
Wang and Cheng Boundary Value Problems 2014, 2014:65
http://www.boundaryvalueproblems.com/content/2014/1/65

RESEARCH Open Access

An inverse problem related to a half-linear
eigenvalue problem
Wei-Chuan Wang1* and Yan-Hsiou Cheng2

*Correspondence:
wangwc72@gmail.com
1Center for General Education,
National Quemoy University,
Kinmen, 892, Taiwan, ROC
Full list of author information is
available at the end of the article

Abstract
We study an inverse problem on the half-linear Dirichlet eigenvalue problem
–(|y′(x)|p–2y′(x))′ = (p – 1)λr(x)|y(x)|p–2y(x), where p > 1 with p �= 2 and r is a positive
function defined on [0, 1]. Using eigenvalues and nodal data (the lengths of two
consecutive zeros of solutions), we reconstruct r–1/p(x) and its derivatives. Our method
is based on (Law and Yang in Inverse Probl. 14:299-312, 779-780, 1998; Shen and Tsai
in Inverse Probl. 11:1113-1123, 1995), and our result extends the result in (Shen and
Tsai in Inverse Probl. 11:1113-1123, 1995) for the linear case to the half-linear case.
MSC: 34A55; 34B24; 47A75

1 Introduction
The subject under investigation is the half-linear eigenvalue problem consisting of

⎧⎨
⎩
–(|y′(x)|p–y′(x))′ = (p – )λr(x)|y(x)|p–y(x),
y() = y() = ,

()

where p >  with p �= , and r is a positive function defined on [, ]. By [–], it is well
known that the problem () has countably many eigenpairs {(λn, yn(x)) : n ∈ N}, and the
eigenfunction yn(x) has exactly n –  nodal points in (,), say  = x(n) < x(n) < · · · < x(n)n– <
x(n)n = . In this paper, we intend to give the representation of the function r(x) and its
derivatives in () by using eigenvalues and nodal points. This formation is treated as the
reconstruction formula. Such a problem is called an inverse nodal problem and has at-
tracted researchers’ attention. Readers can refer to [–] for the linear case (p = ), and to
[, ] for the general case (p > ).
In [, ], inverse nodal problems on

–
(∣∣y′(x)

∣∣p–y′(x)
)′ = (p – )

(
λ – q(x)

)∣∣y(x)∣∣p–y(x) ()

are considered. The authors in [] studied () with Dirichlet boundary conditions

y() = y() = ,

while the authors in [] studied () with eigenparameter dependent boundary conditions

y() = , αy′() + λy() =  for α �= .
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Both of them first used the modified Prüfer substitution to derive the asymptotic expan-
sion of eigenvalues and nodal points and then gave the reconstruction formula of q(x) by
using the nodal data. Note that the authors did not deal with the derivatives of q(x) in
[, ]. Besides, the author in [] considered the same issue for the p-Laplacian energy-
dependent Sturm-Liouville problem,

–
(∣∣y′(x)

∣∣p–y′(x)
)′ = (p – )

[
λ – q(x) – λr(x)

]∣∣y(x)∣∣p–y(x)
coupling with the Dirichlet boundary conditions.
In [], Shen and Tsai studied the inverse nodal problem on the string equation y′′ +

λr(x)y =  with Dirichlet boundary conditions. They employed the standard difference
operator � to give a reconstruction formulas for r–/(x) and its derivatives. On the other
hand, Law and Yang [] not only studied the inverse nodal problems for the linear problem

–y′′ + q(x)y = λy

with separated boundary conditions

⎧⎨
⎩
y() cosα + y′() sinα = ,

y() cosβ + y′() sinβ = ,
()

where  ≤ α,β < π , and gave a reconstruction formulas for q(x) and its derivatives, but
they also mentioned that the formulas for r(x) and its derivatives in the string equation
with () are still valid. They applied the difference quotient operator δ in the formulas.
Themain aim andmethods of this study are basically the same as the ones in [, ]. Here

we employ a modified Prüfer substitution on () derived by the generalized sine function
Sp(x). The well-known properties of Sp(x) can be referred to [, , ], etc. It shall be men-
tioned that Sp is not C at odd multiples of πp/ as p > , and not C at even multiples
of πp/ as  < p < . These lead to that the reconstruction formulas for N th derivatives,
N ≥ , in [, ] cannot be extended to the half-linear case (p �= ) in this article.
Denote by πp the first zero of Sp(x) in the positive axis. Define f (x) = r–/p(x), jn(x) ≡

max{k : x(n)k ≤ x}, and the nodal length �
(n)
k ≡ x(n)k+–x

(n)
k for k = , , , . . . ,n–. The following

is our first result.

Theorem  Consider () and suppose r is continuous on [, ]. For each x ∈ [, ), let j =
jn(x) for the sake of simplicity. Then the following asymptotic formula is valid:

f (x) =
λ
/p
n �

(n)
j

πp
+ o(). ()

Moreover, if r ∈ C[, ], the error term can be replaced by O( n ).

Now, define the difference operator � and the difference quotient operator δ as follows:

�aj ≡ aj+ – aj, δaj ≡ aj+ – aj
xj+ – xj

=
�aj
�j

and δkaj ≡ δk–aj+ – δk–aj
�j

.
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This δ-operator discretizes the differential operator in a nice way. It resembles the differ-
ence quotient operator in finite difference. For the derivatives of f (x), we have the following
result.

Theorem  Consider () and suppose r is C on [, ]. For each x ∈ [, ), let j = jn(x) for
the sake of simplicity. Then as n → ∞,

f (k)(x) =
λ
/p
n

πp
δk�

(n)
j +O

(

n

)
for k = , . ()

This paper is organized as follows. In Section , we give the asymptotic estimates for
eigenvalues. This step makes us know such quantities well. It is necessary to specify the
orders of the expansion terms in the proofs of the main results. In Section , the proofs of
the main theorems are given.

2 Asymptotic estimates for eigenvalues
Before we prove the main results, we derive the eigenvalue expansion. Note that if r(x) ∈
C[, ], the last term in () can be replaced by o(n) (cf. [, p.]). In [, Theorem .],
they proved the error term is o() if r ∈ C[, ]. The smoothness of r(x) increases, and the
smaller error can be derived.

Theorem  Suppose that r(x) is a positive C-function defined on [, ]. Then the asymp-
totic estimate yields

λ/p
n

∫ 


r/p(t)dt = nπp +O

(

n

)
. ()

Proof Let y(x) be a solution of () and define a Prüfer-type substitution

λ/pr/p(x)y(x) = ρ(x)Sp
(
θ (x)

)
, y′(x) = ρ(x)S′

p
(
θ (x)

)
. ()

Then a direct calculation yields

θ ′(x) = λ/pr/p(x) +
r′(x)
pr(x)

Sp
(
θ (x)

)∣∣S′
p
(
θ (x)

)∣∣p–S′
p
(
θ (x)

)
, ()

ρ ′(x) =
r′(x)ρ(x)
pr(x)

∣∣Sp(θ (x))∣∣p. ()

With each eigenvalue λn of (), one can associate a Prüfer angle θn(x)≡ θ (x;λn) via () if
one also specifies the initial condition θn() =  for n = , , , . . . . In particular, θn() = nπp.
Integrating both sides of () over [, ], one obtains

nπp = λ/p
n

∫ 


r/p(t)dt +

∫ 



r′(t)
pr(t)

Sp
(
θn(t)

)∣∣S′
p
(
θn(t)

)∣∣p–S′
p
(
θn(t)

)
dt. ()

Let g(τ ) ≡ Sp(τ )|S′
p(τ )|p–S′

p(τ ). Note that if θ ′
n(x) =  is valid in some subinterval of (, ),

the term Sp(θn(x))|S′
p(θn(x))|p–S′

p(θn(x)) will be constant in this subinterval. This implies

http://www.boundaryvalueproblems.com/content/2014/1/65
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that the function r(x) depends on λn in this subinterval from (). This will contradict our
original problem. Hence, the points satisfying θ ′

n(x) =  shall be isolated. Then, in ()

r′(t)
pr(t)

g
(
θn(t)

)
=

r′(t)
pr(t)

g
(
θn(t)

) θ ′
n(t)

λ
/p
n r/p(t) + r′(t)

pr(t)g(θn(t))

=
r′(t)g(θn(t))θ ′

n(t)

pλ/p
n r

p+
p (t)

[


 + r′(t)g(θn(t))

pλ/pn r
p+
p (t)

]

for θ ′
n �= . Let f (t) = r–/p(t). Then f ′(t) = –r′(t)

pr
p+
p (t)

. Dropping the function variable t, one has

the following:

r′

pr
g(θn) =

–f ′g(θn)θ ′
n

λ
/p
n

[


 – f ′
λ
/p
n
g(θn)

]
= –

∞∑
k=

[
f ′g(θn)
λ
/p
n

]k+

θ ′
n. ()

Define G(n)
 (t) =

∫ θn(t)
 g(τ )dτ . Then G(n)

 () = G(n)
 () =  since g(τ ) is a πp-periodic func-

tion. Moreover, by integration by parts, () implies that

∫ 


λ–/p
n f ′(t)g

(
θn(t)

)
θ ′
n(t)dt = –λ–/p

n

∫ 


f ′′(t)G(n)

 (t)dt =O
(
λ–/p
n

)
, ()

for sufficiently large n. Substituting ()-() into (), the eigenvalue estimates () can be
derived. �

3 Proofs of Theorems 1-2
Proof of Theorem  Let j = jn(x). By the Sturm comparison theorem for the p-Laplacian
(cf. [, , ] etc.), one has

πp

(λnrMj )/p
≤ �

(n)
j ≤ πp

(λnrmj )/p
,

where rMj and rmj are themaximal andminimal values of r on [x(n)j ,x(n)j+], respectively. Then

r–/pMj
≤ λ

/p
n �

(n)
j

πp
≤ r–/pmj

. ()

In particular, for ≤ j ≤ n – , we have

�
(n)
j =O

(

n

)
. ()

Moreover, by the continuity of f (x) and (), there is an ξ
(n)
j ∈ (x(n)j ,x(n)j+) such that

λ
/p
n �

(n)
j

πp
= f

(
ξ
(n)
j

)
. ()
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On the other hand, by the mean value theorem and (), one also has

f (x) – f
(
ξ
(n)
j

)
= f ′(yj)

(
x – ξ

(n)
j

)
=O

(

n

)
()

for some yj between x and ξ
(n)
j . Therefore, () and () complete the proof. �

Before we prove Theorem , one has to derive the asymptotic behavior of f (x) at the
nodal points. Note that the series in () is uniformly convergent on [, ]. Set h(x) =
r/p(x) = 

f (x) . Integrating () over [x
(n)
j ,x(n)j+] and applying (), one has

πp = λ/p
n

∫ x(n)j+

x(n)j

h(t)dt –
∞∑
k=

∫ x(n)j+

x(n)j

[
λ–/p
n f ′(t)g

(
θn(t)

)]k
θ ′
n(t)dt. ()

By the Taylor expansion theorem and integration by parts, we find

πp = λ/p
n

∫ x(n)j+

x(n)j

[
h
(
x(n)j

)
+ h′(x(n)j

)(
t – x(n)j

)
+
h′′(y(n)j )

!
(
t – x(n)j

)]dt

– λ–/p
n

[
f ′(t)G(n)

 (t)
]x(n)j+

x(n)j
+ λ–/p

n

∫ x(n)j+

x(n)j

f ′′(t)G(n)
 (t)dt

–
∞∑
m=

λ–m/p
n

[(
f ′(t)

)mG(n)
m (t)

]x(n)j+

x(n)j
+

∞∑
m=

λ–m/p
n

∫ x(n)j+

x(n)j

[(
f ′(t)

)m]′G(n)
m (t)dt

for some y(n)j ∈ (x(n)j ,x(n)j+), where G
(n)
k (t) =

∫ θn(t)
 (g(τ ))k dτ . Note that

G(n)


(
x(n)j

)
=G(n)


(
x(n)j+

)
= .

Hence,

πp = λ/p
n h

(
x(n)j

)
�
(n)
j +


!

λ/p
n h′(x(n)j

)(
�
(n)
j

) + 
!

λ/p
n h′′(y(n)j

)(
�
(n)
j

)

+
∞∑
m=

λ–m/p
n

∫ x(n)j+

x(n)j

([
f ′(t)

]m)′G(n)
m (t)dt –

∞∑
m=

λ–m/p
n

[
f ′(x(n)j+

)]mG(n)
m

(
x(n)j+

)

+
∞∑
m=

λ–m/p
n

[
f ′(x(n)j

)]mG(n)
m

(
x(n)j

)
. ()

Multiplying () by
f (x(n)j )

πp
, one has

f
(
x(n)j

)
=

λ
/p
n �

(n)
j

πp
+


πp

λ/p
n f

(
x(n)j

)
h′(x(n)j

)(
�
(n)
j

)

+


πp
λ/p
n f

(
x(n)j

)
h′′(y(n)j

)(
�
(n)
j

)

+
∞∑
m=

λ
–m/p
n

πp
f
(
x(n)j

)∫ x(n)j+

x(n)j

[(
f ′(t)

)m]′G(n)
m (t)dt
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–
∞∑
m=

λ
–m/p
n

πp
f
(
x(n)j

)[
f ′(x(n)j+

)]mG(n)
m

(
x(n)j+

)

+
∞∑
m=

λ
–m/p
n

πp
f
(
x(n)j

)[
f ′(x(n)j

)]mG(n)
m

(
x(n)j

)
.

For convenience, we denote

f
(
x(n)j

) ≡ λ
/p
n �

(n)
j

πp
+Aj + Bj +Cj +Dj + Ej, ()

where

Aj =


πp
λ/p
n f

(
x(n)j

)
h′(x(n)j

)(
�
(n)
j

),

Bj =


πp
λ/p
n f

(
x(n)j

)
h′′(y(n)j

)(
�
(n)
j

),

Cj =
∞∑
m=

λ
–m/p
n

πp
f
(
x(n)j

)∫ x(n)j+

x(n)j

[(
f ′(t)

)m]′G(n)
m (t)dt,

Dj = –
∞∑
m=

λ
–m/p
n

πp
f
(
x(n)j

)[
f ′(x(n)j+

)]mG(n)
m

(
x(n)j+

)
,

Ej =
∞∑
m=

λ
–m/p
n

πp
f
(
x(n)j

)[
f ′(x(n)j

)]mG(n)
m

(
x(n)j

)
.

Remark  Note that the functionG(n)
m is defined by the integral of g(τ ) ≡ Sp(τ )|S′

p(τ )|p– ×
S′
p(τ ). By the unlike property of Sp, G

(n)
m is not a smooth function. This is the main reason

that the result in [, Theorem .] does not hold in our case, p �= .

Then the following lemmas are necessary to the proof of Theorem  and the superscript
will be dropped for the sake of convenience, xj = x(n)j and �j = �

(n)
j .

Lemma  Let f = r–/p ∈ C[, ]. Then δkf (xj) =O() as k = , ,  and δkf (xj) =O(nk–) as
k ≥ .Moreover, if xj is replaced by yj ∈ (xj,xj+), the above result is still valid. Furthermore,
δk(�j)m =O( 

nm ) as k = , , .

Proof The first part of the proof is followed by themean value theorem and the asymptotic
estimates for nodal length (), i.e.,

δf (xj) =
f (xj+) – f (xj)

�j
= f ′(yj) =O() for some yj ∈ (xj,xj+).

It is also valid for k = ,  by similar arguments. On the other hand, for k = , we find

δf (xj) =
δf (xj+) – δf (xj)

�j
=
O()
�j

=O(n),

http://www.boundaryvalueproblems.com/content/2014/1/65
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and it is also valid for k > . Finally, by () and (), we find f (ξj) = f (xj) +O( n ) and

δk(�j)m =
πm
p

λ
m/p
n

δk
[
f (ξj)

]m =O
(


nm

)
for k = , , . �

Lemma  Let u ∈ C. Then, for k = , ,

δk
[
u(xj)(�j)

]
=O

(

n

)
.

Moreover, if v ∈ C, then for k = , 

δk
[
v(xj)(�j)

]
=O

(


n–k

)
.

Proof First applying the identity δ(ajbj) = aj+δbj +bjδaj, () and Lemma , one can obtain

δ
[
u(xj)(�j)

]
= (�j+)δu(xj) + u(xj)δ(�j) =O

(

n

)
,

δ
[
u(xj)(�j)

]
= (�j+)δ

[
u(xj)

]
+ δ

[
(�j+)

]
δ
[
u(xj)

]
+ u(xj)δ

[
(�j)

]
=O

(

n

)
.

The second part is similar to the one of the first part. So it is omitted here. �

The following corollary is similar to [, Lemma .]. We give the proof for the conve-
nience of the readers.

Corollary  Let q ∈ C. Define Q(xj) =
∫ xj+
xj

q(t)dt. Then, for k = , ,

δkQ(xj) =O
(


n–k

)
.

Proof By the mean value theorem for integrals, for every j there exists some yj ∈ (xj,xj+)
such that Q(xj) = q(yj)�j. Then applying Lemmas -, we complete the proof. �

Proof of Theorem  Recall (). By Theorem  and Lemma , one has δkAj = O( n ) and
δkBj = O( 

n–k ) for k = , . By Theorem  and Corollary , one can obtain δkCj = O( 
n–k )

for k = , . By Theorem , Lemma  and the definition of G(n)
m , one has δkDj and δkEj are

O( 
n–k ) for k = , . Hence, one can find

δkf
(
x(n)j

)
=

λ
/p
n

πp
δk�

(n)
j +O

(

n

)
()

for k = , . To complete the proof, it suffices to show that

f (k)(x) = δkf
(
x(n)j

)
+O

(

n

)
()

http://www.boundaryvalueproblems.com/content/2014/1/65
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for sufficiently large n. Obviously, () holds for k =  by () and (). When k = , , by
the Taylor theorem,

f (k–)
(
x(n)j+

)
= f (k–)

(
x(n)j

)
+ f (k)

(
x(n)j

)
�
(n)
j +

f (k+)(ξ (n)
k+,j)


(
�
(n)
j

)

for some ξ
(n)
k+,j ∈ (x(n)j ,x(n)j+). Thus,

f (k)
(
x(n)j

)
= δf (k–)

(
x(n)j

)
+


f (k+)

(
ξ
(n)
k+,j

)
�
(n)
j , ()

for k = , ; i.e., by the mean value theorem and (),

f ′(x) = f ′(x(n)j
)
+O

(

n

)
= δf

(
x(n)j

)
+O

(

n

)
. ()

Successively, we have

f ′′(x) = δf ′(x(n)j
)
+O

(

n

)

= δ

[
δf

(
x(n)j

)
+


f ′′(ξ (n)

,j
)
�
(n)
j

]
+O

(

n

)

= δf
(
x(n)j

)
+O

(

n

)
. ()

Therefore, substituting () into ()-(), this completes the proof. �
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