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Abstract

We investigate the existence of weak solutions for a class of the system of wave
equations with singular potential nonlinearity. We obtain a theorem which shows the
existence of nontrivial weak solution for a class of the wave system with singular
potential nonlinearity and the Dirichlet boundary condition. We obtain this result by
using the variational method and critical point theory for indefinite functional.
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1 Introduction
Let D be an open subset in R" with compact complement C = R"\D, n > 2. In this paper
we investigate the multiplicity of the solutions for a class of the system of nonlinear wave

equations with the Dirichlet boundary condition and periodic condition:

(1) — (1) xx = BiulG(x’ t, (ul(x, b),...

s U (, t))) in (—g, %) X R,
sun(%,0)))  in <—%, %) X R,

iG(x, t, (ul(x, t),...

(U2)ir — (U2)ax = ity

1.1)

(Wn)it — (tn)sx = —G (%, 8, (w1 (x,2), ..

T
Lti(:f:—,t) = O,
2

u;(x, t) = u;(—x,t) = ui(x, —t) = u;(x, t + ),

L Un(x, t))) in <—%, g) X R,

0
ouy,

i=1,...,n,

where G € C*([-%, %] x R' x D,R"). Let U = (uy,...,u,). We assume that G satisfies the

following conditions:
(G1) There exists Ry > 0 such that

sup{ |G(x, t, LI)| + H grady G(x, £, U) | o

(x,t,U) e [—z, z:| x R x (R”\BRO)} < +00.
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(G2) There is a neighborhood Z of C in R” such that

Gt ) > — for i, ) e (-2, X ) xRx Z
by YN r by — A~ ’
v =pwuc Y 272

where d(U, C) is the distance function from U to C and A > 0 is a constant. The
system (1.1) can be rewritten as

Uy — Uy, = grady; Gx, t, U(x, 1)),
U(+Z,8) = (0,...,0), 1.2)
U(x,t) = U(x, t + ) = U(—x,t) = U(x, —t),

where Uy — Uy = (1) — (U1) s -+ ()t — (U)x)-

Remark We have a simple example satisfying the above conditions (G1)-(G2):

cos 2t
G t,U)= ———, U= (um,u),us = % uy = x2 + 2
Iz,

Our main result is the following.

Theorem 1.1 Assume that the nonlinear term G satisfies conditions (G1)-(G2). Then sys-
tem (1.1) has at least one nontrivial weak solution.

For the proof of Theorem 1.1, we approach the variational method and use the critical
point theory for indefinite functional. In Section 2, we introduce a Banach space and the
associated functional / of (1.1), and recall the critical point theory for indefinite functional.
In Section 3, we prove that / satisfies the geometric assumptions of the critical point the-
orem for indefinite functional and prove Theorem 1.1.

2 Variational approach
The eigenvalue problem

) T
Vi — Vyx = AV in 35 X R,

v(:l:%, t> -0, @.1)

v(x, £) = v(—x,8) = v(x, —t) = v(x, £ + 77)
has infinitely many eigenvalues
Aomn = @ +1)* —4m*  (m,n=0,1,2,...)

and corresponding normalized eigenfunctions ¢,,,(x,t), m,n > 0, given by

2
don = £ cos(2n+1)x forn=>0,
b4

2
Gn = — cos2mtcos(2n +1)x  form>0,n> 0.
T
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Let 2 be the square [-7, 7] x [-7, 7], and E’ be the Hilbert space defined by
E = {VGLZ(Q) ‘ vis even in x and t,/ V= 0}.
bo)

The set of functions {¢,,,,} is an orthonormal basis in E’. Let us denote an element v, in E’,
as

V= Z hmn({bmn,

and we define a subspace E of E’ as

E:{veE‘E:MWM&n<w}

This is a complete normed space with a norm

=3 o li2,,]

Since {A,;, | m,n=0,1,2,...} is unbounded from above and from below and has no finite

ST

accumulation point, it is convenient for the following to rearrange the eigenvalues A,,, by
increasing magnitude: from now on we denote by (p; );>1 the sequence of negative eigen-
values of (2.1), by (p;)i>1 the sequence of positive ones, so that

f,i>1)bean

We will denote by the sequence (p;) all the sequences (p;) and (p;). Let (], e
orthonormal system of the eigenfunctions associated with the eigenvalues {p;, p;",i > 1}.
We will denote by the sequence (e;) the sequences (¢} ), (¢;). Let E* be the span of closure
of eigenfunctions associated with positive eigenvalues and E~ be the span of closure of
eigenfunctions associated with negative eigenvalues. Let H be the n Cartesian product
space of E, i.e.,

H=EXEx---xE.

Let H* and H~ be the subspaces on which the functional
quw=meVHmHMﬁ U= (u,... uy,)

is positive definite and negative definite, respectively. Then
H=H'®H.

Let P* be the projection from H onto H* and P~ be the projection from H onto H~. The
norm in H is given by

2
)

i = |prul*+ |pru

Uz(Ml,...,un),

where |PTU |1 = 30 1P will®, IIP~UN? = X0, 1P will®, U = (s, ... ).
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Let (H,), be a sequence of closed finite dimensional subspace of H with the following
assumptions: H, = H,, ® H;}, where Hy C H*, H,, C H™ for all n (H}; and H;, are subspaces
of H), dimH,, < +00, H, C Hy.1, U, Hy is dense in H.

In this paper we are trying to find the weak solutions U/ € C?(R, D) N H of system (1.1),
thatis, U = (uy,...,u,) € C*(,D) N H such that

Lkwwwm4m»wm—~4w»@m
+ (ul)x : (¢1)x Tt (un)x : (¢n)x] dxdt

9 d
—/Qa—ulG(x,t,L[(x,t))~¢1—/Qa—mG(x,t,U(x,t))oqbz—m

- /Q aznG(x, LUK, t) ¢, =0
forall ¢ = (¢1,...,¢,) € CX(Q,D)NH, ie.,
L[—Ut~¢t + U, - ) dxdt—fggradu G(x,t, U(x, t)) .¢p=0 forallp € C3(Q,D)NH.
Let us introduce an open set of the Hilbert space H as follows:
X={UeH|Uxt)eDCR' (x1) €}
Let us consider the functional on X
) = % /Q[—|urt|2 + | Uy ] dxcdt - /Q Glx,t, U) dx dt

:QW—/GmawMﬁ
Q

= %||P*u||2— %HP‘U”Z _/ G, 1, U)dxdt, (2.2)
Q

where Q(U) = § [o[-|U:[* + |U,[*]dxdt and |U||* = Y7, ||lu;]|*. The Euler equation for
(2.1) is (1.1). By the following Lemma 2.1, I € C!(X, R), and so the weak solutions of system

(1.1) coincide with the critical points of the associated functional I(U).

Lemma 2.1 Assume that G satisfies conditions (G1)-(G2). Then I(U) is continuous and
Fréchet differentiable in X with Fréchet derivative

DIU)V = / [-U;- Vi + Uy - Vi - grady G(x, 8, Ulx, ) - V(x, 1) dedt YV € X.
Q

Moreover, DI € C. That is, I € C'.
Proof First we prove that I(U) is continuous. For U,V € X,
(U +Vv)-1(U)|

:’l/((m V)e— (U +V)y) - (U + V) dudt
2Jq
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—/ Glx,t,U + V)dxdt
Q
1
——/(U“—Uxx)~l,[dxdt+/ G(x,t,l,[)dxdt‘
2 Q Q
1
) ‘E / ((Utt_ Uss) -V + (Vi = Vi) - U+ (Vig = Vi) - V) dxdt
Q

- / (G(x, t, U+ V)-G(x,t, LI)) dxdt‘.
Q

We have

/ [G(x, tL,U+V)-Gxt, LI)] dxdt‘
Q

=

/Q[gradu G(xt,Ux, 1) - V+O(IVIe)] dxdt‘ =O(IIVllgn). (2.3)
Thus we have

(U + V)= 1(U)| = O(| V|| gn).
Next we shall prove that I(U/) is Fréchet differentiable in X. For U,V € X,

(U + V) -I(U) - VIU)V|

:‘%/Q((U+ Ve - U+ V) - (U + V)dxdt—/QG(x,t,LI+ V)dxdt

1
——/(uﬁ—uxx)-ucide/ Glx, t,U) dxdt
2 Jo Q

- /Q(Un = Uy — grad;; G(x, 1, U(x,1))) - dedt‘

‘% / [(Vtt Vi) U+ (Vi = Vi) - V] dx
Q

- / [G(x, t,U+V)-G(x,t, U)] dxdt +/ grad,; G(x, t, U(x, t)) -Vdxdt|.
Q Q

Thus by (2.3), we have
\I(U + V) - 1(U) - DI V| = O(|| V|| z)- (2.4)
Similarly, it is easily checked that I € C'. O
Let
X" =XNH", X =XNH".

Lemma 2.2 Assume that G satisfies conditions (G1)-(G2). Let {Uy} C X~ and Uy — U
weakly in X with U € 0X. Then I(Uy) — —o0.

Page 5 of 10
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Proof To prove the conclusion, it suffices to prove that

f G(x, ¢, Ur(x, 1)) dxdt — +00.
Q

Since G(x,t, U(x,t)) is bounded from below, it suffices to prove that there is a subset €2 of
Q such that

/~ G(x, £, Ur(x, 1)) dxdt — +00.
)

U € 90X means that there exists (x*,£*) € Q such that U(x*,¢t*) € dD. Let us set

(5 6%) = [0 e |y |x—w |2 + e~

;n < 8}.
By (G1) and (G2), there exists a constant B such that

Gx,t,U) > A B
x} 7 o 1 r
~ d*(U,C)

Thus we have

A
/ G(x,t, L[(x,t)) dxdtz/ ( 5 —B) dxdt
Qs (a*,t*) Q5 (x*,t%) ||L[(x, t) - u(x*» t*)”Rn

for all 8 > 0. By Schwarz’s inequality, we have
1

1 2
= \/”x—x* o (/Q(IIUXHIZM + ||U¢||?en)>
%
(/Q(Iluxuén + ||u,||,%n)) :

|t o) - u(x*,¢¥) R%” + |t -

ol

<34

Thus we have

A
Gl(x,t,U(x, t) dxdtz/ ( —B) dxdt — oo.
-/sz,;oc*,t*) ( ) s, \ S (S UILL % + 1L 30))

Hence

/ G(x, ¢, Ux, 1)) dxdt = co.
Qs (o, t*)
Since the embedding X — C(£2, R") is compact, we have

max{ || U(x, t) — Uk(x, t)

;n|(x,t)69}—>0 as k — oo.

Thus by Fatou’s lemma, we have
lim inf/ G(x, ¢, U(x, 1)) > / liminf G(x, £, Uy(x, 1))
Ga(at,t%) Gpl¥,1%)

= / G(x,t, U(x, 1)) = +00.
G (%,%)


http://www.boundaryvalueproblems.com/content/2014/1/7

Jung and Choi Boundary Value Problems 2014, 2014:7
http://www.boundaryvalueproblems.com/content/2014/1/7

Thus
liminf / G(x, £, Ur(x, 1)) = +00.
G (x*,t%)
Thus
1
) = / |:§(—|(L[k)t|2+|(L[k)x|2)—G(x,t,uk(x)):|dxdt
Q
1, ., 2 1, 2
=3 k . k - X, L, U (X X
Pl P /QG( b, U () dxdt
=Sl - / G, 1, Ui(x)) dxdt — —o0,
Q

so we prove the lemma. O

We recall the critical point theorem for the indefinite functional (cf [1]).
Let

By={ueX||ul<r},
S

r={ueX|ul=r}.

Theorem 2.1 (Critical point theorem for the indefinite functional) Let X be a real Hilbert
space with X = X; ® X, and X, = Xi-. Suppose that I € C*(X, R) satisfies (PS), and
(I1) I(u) = %(Lu, u) + bu, where Lu = LiPiu + LoPyu and L; : X; — X is bounded and
self-adjoint, i =1,2,
(I2) b is compact, and
(I3) there exists a subspace X C X and sets S C X, Q C X and constants o > w such that
(i) ScXyandl|s > «,
(ii) Q is bounded andI|yq < w,
(iii) S and 0Q link.
Then I possesses a critical value c > «.

3 Proof of Theorem 1.1
We shall show that the functional I(U) satisfies the geometric assumptions of the critical

point theorem for indefinite functional.

Lemma 3.1 (Palais-Smale condition) Assume that G satisfies conditions (G1) and (G2).
Then I(u) satisfies the (PS) condition in X.

Proof We shall prove the lemma by contradiction. We suppose that there exists a sequence

{Ux} C X satisfying I(Uy) — y and
DI(U) = (U)y — (Ug)xx — grady, G(x, £, Ug(x,£)) —> 6 in X, (3.1)
or equivalently

Uy - (Dy — D) (grad, G(x, ¢, Ux(x, 1)) — 6,

Page 7 of 10
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where 6 = (0,...,0) and (D;; — Dy,)"! is a compact operator. We claim that the sequence
{Uk}, up to a subsequence, converges. It suffices to prove that the sequence {Uj} isbounded
in X. By contradiction, we suppose that ||U||z» — oo. Then, for large k, we have

|Ukllzn = Ro. (3.2)

It follows from (3.2) that

/ Glx, t, Uy) dxdt
Q

<1QIsup{|Glx,t, Up)| | (x,, Ux) € Q x (R"\Bg,)}. (3.3)

Let us set Wy = Hgﬁ

quence, converges weakly to W with || W] = 1. By (3.1), we have

Then ||Wg| =1, and hence the subsequence {W;}, up to a subse-

% = /g((Wk)n — (Wk)ax) - Widxdt - /Q %
- ol - [orw - [ Zeed 3
Letting k — oo in (3.4), by (3.3), we have
0= fim |2 Wi~ fim Wi |
- /Q(m — W) - Wdxdt
- o o w 65

Thus we have

2
)

. " 2 e . _ 2 ey 12
lim [Pl = [P, tim | [
Thus

Jim | Wil = W]

—00
and by (3.5), W is the weak solution of the equation

th—WxeO in X.

We claim that N(4) N X = {(0,...,0)}, where AU = U,; — Uy, and N(A) is the kernel of A.
In fact,let W e N(A)NX, W = (wy,...,w,). Then

w; = Z(wi)mn cos2mtcos(2n+1)x, i=1,...,n.

mn

We note that

Cn+1?—4m* 40 = W)wm=0, mn=0,1,2,....
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Thus N(A)NX = {(0,...,0)}. Thus W = (0,...,0), which is absurd to the fact that || W] = 1.
Thus {Uy} is bounded. Thus the subsequence, up to a subsequence, Uy converges weakly
to U in X. By Lemma 2.2, U € X and that || grad;; G(-, Uy)| is bounded. Since (D;; — Dy,) ™
is compact and (3.1) holds, {Uj} converges strongly to U/. Thus we prove the lemma. [

Let

Q=B,NX")®{relecBiNX",0<r<R}.

Lemma 3.2 Assume that G satisfies conditions (G1) and (G2). Then there exist sets S, C
X* with radius p >0, Q C X and constants o > 0 such that
(i) S, c X andlls, > a,
(i) Q isbounded and Iy <0,
(iii) S, and 8Q link.

Proof (i) Let us choose U € X* C X. Then U(x,t) € D. By (G1), G(x, t, U) is bounded above
and there exists a constant C > 0
1 " 2 1 - 2 1 + 2
) ==|pul|”-=|pPul” - | GxtUdxdt>—|PU||”-C
2 2 Q 2
for C > 0. Then there exist constants p > 0 and « > 0 such that if &/ € S, N X", then
IU) > «a.
(ii) Let us choose e e BiNX*. Let U € B,NX @ {re|0<r}. ThenU=V + W, V e
B, N X", W = re. We note that:

fVeBnx, then/[—nvtn,iw||vx||%<n]dxdt=—||P*U||250‘
Q

By (G2), G(x,t, V + re) is bounded from below. Thus by Lemma 2.2, there exists a constant
A >0 such thatif U = V + re, then we have

1w -5 - l||1f\/y|2— G(x,t, V +re)dxdt
202 o
1, 1, 2 A
=331Vl _/QdZ(vHe,C)dxdt'

We can choose a constant R > r such that if U =V +ree Q=(B, N X))@ {re| e Bi N
X*,0 <r <R}, then I(U) < 0. Thus we prove the lemma. O

Proof of Theorem 1.1 By Lemma 2.1, I(U) is continuous and Fréchet differentiable in X
and, moreover, DI € C. By Lemma 2.2, if {U;} C X~ and U — U weakly in X with U € 39X,
then I(Uy) — —oo. By Lemma 3.1, I(u) satisfies the (PS) condition. By Lemma 3.2, there
exist sets S, C X* with radius p >0, Q C X and constant o > 0 such that /|5, > o, Q is
bounded and /|3 <0, and S, and 9Q link. By the critical point theorem, /({/) possesses
a critical value ¢ > «. Thus (1.1) has at least one nontrivial weak solution. Thus we prove
Theorem 1.1 O
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