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Abstract
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1 Introduction
The study of dynamic equations on time scales goes back to Stefan Hilger []. Theoret-
ically, this new theory has not only unify continuous and discrete equations, but it has
also exhibited much more complicated dynamics on time scales. Moreover, the study of
dynamic equations on time scales has led to several important applications, for example,
insect population models, biology, neural networks, heat transfer, and epidemic models;
see [–].
There has been much interest shown in obtaining optimal eigenvalue intervals for the

existence of positive solutions of the boundary value problems on time scales, often using
Guo-Krasnosel’skii fixed point theorem. Tomention a few papers along these lines, see [–
]. On the other hand, there is not much work concerning the eigenvalues for iterative
system of nonlinear boundary value problems on time scales; see [, ].
In [], Ma and Thompson are concerned with determining values λ, by using the Guo-

Krasnosel’skii fixed point theorem for which there exist positive solutions of the m-point
boundary value problem

⎧⎪⎨
⎪⎩
(p(t)u′)′ – q(t)u + λf (t,u) = ,  < t < ,
au() – bp()u′() =

∑m–
i= αiu(ξi),

cu() + dp()u′() =
∑m–

i= βiu(ξi).

In [], Benchohra et al. studied the eigenvalues for iterative system of nonlinear bound-
ary value problems on time scales,

u��
i (t) + λiai(t)fi

(
ui+

(
σ (t)

))
= ,  ≤ i≤ n, t ∈ [, ]T,
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un+(t) = u(t), t ∈ [, ]T,

satisfying the boundary conditions,

ui() =  = ui
(
σ ()

)
, ≤ i≤ n.

The method involves application of Guo-Krasnosel’skii fixed point theorem for operators
on a cone in a Banach space.
In [], Prasad et al. studied the eigenvalues for iterative system of nonlinear boundary

value problems on time scales,

y��
i (t) + λipi(t)fi

(
yi+(t)

)
= ,  ≤ i ≤ n, t ∈ [t, tm]T,

yn+(t) = y(t), t ∈ [t, tm]T,

satisfying them-point boundary conditions,

yi(t) = ,

αyi
(
σ (tm)

)
+ βy�

i
(
σ (tm)

)
=

m–∑
k=

y�
i (tk),  ≤ i≤ n.

They used the Guo-Krasnosel’skii fixed point theorem.
Motivated by the above results, in this study, we are concerned with determining the

eigenvalue intervals of λi,  ≤ i≤ n, for which there exist positive solutions for the iterative
system of nonlinearm-point boundary value problems on time scales,

{
u��
i (t) + λiqi(t)fi(ui+(t)) = , t ∈ [, ]T, ≤ i≤ n,

un+(t) = u(t), t ∈ [, ]T,
(.)

satisfying them-point boundary conditions,

{
aui() – bu�

i () =
∑m–

j= αjui(ξj),
cui() + du�

i () =
∑m–

j= βjui(ξj),  ≤ i≤ n,
(.)

where T is a time scale, ,  ∈ T, [, ]T = [, ]∩T.
Throughout this paper we assume that following conditions hold:
(C) a,b, c,d ∈ [,∞) with ac + ad + bc > ; αj,βj ∈ [,∞), ξj ∈ (, )T for ≤ j ≤m – ,
(C) fi :R+ →R

+ is continuous, for ≤ i≤ n,
(C) qi ∈ C([, ]T,R+) and qi does not vanish identically on any closed subinterval of

[, ]T, for ≤ i≤ n,
(C) each of fi := limx→+

fi(x)
x and fi∞ := limx→∞ fi(x)

x , ≤ i ≤ n, exists as positive real
number.

In fact, our results are also newwhenT =R (the differential case) andT = Z (the discrete
case). Therefore, the results can be considered as a contribution to this field.
This paper is organized as follows. In Section , we construct theGreen’s function for the

homogeneous problem corresponding to (.)-(.) and estimate bounds for the Green’s
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function. In Section , we determine the eigenvalue intervals for which there exist positive
solutions of the boundary value problem (.)-(.) by using the Guo-Krasnosel’skii fixed
point theorem for operators on a cone in a Banach space. Finally, in Section , we give an
example to demonstrate our main results.

2 Preliminaries
We need the auxiliary lemmas that will be used to prove our main results.
We define B = C[, ], which is a Banach space with the norm

‖u‖ = sup
t∈[,]T

∣∣u(t)∣∣.
Let h ∈ C[, ], then we consider the following boundary value problem:

⎧⎪⎨
⎪⎩
–u��

 (t) = h(t), t ∈ [, ]T,
au() – bu�

 () =
∑m–

j= αju(ξj),
cu() + du�

 () =
∑m–

j= βju(ξj).
(.)

Denote by θ and ϕ, the solutions of the corresponding homogeneous equation

–u��
 (t) = , t ∈ [, ]T, (.)

under the initial conditions

{
θ () = b, θ	() = a,
ϕ() = d, ϕ	() = –c.

(.)

Using the initial conditions (.), we can deduce from equation (.) for θ and ϕ the fol-
lowing equations:

θ (t) = b + at, ϕ(t) = d + c( – t). (.)

Set

	 :=

∣∣∣∣∣ –
∑m–

j= αj(b + aξj) ρ –
∑m–

j= αj(d + c( – ξj))
ρ –

∑m–
j= βj(b + aξj) –

∑m–
j= βj(d + c( – ξj))

∣∣∣∣∣ (.)

and

ρ := ad + ac + bc. (.)

Lemma . Let (C) hold. Assume that
(C) 	 
= .

If u ∈ C[, ] is a solution of the equation

u(t) =
∫ 


G(t, s)h(s)�s +A(h)(b + at) + B(h)

(
d + c( – t)

)
, (.)

http://www.boundaryvalueproblems.com/content/2014/1/63
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where

G(t, s) =

ρ

{
(b + aσ (s))(d + c( – t)), σ (s)≤ t,
(b + at)(d + c( – σ (s))), t ≤ s,

(.)

A(h) :=

	

∣∣∣∣∣
∑m–

j= αj
∫ 
 G(ξj, s)h(s)�s ρ –

∑m–
j= αj(d + c( – ξj))∑m–

j= βj
∫ 
 G(ξj, s)h(s)�s –

∑m–
j= βj(d + c( – ξj))

∣∣∣∣∣ (.)

and

B(h) :=

	

∣∣∣∣∣ –
∑m–

j= αj(b + aξj)
∑m–

j= αj
∫ 
 G(ξj, s)h(s)�s

ρ –
∑m–

j= βj(b + aξj)
∑m–

j= βj
∫ 
 G(ξj, s)h(s)�s

∣∣∣∣∣ , (.)

then u is a solution of the boundary value problem (.).

Proof Let u satisfy the integral equation (.), then we have

u(t) =
∫ 


G(t, s)h(s)�s +A(h)(b + at) + B(h)

(
d + c( – t)

)
,

i.e.,

u(t) =
∫ t




ρ

(
b + a

(
σ (s)

))(
d + c( – t)

)
h(s)�s

+
∫ 

t


ρ
(b + at)

(
d + c

(
 – σ (s)

))
h(s)�s

+A(h)(b + at) + B(h)
(
d + c( – t)

)
,

u�
 (t) = –

∫ t



c
ρ

(
b + a

(
σ (s)

))
h(s)�s

+
∫ 

t

a
ρ

(
d + c

(
 – σ (s)

))
h(s)�s

+A(h)a – B(h)c.

Hence

u��
 (t) =


ρ

(
–c

(
b + a

(
σ (t)

))
– a

(
d + c

(
 – σ (t)

)))
h(t)

=

ρ

(
–(ad + ac + bc)

)
h(t) = –h(t),

–u��
 (t) = h(t).

Since

u() =
∫ 



b
ρ

(
d + c

(
 – σ (s)

))
h(s)�s +A(h)b + B(h)(d + c),

u�
 () =

∫ 



a
ρ

(
d + c

(
 – σ (s)

))
h(s)�s +A(h)a – B(h)c,
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we have

au() – bu�
 () = B(h)ρ

=
m–∑
j=

αj

[∫ 


G(ξj, s)h(s)�s +A(h)(b + aξj)

+ B(h)
(
d + c( – ξj)

)]
. (.)

Since

u() =
∫ 



d
ρ

(
b + a

(
σ (s)

))
h(s)�s +A(h)(b + a) + B(h)d,

u�
 () = –

∫ 



c
ρ

(
b + a

(
σ (s)

))
h(s)�s +A(h)a – B(h)c,

we have

cu() + du�
 () = A(h)ρ

=
m–∑
j=

βj

[∫ 


G(ξj, s)h(s)�s +A(h)(b + aξj)

+ B(h)
(
d + c( – ξj)

)]
. (.)

From (.) and (.), we get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[–
∑m–

j= αj(b + aξj)]A(h) + [ρ –
∑m–

i= αj(d + c( – ξj))]B(h)
=

∑m–
i= αj

∫ 
 G(ξj, s)h(s)�s,

[ρ –
∑m–

j= βj(b + aξj)]A(h) + [–
∑m–

i= βj(d + c( – ξj))]B(h)
=

∑m–
j= βj

∫ 
 G(ξj, s)h(s)�s,

which implies that A(h) and B(h) satisfy (.) and (.), respectively. �

Lemma . Let (C) hold. Assume
(C) 	 < , ρ –

∑m–
j= βj(b + aξj) > , a –

∑m–
j= αj > .

Then for u ∈ C[, ] with h≥ , the solution u of the problem (.) satisfies

u(t) ≥  for t ∈ [, ]T.

Proof It is an immediate subsequence of the facts thatG ≥  on [, ]T× [, ]T andA(h)≥
, B(h) ≥ . �

Lemma . Let (C) and (C) hold. Assume
(C) c –

∑m–
j= βj < .

Then the solution u ∈ C[, ] of the problem (.) satisfies u�
 (t) ≥  for t ∈ [, ]T.

http://www.boundaryvalueproblems.com/content/2014/1/63
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Proof Assume that the inequality u�
 (t) <  holds. Since u�

 (t) is nonincreasing on [, ]T,
one can verify that

u�
 ()≤ u�

 (t), t ∈ [, ]T.

From the boundary conditions of the problem (.), we have

–
c
d
u() +


d

m–∑
i=

βiu(ξi) ≤ u�
 (t) < .

The last inequality yields

–cu() +
m–∑
i=

βiu(ξi) < .

Therefore, we obtain

m–∑
i=

βiu() <
m–∑
i=

βiu(ξi) < cu(),

i.e.,

(
c –

m–∑
i=

βi

)
u() > .

According to Lemma ., we have u()≥ . So, c–
∑m–

i= βi > . However, this contradicts
to condition (C). Consequently, u�

 (t)≥  for t ∈ [, ]T. �

Lemma . Let (C) and h ≥  hold. Let μ ∈ (, /)T be a constant. Then the unique
solution u of the problem (.) satisfies

min
t∈[μ,–μ]T

u(t) ≥ γ ‖u‖,

where ‖u‖ = supt∈[,]T u(t) and

γ :=min

{
b + aμ
b + a

,
d + cμ
d + c

}
. (.)

Proof We have from (.) that

 ≤G(t, s)≤G
(
σ (s), s

)
, t ∈ [, ]T, (.)

which implies

u(t) ≤
∫ 


G

(
σ (s), s

)
h(s)�s +A(h)(b + a) + B(h)(d + c) (.)

http://www.boundaryvalueproblems.com/content/2014/1/63
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for all t ∈ [, ]T. Applying (.), we have for t ∈ [μ,  –μ]T,

G(t, s)
G(σ (s), s)

=

{
d+c(–t)

d+c(–σ (s)) , ≤ σ (s)≤ t ≤ ,
b+at

b+aσ (s) ,  ≤ t ≤ s ≤ 

≥
{

d+cμ
d+c ,  ≤ σ (s)≤ t ≤  –μ,
b+aμ
b+a , μ ≤ t ≤ s≤ 

≥ γ , (.)

where

γ :=min

{
b + aμ
b + a

,
d + cμ
d + c

}
.

Thus for t ∈ [μ,  –μ]T,

u(t) =
∫ 


G(t, s)h(s)�s +A(h)(b + at) + B(h)

(
d + c( – t)

)

≥ γ

(∫ 


G

(
σ (s), s

)
h(s)�s +A(h)(b + a) + B(h)(d + c)

)
≥ γ ‖u‖.

So, the proof is completed. �

We note that an n-tuple (u(t),u(t), . . . ,un(t)) is a solution of the boundary value prob-
lem (.)-(.) if and only if

u(t) = λ

∫ 


G(t, s)q(s)f

(
λ

∫ 


G(s, s)q(s) · · ·

fn–
(

λn

∫ 


G(sn–, sn)qn(sn)fn

(
u(sn)

)�sn
)

· · ·�s
)

�s

+A
(
λq(·)f

(
u(·)

))
(b + at) + B

(
λq(·)f

(
u(·)

))(
d + c( – t)

)
, t ∈ [, ]T,

ui(t) = λi

∫ 


G(t, s)qi(s)fi

(
ui+(s)

)�s +A
(
λiqi(·)fi

(
ui+(·)

))
(b + at)

+ B
(
λiqi(·)fi

(
ui+(·)

))(
d + c( – t)

)
,  ≤ i≤ n, t ∈ [, ]T

and

un+(t) = u(t), t ∈ [, ]T,

where

A
(
λiqi(·)fi

(
ui+(·)

))

:=

	

∣∣∣∣∣
∑m–

j= αjλi
∫ 
 G(ξj, s)qi(s)fi(ui+(s))�s ρ –

∑m–
j= αj(d + c( – ξj))∑m–

j= βjλi
∫ 
 G(ξj, s)qi(s)fi(ui+(s))�s –

∑m–
j= βj(d + c( – ξj))

∣∣∣∣∣ ,
B
(
λiqi(·)fi

(
ui+(·)

))

:=

	

∣∣∣∣∣ –
∑m–

j= αj(b + aξj)
∑m–

j= αjλi
∫ 
 G(ξj, s)qi(s)fi(ui+(s))�s

ρ –
∑m–

j= βj(b + aξj)
∑m–

j= βjλi
∫ 
 G(ξj, s)qi(s)fi(ui+(s))�s

∣∣∣∣∣ .

http://www.boundaryvalueproblems.com/content/2014/1/63
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To determine the eigenvalue intervals of the boundary value problem (.)-(.), we will
use the following Guo-Krasnosel’skii fixed point theorem [].

Theorem . [] Let B be a Banach space, and let P ⊂ B be a cone in B. Assume � and
� are open subsets of B with  ∈ � and �̄ ⊂ �, and let

T :P ∩ (�̄ \ �) →P

be a completely continuous operator such that either
(i) ‖Tu‖ ≤ ‖u‖, u ∈P ∩ ∂�, and ‖Tu‖ ≥ ‖u‖, u ∈P ∩ ∂�, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈P ∩ ∂�, and ‖Tu‖ ≤ ‖u‖, u ∈P ∩ ∂�.

Then T has a fixed point in P ∩ (�̄ \ �).

3 Positive solutions in a cone
In this section, we establish criteria to determine the eigenvalue intervals for which the
boundary value problem (.)-(.) has at least one positive solution in a cone. We con-
struct a cone P ⊂ B by

P =
{
u ∈ B : u(t) ≥  on [, ]T and min

t∈[μ,–μ]T
u(t)≥ γ ‖u‖

}
,

where γ is given in (.).
Now, we define an integral operator T :P → B, for u ∈P , by

Tu(t) = λ

∫ 


G(t, s)q(s)f

(
λ

∫ 


G(s, s)q(s) · · ·

fn–
(

λn

∫ 


G(sn–, sn)qn(sn)fn

(
u(sn)

)�sn
)

· · ·�s
)

�s

+A
(
λq(·)f

(
u(·)

))
(b + at) + B

(
λq(·)f

(
u(·)

))(
d + c( – t)

)
. (.)

Notice from (C)-(C) and Lemma . that, for u ∈ P , Tu(t) ≥  on t ∈ [, ]T. Also, we
have from (.), that

Tu(t) ≤ λ

∫ 


G

(
σ (s), s

)
q(s)f

(
λ

∫ 


G(s, s)q(s) · · ·

fn–
(

λn

∫ 


G(sn–, sn)qn(sn)fn

(
u(sn)

)�sn
)

· · ·�s
)

�s

+A
(
λq(·)f

(
u(·)

))
(b + a) + B

(
λq(·)f

(
u(·)

))
(d + c),

so that

‖Tu‖ ≤ λ

∫ 


G

(
σ (s), s

)
q(s)f

(
λ

∫ 


G(s, s)q(s) · · ·

fn–
(

λn

∫ 


G(sn–, sn)qn(sn)fn

(
u(sn)

)�sn
)

· · ·�s
)

�s

+A
(
λq(·)f

(
u(·)

))
(b + a) + B

(
λq(·)f

(
u(·)

))
(d + c). (.)

http://www.boundaryvalueproblems.com/content/2014/1/63
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Next, if u ∈P , we have from Lemma . and (.) that

min
t∈[μ,–μ]T

Tu(t)

= min
t∈[μ,–μ]T

{
λ

∫ 


G(t, s)q(s)f

(
λ

∫ 


G(s, s)q(s) · · ·

fn–
(

λn

∫ 


G(sn–, sn)qn(sn)fn

(
u(sn)

)�sn
)

· · ·�s
)

�s

+A
(
λq(·)f

(
u(·)

))
(b + at) + B

(
λq(·)f

(
u(·)

))(
d + c( – t)

)}

≥ γ

(
λ

∫ 


G

(
σ (s), s

)
q(s)f

(
λ

∫ 


G(s, s)q(s) · · ·

fn–
(

λn

∫ 


G(sn–, sn)qn(sn)fn

(
u(sn)

)�sn
)

· · ·�s
)

�s

+A
(
λq(·)f

(
u(·)

))
(b + a) + B

(
λq(·)f

(
u(·)

))
(d + c)

)

≥ γ ‖Tu‖.

Hence, Tu ∈ P and T : P → P . In addition, the operator T is completely continuous by
an application of the Arzela-Ascoli theorem.
Now, we investigate suitable fixed points of T belonging to the cone P . For convenience

we introduce the following notations.
Let

M = max
≤i≤n

{[
γ 

∫ –μ

μ

G
(
σ (s), s

)
qi(s)�sfi∞

]–}

and

M = min
≤i≤n

{[(∫ 


G

(
σ (s), s

)
qi(s)�s +A

(
qi(·)

)
(b + a) + B

(
qi(·)

)
(d + c)

)
fi

]–}
.

Theorem . Suppose conditions (C)-(C) are satisfied. Then, for each λ,λ, . . . ,λn sat-
isfying

M < λi <M, ≤ i ≤ n, (.)

there exists an n-tuple (u,u, . . . ,un) satisfying (.)-(.) such that ui(t) > ,  ≤ i ≤ n, on
[, ]T.

Proof Let λk , ≤ k ≤ n, be as in (.). Now, let ε >  be chosen such that

max
≤i≤n

{[
γ 

∫ –μ

μ

G
(
σ (s), s

)
qi(s)�s(fi∞ – ε)

]–}
≤ min

≤k≤n
λk

and

max
≤k≤n

λk ≤ min
≤i≤n

{[(∫ 


G

(
σ (s), s

)
qi(s)�s+A

(
qi(·)

)
(b+a)+B

(
qi(·)

)
(d+c)

)
(fi+ε)

]–}
.

http://www.boundaryvalueproblems.com/content/2014/1/63
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We investigate fixed points of the completely continuous operator T : P → P defined by
(.). Now, from the definitions of fi,  ≤ i ≤ n, there exists an H >  such that, for each
≤ i≤ n,

fi(x)≤ (fi + ε)x,  < x≤H.

Let u ∈P with ‖u‖ =H. We have from (.) and the choice of ε, for  ≤ sn– ≤ ,

λn

∫ 


G(sn–, sn)qn(sn)fn

(
u(sn)

)�sn

≤ λn

∫ 


G

(
σ (sn), sn

)
qn(sn)fn

(
u(sn)

)�sn

≤ λn

∫ 


G

(
σ (sn), sn

)
qn(sn)(fn + ε)u(sn)�sn

≤ λn

∫ 


G

(
σ (sn), sn

)
qn(sn)�sn(fn + ε)‖u‖

≤ ‖u‖
≤H.

It follows in a similar manner from (.), for  ≤ sn– ≤ , that

λn–

∫ 


G(sn–, sn–)qn–(sn–)fn–

(
λn

∫ 


G(sn–, sn)qn(sn)fn

(
u(sn)

)�sn
)

�sn–

≤ λn–

∫ 


G

(
σ (sn–), sn–

)
qn–(sn–)�sn–(fn–, + ε)‖u‖

≤ ‖u‖ =H.

Continuing with this bootstrapping argument, we have, for  ≤ t ≤ ,

λ

∫ 


G(t, s)q(s)f

(
λ

∫ 


G(s, s)q(s) · · · fn

(
u(sn)

)�sn · · ·�s
)

�s

≤ λ

∫ 


G

(
σ (s), s

)
q(s)�s(f + ε)H,

A
(
λq(·)f

(
u(·)

))

≤ λ

	

∣∣∣∣∣
∑m–

j= αj
∫ 
 G(ξj, s)q(s)�s ρ –

∑m–
j= αj(d + c( – ξj))∑m–

j= βj
∫ 
 G(ξj, s)q(s)�s –

∑m–
j= βj(d + c( – ξj))

∣∣∣∣∣
∥∥f(u)∥∥

≤ λA
(
q(·)

)∥∥f(u)∥∥,
B
(
λq(·)f

(
u(·)

))

≤ λ

	

∣∣∣∣∣ –
∑m–

j= αj(b + a(ξj))
∑m–

j= αj
∫ 
 G(ξj, s)q(s)�s

ρ –
∑m–

j= βj(b + a(ξj))
∑m–

j= βj
∫ 
 G(ξj, s)q(s)�s

∣∣∣∣∣
∥∥f(u)∥∥

≤ λB
(
q(·)

)∥∥f(u)∥∥,
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so that, for  ≤ t ≤ ,

Tu(t) ≤ λ

(∫ 


G

(
σ (s), s

)
q(s)�s(f + ε)H

+A
(
q(·)

)∥∥f(u)∥∥(b + a) + B
(
q(·)

)∥∥f(u)∥∥(d + c)
)

≤ λ

(∫ 


G

(
σ (s), s

)
q(s)�s

+A
(
q(·)

)
(b + a) + B

(
q(·)

)
(d + c)

)
(f + ε)H

≤ H = ‖u‖.

Hence, ‖Tu‖ ≤H = ‖u‖. If we set

� =
{
u ∈ B|‖u‖ <H

}
,

then

‖Tu‖ ≤ ‖u‖ for u ∈P ∩ ∂�. (.)

Next, from the definitions of fi∞,  ≤ i ≤ n, there exists H̄ >  such that, for each  ≤
i≤ n,

fi(x)≥ (fi∞ – ε)x, x≥ H̄.

Let

H =max

{
H,

H̄

γ

}
.

Let u ∈P and ‖u‖ =H. Then, we have from Lemma .

min
t∈[μ,–μ]T

u(t) ≥ γ ‖u‖ ≥ H̄.

Consequently, from Lemma . and the choice of ε, for  ≤ sn– ≤ , we have

λn

∫ 


G(sn–, sn)qn(sn)fn

(
u(sn)

)�sn

≥ γ λn

∫ –μ

μ

G
(
σ (sn), sn

)
qn(sn)fn

(
u(sn)

)�sn

≥ γ λn

∫ –μ

μ

G
(
σ (sn), sn

)
qn(sn)(fn∞ – ε)u(sn)�sn

≥ γ λn

∫ –μ

μ

G
(
σ (sn), sn

)
qn(sn)�sn(fn∞ – ε)‖u‖

≥ ‖u‖ =H.

http://www.boundaryvalueproblems.com/content/2014/1/63
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It follows in a similar manner from Lemma . and the choice of ε, for  ≤ sn– ≤ ,

λn–

∫ 


G(sn–, sn–)qn–(sn–)fn–

(
λn

∫ 


G(sn–, sn)qn(sn)fn

(
u(sn)

)�sn
)

�sn–

≥ γ λn–

∫ –μ

μ

G
(
σ (sn–), sn–

)
qn–(sn–)�sn–(fn–,∞ – ε)H

≥ γ λn–

∫ –μ

μ

G
(
σ (sn–), sn–

)
qn–(sn–)�sn–(fn–,∞ – ε)H

≥H.

Again, using a bootstrapping argument, we have

λ

∫ 


G(t, s)q(s)f

(
λ

∫ 


G(s, s)q(s) · · · fn

(
u(sn)

)�sn · · ·�s
)

�s

≥H,

so that

Tu(t) ≥H = ‖u‖.

Hence, ‖Tu‖ ≥ ‖u‖. So if we set

� =
{
u ∈ B|‖u‖ <H

}
,

then

‖Tu‖ ≥ ‖u‖ for u ∈P ∩ ∂�. (.)

Applying Theorem . to (.) and (.), we see that T has a fixed point u ∈P ∩ (�̄ \�).
Therefore, setting un+ = u, we obtain a positive solution (u,u, . . . ,un) of (.)-(.) given
iteratively by

uk(t) = λk

∫ 


G(t, s)qk(s)fk

(
uk+(s)

)�s +A
(
λkqk(·)fk

(
uk+(·)

))
(b + at)

+ B
(
λkqk(·)fk

(
uk+(·)

))(
d + c( – t)

)
, k = n,n – , . . . , .

The proof is completed. �

For our next result, we define the positive numbersM andM by

M = max
≤i≤n

{[
γ 

∫ –μ

μ

G
(
σ (s), s

)
qi(s)�sfi

]–}

and

M = min
≤i≤n

{[(∫ 


G

(
σ (s), s

)
qi(s)�s +A

(
qi(·)

)
(b + a) + B

(
qi(·)

)
(d + c)

)
fi∞

]–}
.
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Theorem . Suppose conditions (C)-(C) are satisfied. Then, for each λ,λ, . . . ,λn sat-
isfying

M < λi <M, ≤ i≤ n, (.)

there exists an n-tuple (u,u, . . . ,un) satisfying (.)-(.) such that ui(t) > ,  ≤ i ≤ n, on
[, ]T.

Proof Let λk , ≤ k ≤ n, be as in (.). Now, let ε >  be chosen such that

max
≤i≤n

{[
γ 

∫ –μ

μ

G
(
σ (s), s

)
qi(s)�s(fi – ε)

]–}
≤ min

≤k≤n
λk

and

max
≤k≤n

λk ≤ min
≤i≤n

{[(∫ 


G

(
σ (s), s

)
qi(s)�s+A

(
qi(·)

)
(b+a)B

(
qi(·)

)
(d+ c)

)
(fi∞ + ε)

]–}
.

Let T be the cone preserving, completely continuous operator that was defined by (.).
From the definition of fi, ≤ i≤ n, there exists H̄ >  such that, for each  ≤ i ≤ n,

fi(x)≥ (fi – ε)x,  < x≤ H̄.

Also, from the definition of fi, it follows that fi() = ,  ≤ i ≤ n, and so there exist  <
Kn < Kn– < · · · < K < H̄ such that

λifi(t)≤ Ki–∫ 
 G(σ (s), s)qi(s)�s

, t ∈ [,Ki]T, ≤ i≤ n

and

λf(t) ≤ H̄∫ 
 G(σ (s), s)q(s)�s

, t ∈ [,K]T.

Choose u ∈P with ‖u‖ = Kn. Then we have

λn

∫ 


G(sn–, sn)qn(sn)fn

(
u(sn)

)�sn

≤ λn

∫ 


G

(
σ (sn), sn

)
qn(sn)fn

(
u(sn)

)�sn

≤
∫ 
 G(σ (sn), sn)qn(sn)Kn–�sn∫ 

 G(σ (sn), sn)qn(sn)�sn

= Kn–.

Continuing with this bootstrapping argument, we get

λ

∫ 


G(s, s)q(s)f

(
λ

∫ 


G(s, s)q(s) · · · fn

(
u(sn)

)�sn · · ·�s
)

�s

≤ H̄.

http://www.boundaryvalueproblems.com/content/2014/1/63
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Then

Tu(t) ≥ λ

∫ 


G(t, s)q(s)f

(
λ

∫ 


G(s, s)q(s) · · · fn

(
u(sn)

)�sn · · ·�s
)

�s

≥ γ λ

∫ –μ

μ

G
(
σ (s), s

)
q(s)(f – ε)‖u‖�s

≥ ‖u‖.

So, ‖Tu‖ ≥ ‖u‖. If we put

� =
{
u ∈ B|‖u‖ < Kn

}
,

then

‖Tu‖ ≥ ‖u‖ for u ∈P ∩ ∂�. (.)

Since each fi∞ is assumed to be a positive real number, it follows that fi,  ≤ i ≤ n, is
unbounded at ∞.
For each ≤ i≤ n, set

f ∗
i (x) = sup

≤s≤x
fi(s).

Then, for each ≤ i ≤ n, f ∗
i is a nondecreasing real-valued function, fi ≤ f ∗

i , and

lim
x→∞

f ∗
i (x)
x

= fi∞.

Next, by definition of fi∞, ≤ i≤ n, there exists H̄ such that, for each  ≤ i ≤ n,

f ∗
i (x)≤ (fi∞ + ε)x, x≥ H̄.

It follows that there exists H >max{H̄, H̄} such that, for each  ≤ i≤ n,

f ∗
i (x)≤ f ∗

i (H),  < x≤H.

Choose u ∈P with ‖u‖ =H. Then, using the bootstrapping argument, we have

λ

∫ 


G(t, s)q(s)f(λ · · · )�s

≤ λ

∫ 


G(t, s)q(s)f ∗

 (λ · · · )�s

≤ λ

∫ 


G

(
σ (s), s

)
q(s)f ∗

 (H)�s

≤ λ

∫ 


G

(
σ (s), s

)
q(s)�s(f∞ + ε)H.
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So we have

Tu(t) ≤ λ

(∫ 


G

(
σ (s), s

)
q(s)�s(f∞ + ε)H

+A
(
q(·)

)∥∥f(u)∥∥(b + a) + B
(
q(·)

)∥∥f(u)∥∥(d + c)
)

≤ λ

(∫ 


G

(
σ (s), s

)
q(s)�s(f∞ + ε)H

+A
(
q(·)

)∥∥f ∗
 (u)

∥∥(b + a) + B
(
q(·)

)∥∥f ∗
 (u)

∥∥(d + c)
)

≤ λ

(∫ 


G

(
σ (s), s

)
q(s)�s +A

(
q(·)

)
(b + a) + B

(
q(·)

)
(d + c)

)

× (f∞ + ε)H

≤ H = ‖u‖.

Hence, ‖Tu‖ ≤ ‖u‖. So, if we set

� =
{
u ∈ B|‖u‖ <H

}
,

then

‖Tu‖ ≤ ‖u‖ for u ∈P ∩ ∂�. (.)

Applying Theorem . to (.) and (.), we see that T has a fixed point u ∈P ∩ (�̄ \�),
which in turn with un+ = u, we obtain an n-tuple (u,u, . . . ,un) satisfying (.)-(.) for
the chosen values of λi, ≤ i≤ n. The proof is completed. �

4 An example
Example . In BVP (.)-(.), suppose that T = [, ], n =m = , q(t) = q(t) = q(t) = ,
a = c = , b = d = , ξ = 

 , μ = 
 , α = 

 and β =  i.e.,

{
u′′
i (t) + λifi(ui+(t)) = , t ∈ [, ], ≤ i≤ ,

u(t) = u(t), t ∈ [, ]T,
(.)

satisfying the following boundary conditions:

{
ui() – u′

i() =

ui(


 ),

ui() + u′
i() = ui(  ),  ≤ i ≤ ,

(.)

where

f(u) = u
(
, – e–u

)(
 – e–u

)
,

f(u) = u
(
 – e–u

)(
, – ,e–u

)
,

f(u) = u
(
 – e–u

)(
 – e–u

)
.
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It is easy to see that (C)-(C) are satisfied. By simple calculation, we get ρ = , θ (t) = +t,
ϕ(t) =  – t, 	 = –, γ = 

 , A() = , B() = 
 and

G(t, s) =



{
( + s)( – t), s≤ t,
( + t)( – s), t ≤ s.

We obtain

f = , f = , f = ,

f∞ = ,, f∞ = ,,, f∞ = ,,

M =max{.,., .}

and

M =min{.,.,.}.

Applying Theorem ., we get the optimal eigenvalue interval . < λi <
., i = , , , for which the boundary value problem (.)-(.) has a positive
solution.
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