫ t



ds
F(y(s))

∼ –tG(y′(t))
F(y(t))

=
t

F(y(t))

∫ ∞

t
p(s)F

(
y(s)

)
ds ≤ t

∫ ∞

t
p(s) ds,

where the asymptotic relation holds as t → ∞. Hence, –G(y′(t))
∫ t


ds
F(y(s)) = o() as t → ∞.

Inequality () now easily follows from ().
(ii) Take y(t) ∈DS , t > . Then y ∈NSV follows from Theorem . Thanks to (), which

is in fact assumed, there existsN >  such that –NG(y′(λt))/F(y(λt))≥ –y′(λt)/y(λt), t > .
As in the proof of (i), we then get

–y′(λt)
y(λt)

+
G(y′(t))
F(y(λt))

≤
∫ t

λt
p(s) ds.

Since this estimate is a special case of (), the rest of the proof is now clear. �

Remark  It is reasonable to require the conditions limu→+ |F̂(u)| =∞ and
∫ ∞
 sp(s) ds =

∞when applying Theorem . Further notice that the proof of Theorem  does not require
p ∈ RV(–), in contrast to the approach known from the linear case, cf. [, Remark ].
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From this point of view, the result is an improvement even in the linear case. Neverthe-
less, in order to see Theorem  as a partial refinement of information as regards solutions
treated in Theorem (i), it is reasonable to assume p ∈RV(–).

Remark  In view of almost monotonicity and the existence of an asymptotic inversion
forRV functions with a nonzero index, many of our considerations could be extended to
nonlinearities F and G which are not necessarily (eventually) monotone.

We now consider the more general equation (). First note that in the case when G =
id and

∫ ∞
a /r(s) ds = ∞, () can be transformed into the equation of the form () and

the type of the interval is preserved. Indeed, denote R(t) =
∫ t
a /r(s) ds and introduce new

independent variable s = R(t) and new function z(s) = y(R–(t)). Then () is transformed
into

dz
ds

= p̃(s)F(z), where p̃(s) = p
(
R–(s)

)
r
(
R–(s)

)
,

s ∈ [R(a),∞). For a general G however such a transformation is not at disposal, and we
must proceed directly. Let DSr denote the set of all eventually positive decreasing solu-
tions of (). An extension of Theorem  to () reads as follows.

Theorem  Assume that

lim
t→∞

t
r(t)

∫ ∞

t
p(s) ds = , ()

lim supu→+ LF (u) <∞,

∫ ∞

a
G–

(
M
r(s)

)
ds =∞ ()

for all M ∈ (,∞), and LG(u) ≥N , u ∈ (,∞), for some N > . Then ∅ �=DSr ⊂NSV .

Proof We give only a concise proof. Existence of solutions in DSr again follows from [].
Take y ∈DSr . Then r(t)G(y′(t))→  as t → ∞. Otherwisewe get contradictionwith even-
tual positivity of y, because of condition (). Similarly as in the proof of Theorem  we
see that there exists K ∈ (,∞) such that

–ty′(t)
y(t)

≤ tLF (y(t))
LG(|y′(t)|)r(t)

∫ ∞

t
p(s) ds ≤ tK

r(t)

∫ ∞

t
p(s) ds

for large t. Hence, y ∈NSV . �

For p ∈RV(β) and r ∈RV(β + ) with β < –, denote

Hr(t) =
tp(t)

(–β – )r(t)

and note that then Hr ∈RV(–). An extension of Theorem  to () reads as follows.

http://www.boundaryvalueproblems.com/content/2014/1/62
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Theorem  Assume that p ∈RV(β) and r ∈RV(β + ), with β < –, limu→+ |F̂(u)| =∞,
and () holds. If y ∈DSr ∩ SV , then –y ∈ 
(–ty′(t)).Moreover:

(i) If
∫ ∞
a Hr(s) ds =∞, then () with Hr instead of H holds and y(t) →  as t → ∞.

(ii) If
∫ ∞
a H(s) ds < ∞, then () with Hr instead of H holds and y(t) → y(∞) ∈ (,∞) as

t → ∞.

Proof We give again only a concise proof. Take y ∈ DSr ∩ SV . Then (rG(y′))′ ∈ RV(β).
Hence, –rG(y′) ∈ RV(β + ), as so –y′ ∈ RV(–), which implies –y ∈ 
(–ty′) by (). If
L̃ = LpF(y), then L̃ ∈ SV and we have

–r(t)y′(t)LG
(

t

)
∼ –r(t)G

(
y′(t)

)
=

∫ ∞

t
p(s)F

(
y(s)

)
ds =

∫ ∞

t
sβ L̃(s) ds

∼ tβ+

–(β + )
L̃(t) =

t
–(β + )

p(t)F
(
y(t)

)

as t → ∞, where we applied the Karamata theorem. Asymptotic formulas then follow
similarly as () and () in the proof of Theorem . �

Remark  If p ∈ RV(β), β < –, and r ∈ RV(β + ), then () holds provided Lp(t)/
Lr(t)→  as t → ∞. Indeed, by the Karamata theorem we have

t
r(t)

∫ ∞

t
p(s) ds ∼ tLp(t)tβ+

–(β + )tβ+Lr(t)
=

Lp(t)
–(β + )Lr(t)

as t → ∞, and the claim follows.

Remark  Assume that p ∈RV(β) and r ∈RV(β +) with β > –. Recall that in the pre-
vious theoremwe assumed β < –. Take y ∈DSr ∩SV . Then we get

∫ ∞
a p(s)F(y(s)) ds =∞

since the index of regular variation of pF(y) is bigger than –. Integrating () from t to
t, where t is such that y(t) > , y′(t) < , t ≥ t, we obtain r(t)G(y′(t)) = r(t)G(y′(t)) +∫ t
t
p(s)F(y(s)) ds. Hence, if we let t tend to ∞, then r(t)G(y′(t)) tends to ∞. Thus y′ is even-

tually positive, which contradicts y ∈DSr . In other words, this observation indicates that
SV solutions should not be searched amongDSr solutions in this setting. We conjecture
that we should take an increasing solution in order to remain in the set SV . Of course,
some logical adjustments then have to be made, like takingRV instead ofRV in (). As
for DSr , we conjecture that this class somehow corresponds to RV(–) solutions. Note
that the integral

∫ ∞
a /r(s) ds (which is ‘close’ to the integral

∫ ∞
a G–(M/r(s)) ds) is divergent

for β < – resp. convergent for β > – since /r ∈RV(–β – ).
We have notmentioned the remaining possibility so far, namely β = –. This border case

is probably the most difficult one, and it surely will require a quite different approach. The
direct use of the Karamata theorem is problematic in contrast to the corresponding situa-
tions in other cases. If p ∈RV(–) and r ∈RV(), we cannot even say whether

∫ ∞
a p(s) ds,∫ ∞

a /r(s) ds are convergent or divergent. In fact, the situation is more tangled because of
the presence of nonlinearities F , G, where SV components LF , LG are supposed to have a
stronger effect than in the case β �= –.

Remark  In this last remark, we indicate some further directions for a possible future
research. Asymptotic theory of nearly linear equations offers many interesting questions.
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This paper contains some answers but there are many issues which could be followed
further. There is also some space for improving the presented results. We conjecture that
our results can be generalized in the sense of replacing condition () by F(| · |),G(| · |) ∈
RV(γ ), γ > , which would lead to a ‘nearly half-linear equation.’ We expect that - within
our setting, with takingRV instead ofRV in () - increasing solutions of () are inRV()
and asymptotic formulas can be established. In contrast to the linear case, a reduction of
order formula is not at our disposal. A topic which would also be of interest is to obtain
more precise information as regards SV solutions of (), for instance, bymeans of the class

R, cf. [, Theorem .-B].
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