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Abstract
We discuss univalent solutions of boundary fractional differential equations in a
complex domain. The fractional operators are taken in the sense of the
Srivastava-Owa calculus in the unit disk. The existence of subsolutions and
supersolutions (maximal and minimal) is established. The existence of a unique
univalent solution is imposed. Applications are constructed by making use of a
transformation formula for fractional derivatives as well as generalized fractional
derivatives.

1 Introduction
Fractional calculus is the most significant branch of mathematical analysis that transacts
with the potential of covering real number powers or complex number powers of the dif-
ferentiation operator D = d/dx. This concept was harnessed in geometric function theory
(GFT). It was applied to derive different types of differential and integral operators map-
ping the class of univalent functions and its subclasses into themselves. Hohlov [, ] im-
posed sufficient conditions that guaranteed such mappings for the operators defined by
means of the Hadamard product (or convolution) with Gauss hypergeometric functions.
This was further extended byKiryakova and Saigo [] andKiryakova [, ] to the operators
of the generalized fractional calculus (GFC) consisting of product functions of the Gaus-
sian function, generalized hypergeometric functions, G-functions, Wright functions and
Fox-Wright generalized functions as well as rendering integral representations by means
of Fox H-functions and the Meijer G-function. These techniques can be used to display
sufficient conditions that guarantee mapping of univalent functions (or, respectively, of
convex functions) into univalent functions. For example, for the case of Dziok-Srivastava
operator see [], and for an extension to the Wright functions see [] which is concerned
with the Srivastava-Wright operator. With the help of operators introduced in [] and []
one can establish univalence criteria for a large number of operators in GFT and GFC
and for many of their special cases such as operators of the classical fractional calculus.
Srivastava and Owa [] generalized the definitions of fractional operators as follows.

Definition . For the function f (z) analytic in a simply-connected region of the complex
z-plane C containing the origin and for  ≤ α < , the fractional derivative of order α is
defined by

Dα
z f (z) :=


�( – α)

d
dz

∫ z



f (ζ )
(z – ζ )α

dζ ,
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where the multiplicity of (z – ζ )–α is removed by requiring log(z – ζ ) to be real when
(z – ζ ) > . Moreover, when α = , we have D

zf (z) = f ′(z).

Definition . For the function f (z) analytic in a simply-connected region of the complex
z-plane C containing the origin and for α > , the fractional integral of order α is defined
by

Iαz f (z) :=


�(α)

∫ z


f (ζ )(z – ζ )α– dζ ,

where the multiplicity of (z – ζ )α– is removed by requiring log(z – ζ ) to be real when
(z – ζ ) > .

Remark . From the above two definitions, we observe that

Dα
z z

β =
�(β + )

�(β – α + )
zβ–α , β > –; ≤ α ≤ 

and

Iαz z
β =

�(β + )
�(β + α + )

zβ+α , β > –;α > .

Later, the first author [] modified these Srivastava-Owa operators into two fractional
parameters. For a wealth of references on applications of Srivastava-Owa operators, see
[–].
In this paper, we study univalent solutions of boundary fractional differential equa-

tions in a complex domain. The fractional operators are considered in the sense of the
Srivastava-Owa [] differential operator

∣∣Dα
ζ f (ζ )

∣∣ = {
�(f (ζ )); ζ ∈ ∂U ,
f () = ; f ′() > ,

()

where U = {z : |z| < } is the open unit disk and f is analytic in U satisfying the Riemann
mapping conditions. The existence of subsolutions and supersolutions (minimal andmax-
imal) is established. The existence of a unique univalent solution is introduced. Applica-
tions are also constructed by making use of some transformation formula for fractional
derivatives. Equation () is a generalization of Beurling problem.

2 Preliminaries
LetH(U) be the set of analytic functions f on the unit disk U normalized by f () =  and
f ′() > . And letA be the subset ofH(U) normalized by f () =  and f ′() = .We denote
by S the set of all univalent functions f ∈A.

Definition . Let � : C → R be a positive, continuous and bounded function and the
set

L(α)
� =

{
f ∈H(U); lim sup

|z|→

(∣∣Dα
z f (z)

∣∣ –�
(
f (z)

)) ≤ 
}
.
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Then every function f ∈ L(α)
� is a subsolution for � . If f is univalent, then it is called a

univalent subsolution for � .

Definition . Let � : C → R be a positive, continuous and bounded function and the
set

U (α)
� =

{
f ∈H(U); lim inf|z|→

(∣∣Dα
z f (z)

∣∣ –�
(
f (z)

)) ≥ 
}
.

Then every function f ∈ U (α)
� is a supersolution for � . If f is univalent, then it is called a

univalent supersolution for � .

In this work, we utilize the generalized sets

L(α,n)
� :=

{
f ∈H(U); f () = , f ′() = , . . . , f (n–)() = , f (n)() > ;

lim sup
|z|→

(∣∣Dα
z f (z)

∣∣ –�
(
f (z)

)) ≤ ;‖f ‖∞ ≤ 
}

and

U (α,n)
� :=

{
f ∈ S ; f () = , f ′() = , . . . , f (n–)() = , f (n)() > ;

lim inf|z|→

(∣∣Dα
z f (z)

∣∣ –�
(
f (z)

)) ≥ ;‖f ‖∞ ≤ 
}
.

When α =  and n = , the above sets reduce to []. The next result shows some properties
of L(α,n)

� . This is ultimately Lemma . from [], therefore we omit the proof.

Lemma . Let � be a positive, continuous and bounded function on C.
. Any subsolution for � has a (Lipschitz) continuous extension to the closed unit disk

U . The set L(α,n)
� is uniformly bounded on U and equicontinuous on U .

. A function g ∈H(U) with a continuous extension to U is a subsolution for � if and
only if

log
∣∣g ′(z)

∣∣ ≤ 
π

∫ π


P
(
z, eit

)
log�

(
g
(
eit

))
dt,

where P(z, ζ ) is the Poisson kernel.
. If a sequence of subsolutions from L(α,n)

� converges locally uniformly in U to a
function h ∈ G(U) (algebra of a holomorphic function that satisfies
h() = h′() = · · · = h(n–)() = , h(n)() > ), then h ∈L(α,n)

� .
. Let f ∈L(α,n)

� and let 	 :C →R be a positive, continuous and bounded function
with � <	. Then, for all  < r <  sufficiently close to , the function fr(z) := f (rzn–α),
z 	= , is a subsolution for L(α,n)

� .

Lemma . [, Lemma ., Lemma .] Let � be a positive, continuous and bounded
function on C. Assume that f, f are two subsolutions for � (univalent supersolutions for
�). Then the upper of f and f is also a subsolution for � (a univalent supersolution for�).

Lemma. If f ∈L(α,n)
� is a solution to problem (), then f has  as its unique critical point.
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Lemma . is a generalization of the result found in []. Thence, we cancel the proof.
Next result shows some properties of the set U (α,n)

� , which basically is a generalization
of [, Lemma .]. So we skip the proof.

Lemma . Let � be a positive, continuous and bounded function on C.
. Any univalent supersolution g for � satisfies g(eit) = limr→ g(reit).
. A bounded univalent function g ∈H(U) belongs to U (α,n)

� if and only if

log
∣∣g ′(z)

∣∣ ≥ 
π

∫ π


P
(
z, eit

)
log�

(
g
(
eit

))
dt,

where P(z, ζ ) is the Poisson kernel.
. If a uniformly bounded sequence of univalent supersolutions for � converges locally

uniformly in U , then the limit function f is again a univalent supersolution for � .
. Let 	 :C →R be a positive, continuous and bounded function with � > 	, and let g

be a univalent supersolution for � . If g is bounded, then, for all r <  sufficiently close
to , the function gr(z) := g(rzn–α), z 	= , is a univalent supersolution for 	.

3 Main results
Our aim is to establish the largest univalent solution f ∗ ∈L(α,n)

� and the smallest univalent
solution f∗ ∈ U (α,n)

� . We are able to state and prove the following theorem.

Theorem. Let� be a positive continuous function onC.Then there exists a unique uni-
valent function ψ ∈ AU (algebra unit disk), ψ() = , ψ ′() >  such that f ∗(z) = ψ(zn–α) ∈
L(α,n)

� and f ∗(U) =
⋃

f∈L(α,n)
�

f (U). Furthermore, the maximal subsolution f ∗ is a solution.

Proof By Lemma ., L(α,n)
� is non-empty and bounded in U (L(α)

� ⊂ L(α,n)
� ). Assume that

f ∗ ∈L(α,n)
� such that

f ∗(n)() = sup
f∈L(α,n)

�

f (n)() > .

Assuming that ψ : U → f (U) ∪ f ∗(U) is the upper of f and f ∗ and that F(z) = ψ(zn–α). In
view of Lemma ., F ∈L(α,n)

� , we get F (n)()≤ f ∗(n)(). On the other hand, we have

F(U) =ψ(U) = f (U)∪ f ∗(U),

which involves f ∗(U). Set h :=ψ– ◦ f ∗. Then h is a well-defined holomorphic function on
U such that h() = h′() = · · · = h(n–)() = . By letting

ψ ′()h(n)() = f ∗(n)()

and for sufficiently small values of α, we have

F (n)() � �(n +  – α)ψ ′().

Letting the function g :U →U be defined by

g(z) :=
h(z)
zn–α

,
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we conclude that

∣∣h(z)∣∣ ≤ |z|n–α
(
α ∈ [, ]

)
and

∣∣h(n)()∣∣ ≤ �(n +  – α).

Hence

F (n)() = f ∗(n)() and h(z) = zn–α .

Therefore, by virtue of the principle of subordination, this yields

f ∗(z) = F(z) = ψ
(
zn–α

)
and for all f ∈L(α,n)

� ,

f (U)⊆ f ∗(U).

This implies that f ∗ ∈ S with f ∗(U) =
⋃

f∈L(α,n)
�

f (U).

Now we proceed to show that the maximal subsolution f ∗ is a solution in L(α,n)
� . Define

a function

	 =

{
eϕ ; on f ∗(U),
� ; otherwise,

where ϕ is the harmonic function on f ∗(U) = ψ(U) whose boundary values are log� (see
[, p.]). From the definition of	, wemay conclude that f ∗ is themaximal subsolution
of 	. Let χ ∈ L(α,n)

� be a solution for () having a unique critical point at  (Lemma .).
Obviously,χ (U) ⊆ f ∗(U) and the two functions log	◦χ and z �→ log |χ ′(z)

zn–α | are continuous
on U , harmonic on U and coincide on ∂U . Thus

∣∣χ ′(z)
∣∣ = |z|n–α	

(
χ (z)

)
on U and

∣∣χ (n)()
∣∣ = �(n – α + )	().

In addition, we conclude that

f ∗(n)() ≥ χ (n)() = �(n – α + )	() = �(n – α + )	
(
f ∗()

)
.

Consequently,

log

∣∣∣∣ f ∗′(ζ )
ζ n–α

∣∣∣∣ – �( – α) log	
(
f ∗(ζ )

) ≤ , ζ ∈ ∂U

is identically equal to zero. Hence f ∗ is a solution. This completes the proof. �
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Remark . Note that Theorem . can be introduced for the boundary problem

∣∣Dα
ζ f (ζ )

∣∣ = {


n–α
�(f (ζ )); n ∈ N, ζ ∈ ∂U ,

f () = ; f ′() > ,

where f is analytic in U satisfying the Riemann mapping conditions.

As a consequence of our theorem, we have the following.

Corollary . Let � be a positive continuous function on C. Then there exists a univalent
function ψ ∈ AU satisfying ψ() =  and ψ ′() >  such that f (z) = ψ(zn–α) is a solution
to ().

Corollary . Let D be a simply-connected region in C and � : D → U be an analytic
function on the open unit disk. If � is a positive convex function, then there exists a unique
univalent function ψ ∈ AU satisfying ψ() =  and ψ ′() >  such that f (z) = ψ(zn–α) is a
solution to ().

Corollary . Let � be a positive continuous sublinear function on C; i.e.,

�(ω) ≤m
(|ω| +M

) (
m ∈ (, ),M > ,ω ∈C

)
.

Then there exists a univalent function ψ ∈ AU satisfying ψ() =  and ψ ′() >  such that
f (z) = ψ(zn–α) is a solution to ().

Next, we discuss the boundary problem for some functions f ∈C, where f () 	= . From
[, Theorem .], for z ∈R\{}, we define the fractional transform

Dα
z z

kf (z) =
�( + k)
�(–α)

D–k–
z z–α–f (w – z)|w=z.

Now, in a manner similar to Theorem ., we have the following theorem.

Theorem . Consider the problem

∣∣Dα
ζ ζ kf (ζ )

∣∣ = {
�(f (ζ )) for every ζ ∈ ∂U ,
f (k)() 	= ,

()

where k 	= –,–, . . . , and f (z) is analytic in a simply-connected regionR⊂ C. If f (k)() 	= 
and� is a continuous function onC, then there exists a unique univalent functionψ ∈ AU ,
ψ() = , ψ ′() >  such that zkf ∗(z) = ψ(zk–α) ∈A(α,k)

� , where

A(α,k)
� :=

{
f ∈ G(U); f () 	= , f (k)() > ,

lim sup
|z|→

(∣∣Dα
z z

kf (z)
∣∣ –�

(
f (z)

)) ≤ ;‖f ‖∞ ≤ 
}

and f ∗(U) =
⋃

f∈A(α,k)
�

f (U).
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Proof Set P(z) = zkf (z). It is clear that P() =  and P(k)() 	= . Also A(α,k)
� is non-empty

and bounded in U because P ∈A(α,)
� . Let P∗ ∈A(α,k)

� such that

P∗(z) := zkf ∗(z), P∗(k)() = sup
P∈A(α,k)

�

P(k)() > ,

where f ∗ is as in Theorem .. Next, assume that ψ : U → P(U) ∪ P∗(U) is the upper of
P and P∗ and that F(z) = ψ(zk–α), where F ∈ A(α,k)

� . Thus F (k)() ≤ P∗(k)(). On the other
hand, we may have

F(U) =ψ(U) = P(U)∪ P∗(U),

which includes P∗(U). Now the proof is complete by proceeding with a similar manner to
that of the first part of the proof of Theorem .. �

As a consequence of Theorem . above, we have the following.

Corollary . Let � be a positive continuous function on C. Then there exists a univalent
functionψ ∈ AU satisfyingψ() =  andψ ′() > ,where f (z) = ψ(zk–α) solves problem ().

Tremblay [] studied a fractional calculus operator defined in terms of the Riemann-
Liouville fractional differential operator. We extend this operator in the complex plane to
involve Dα

z as follows:

Tα,β
z :=

�(β)
�(α)

z–βDα–β
z zα–,

where(
α,β ∈ [, ];α > β ; z ∈C

)
.

Consequently, for the class S consisting of analytic functions f (z) = z +
∑∞

n= anzn that are
univalent in U , we have the following upper bound of the operator Tα,β

z .

Theorem . Let f ∈ S . If  < λ := α – β < , then

∣∣Tα,β
z f (z)

∣∣ ≤ �(β)
�(α)�( – α + β)

r
(
rF(, ;  – λ; r)

)′ (
r = |z|,  < λ < , z ∈U

)
, ()

where F is the hypergeometric function. The equality holds true for the Koebe function

k(z) :=
z

( – z)
(z ∈U).

Proof By De Branges’ theorem [] (also known as Bieberbach conjecture, e.g., see Duren
[]), for f ∈ S , we have |an| < n. Therefore

∣∣Tα,β
z f (z)

∣∣ ≤ �(β)
�(α)

∞∑
n=

�(n + )
�(n +  – λ)

nrn, a = 

=
r�(β)
�(α)

∞∑
n=

(n + )�(n + )
�(n +  – λ)

rn

http://www.boundaryvalueproblems.com/content/2014/1/66
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=
r�(β)

�(α)�( – λ)

∞∑
n=

()n()n
( – λ)n

(n + )rn

n!

=
r�(β)

�(α)�( – α + β)
(
rF(, ;  – λ; r)

)′,

where (a)n is the Pochhammer symbol defined by

(a)n :=
�(a + n)

�(a)
=

{
 (n = );
a(a + )(a + ) · · · (a + n – ) (n ∈N).

Finally, by letting the Koebe function k(z) for f (z) in (), we can show that the result is
sharp. Hence the proof. �

Moreover, we can prove the following theorem.

Theorem . Let f ∈ S . If  < α < ,  < β <  and  < λ < , then we have the sharp bound

∣∣Tα,β
z f (z)

∣∣ ≤ �(β)
�(α)�( – λ)

r
(
rF(, ;  – λ; r)

)′; r = |z|, z ∈U , ()

where F is a hypergeometric function.

Proof Let  < α <  and  < β < . Then we may use α :=  + α̃,  < α̃ < . If α̃ > β , then we
put  < λ := α̃ – β < . Otherwise, we let  < λ := β – α̃ < . From the above two cases, we
conclude that α – β =  + λ,  < λ < . Therefore

D+λ
z f (z) = z––λ

∞∑
n=

�(n + )
�(n – λ)

anzn.

Now, by applying the last assertion on Tα,β
z f (z), we conclude

∣∣Tα,β
z f (z)

∣∣ ≤ �(β)
�(α)

rα–β

∞∑
n=

�(n + )
�(n – λ)

nrn––λ, a = 

=
�(β)
�(α)

∞∑
n=

�(n + )
�(n – λ)

nrn

=
r�(β)
�(α)

∞∑
n=

(n + )�(n + )
�(n +  – λ)

rn

=
r�(β)

�(α)�( – λ)

∞∑
n=

()n()n
( – λ)n

(n + )rn

n!

=
r�(β)

�(α)�( – λ)
(
rF(, ;  – λ; r)

)′. �

We obtain the following two corollaries by making use the above operator and, respec-
tively, letting α → β and (α,β)→ (, ).

Corollary . Consider the problem

∣∣Tα,β
z f (ζ )

∣∣ = {
�(f (ζ )) for every ζ ∈ ∂U ,
f () = , f ′() > ,

()

http://www.boundaryvalueproblems.com/content/2014/1/66
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where f (z) is analytic in a simply-connected region R ⊂ C. If f (n)() 	= , n ∈ N and � is a
continuous function on C, then there exists a unique univalent function θ ∈ AU , θ () = ,
θ ′() >  such that f ∗(z) = θ (zn–α+β ) ∈ B(α,β ,n)

� , n ∈ N,  < α + β ≤ , where

B(α,β ,n)
� :=

{
f ∈ G(U); f () = , f ′() = , . . . , f (n–)() = , f (n)() > ,

lim sup
|z|→

(∣∣Tα,β
z f (z)

∣∣ –�
(
f (z)

)) ≤ ;‖f ‖∞ ≤ 
}

and f ∗(U) =
⋃

f∈B(α,β ,n)
�

f (U).

Corollary . Consider the problem

∣∣Tα,β
z f (ζ )

∣∣ = {
�(f (ζ )) for every ζ ∈ ∂U ,
f () 	= ,

()

where f (z) is analytic in a simply-connected regionR⊂C. If f (n)() 	=  and� is a continu-
ous function onC, then there exists a unique univalent function σ ∈ AU , σ () = , σ ′() > 
such that z–αf ∗(z) = σ (zn–α+β ) ∈ E (α,β ,n)

� , n ∈N,  < α + β ≤ , where

E (α,β ,n)
� :=

{
f ∈ G(U); f (n)() > , lim sup

|z|→

(∣∣Tα,β
z f (z)

∣∣ –�
(
f (z)

)) ≤ ;‖f ‖∞ ≤ 
}

and f ∗(U) =
⋃

f∈E (α,β ,n)
�

f (U).

In the following example we demonstrate that, in view of Theorem ., the above bound-
ary problems have univalent solutions in the unit disk with f ∗(z) = ψ(z–α).

Example . A computation implies

Dα
z k(z) =

z–α

�( – α)
F(, ;  – α; z)

and for

G(z) =
z

 – z
(z ∈ U),

we get

Dα
z G(z) =

z–α

�( – α)
F(, ;  – α; z).

Thus, we have the boundary problems

∣∣Dα
z k(z)

∣∣
z→∂U =

ζ –α

�( – α)
F(, ;  – α; ζ )

and

∣∣Dα
z G(z)

∣∣
z→∂U =

ζ –α

�( – α)
F(, ;  – α; ζ ) (ζ ∈ ∂U).

http://www.boundaryvalueproblems.com/content/2014/1/66
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It is clear that k() = , k′() >  as well as G(z), which satisfies G() = , G′() > .

By using the same technique as in the first part of Theorem ., together with Lemma .
and Lemma ., we conclude the following.

Theorem . Let � be a positive, continuous and bounded function. Then there exists a
unique function f∗ ∈ U (α,n)

� such that

f (n)∗ () = inf
f∈U (α,n)

�

f (n)().

Then the function f∗ maps U conformally onto U∗, where

U∗ :=
⋂

f∈U (α,n)
�

f (U).

We call the function f∗ of Theorem . the minimal univalent supersolution for � .
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