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Abstract
In this paper we study an optimal control problem for a nonlinear monotone Dirichlet
problem where the control is taken as L∞(�)-coefficient of �p-Laplacian. Given a
cost function, the objective is to derive first-order optimality conditions and provide
their substantiation. We propose some ideas and new results concerning the
differentiability properties of the Lagrange functional associated with the considered
control problem. The obtained adjoint boundary value problem is not coercive and,
hence, it may admit infinitely many solutions. That is why we concentrate not only on
deriving the adjoint system, but also, following the well-known Hardy-Poincaré
Inequality, on a formulation of sufficient conditions which would guarantee the
uniqueness of the adjoint state to the optimal pair.
MSC: 35J70; 49J20; 49J45; 93C73
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1 Introduction
The aim of this paper is to derive a first-order optimality system for a nonlinear Dirichlet
optimal control problem where the control is taken as an L∞-coefficient in a nonlinear
state equation. The optimal control problem we consider in this paper is to minimize the
discrepancy ‖y – yd‖pW ,p

 (�)
, where p ≥ , � is an open bounded Lipschitz domain in R

N

withN ≥ , yd ∈ W ,p
 (�) is a given distribution, and y is the solution of a nonlinear Dirich-

let problem by choosing an appropriate coefficient u ∈ L∞(�) of �p-Laplacian. Namely,
we consider the following minimization problem:

Minimize
{
I(u, y) =

∫
�

∣∣∇y(x) –∇yd(x)
∣∣p dx} (.)

subject to the constraints

u ∈Aad ⊂ L∞(�)∩ BV (�), y ∈W ,p
 (�), (.)

–div
(
u|∇y|p–∇y

)
= f in �, (.)

y =  on ∂�, (.)

where Aad is a class of admissible controls and f ∈ W–,q(�), q = p/(p – ).
Optimal control in coefficients for partial differential equations is a classical subject ini-

tiated by Lurie [, ], Lions [], Zolezzi []. Tartar and Murat [–] showed examples of
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the non-existence for such problems (see e.g. [] also for the historical development). Since
the range ofOCPs in coefficients is very wide, including as well optimal shape design prob-
lems, optimization of certain evolution systems, some problems originating in mechanics
and others, this topic has beenwidely studied bymany authors. In particular, it leads to the
possibility to optimize material properties what is extremely important for material sci-
ences. The crucial point is to give the right interpretation of the optimal coefficients in the
context of applications (see, for instance, [, ]). Usually this aspect is closely related with
the structural assumptions that have to be considered during the optimization process in
terms of constraints. One way of doing so is via proper parametrization of the material,
respectively, the coefficients, usingmixtures, represented by characteristic functions. This
has been pursued by Allaire [] and many other authors in recent years. Another restric-
tion can be realized via regularity of the coefficients and hard constraints. This procedure
has been followed first by Casas [] for a scalar problem, as one of the first papers in that
direction, and later by Haslinger et al. [] in the context of what has come to be known
as Free Material Optimization (FMO). However, most of the results and methods rely on
linear PDEs, while only very few articles deal with nonlinear problems, see Kogut [] and
Kogut and Leugering []. Another point of interest is degeneration in the coefficients
which is typically avoided by assuming lower bounds on the coefficients. However, degen-
eration occurs genuinely in topology optimization, damage and crack problems. In Kogut
and Leugering [–] and in Kupenko andManzo [] this problem has been considered
in the context of linear problems (see also []). The nonlinear case was considered in [–
]. In this article, we extend our results to scalar nonlinear problems, where degeneration
occurs already with respect to the states.
Another important point, arising after the solvability of the optimization problem had

been proved, is the question as regards optimality conditions. The classical approach to
deriving such conditions is based on the Lagrange principle. However, in the casewhen the
control is considered in the coefficients of the main part of the state equation, the classical
adjoint system often cannot be directly constructed due to the lack of differential proper-
ties of the solution to the boundary value problemwith respect to control variables. It was
the main reason why Serovajskiy has proposed the concept of the so-called quasi-adjoint
system [] and showed that optimality conditions for the linear elliptic control problem
in coefficients can be derived, provided the mapping u 	→ ψε(u) possesses the weakened
continuity property. However, the verification of this property is not easy matter even for
linear systems. In the case of quasi-linear or nonlinear state equations, we are faced with
another problem - the Lagrange functional to the indicated problem is not Gâteaux dif-
ferentiable at the origin. To overcome this difficulty, Casas and Fernández introduced the
special family of perturbed optimal control problems and derived the optimality condi-
tions passing to the limit in optimality conditions for approximating control problems. In
order to apply this approach to optimal control problem (.)-(.) it would suffice to as-
sume the following extra conditions: p >N/ and Aad ⊂ C(�) that look rather restrictive
from physical point of view. The second option coming from the approach of Casas and
Fernández is the fact that the linear elliptic equation for the adjoint state is not coercive in
general and, hence, the adjoint boundary value problem may admit infinitely many solu-
tions. As a result, the attainability of some solutions is rather a questionable matter. That
is why in this paper we concentrate not only on deriving of the adjoint system, but also on
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formulation of sufficient conditions which would guarantee the uniqueness of the adjoint
state to the optimal pair.
The paper is organized as follows. In Section  we give some preliminaries and prescribe

the class of admissible controls to problem (.)-(.). In Section  we analyze the solvabil-
ity properties of optimal control problem (.)-(.), using themonotonicity of generalized
�p-Laplacian (see for comparison [, ]). The aim of Section  is to give a collection of
preliminary results concerning the differentiability properties of the Lagrange functional
associated with problem (.)-(.)

�(u, y,λ) = I(u, y) + au(y,λ) – 〈f ,λ〉W ,p
 (�),

where

au(y,λ) =
∫

�

u(x)|∇y|p–(∇y,∇λ)RN dx

and show that it admits the Gâteaux derivative with respect to the so-called non-
degenerate directions h ∈W ,p

 (�) at the point y.
In Section we discuss the formal approach in deriving first-order optimality conditions

for optimal control problem (.)-(.). In order to derive an optimality system, we apply
the Lagrange principle. It is well known that the proof of this principle is different for
different classes of optimal control problem (see, for instance, [, , , –]). The
complexity of this procedure significantly depends on the form of the extremal problem
under consideration. The procedure is rather simple if the controllable system is described
by a linear well-posed controllable boundary value problem, but it becomes much more
complicated if the controllable system is either ill-posed or nonlinear and singular.
With that in mind, we introduce the notion of a quasi-adjoint state ψε to an optimal

solution y ∈W ,p
 (�) as a solution of the following Dirichlet boundary value problem for

degenerate linear elliptic equation:

–div
(
uθ |∇yθ |p–

[
I + (p – )

∇yθ

|∇yθ | ⊗ ∇yθ

|∇yθ |
]
∇ψθ

)
= pdiv

(|∇yθ –∇yd|p–(∇yθ –∇yd)
)

in �,ψθ ∈W ,p
 (�), (.)

where the degeneration occurs in a natural way with respect to the states.
This concept was proposed for linear problems by Serovajskiy [], where it was shown

that an optimality system for the optimal control problems in coefficients can be recov-
ered in an explicit form if the mappingAad � u 	→ ψε(u) possesses the so-called weakened
continuity property. However, it should be stressed that the fulfilment of this property is
not proved for the case of �p-Laplacian with p >  and, thus, should be considered as
some extra hypothesis. Moreover, from a practical point of view, the verification of the
weakened continuity property for quasi-adjoint states is not an easy matter, in general.
That is why, in order to derive optimality conditions in the framework of more appropri-
ate assumptions, we provide in Section  the analysis of the well-posedness of variational
problem (.) and describe the asymptotic behavior of its solutions as parameter θ tends
to zero. However, in contrast to Casas and Fernandez [], we do not apply a perturbation
of the differential operator that removes the singularity at the origin.
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In particular, following the well-known Hardy-Poincaré Inequality, we show that the
sequence of quasi-adjoint states {ψεθ ,θ }θ→ to y ∈ W ,p

 (�) can be defined in a unique way
(as unique solutions for (.)) and is bounded inW ,p

 (�) provided, for given distributions
f ∈ W–,q(�) and yd ∈ W ,p

 (�) with q = p
p– and p ≥ , an optimal solution y = y(u) to

the nonlinear Dirichlet boundary value problem (.)-(.) satisfies the properties

∇ ln |∇y| ∈ L
(
�;RN)

, ∇(|∇y|
) ∈ Lp

(
�;RN)

and
|∇yd|
|∇y| ∈ L∞(�),

–Ĉ(�) ≤ V (x) ≤ λ
L

L∑
i=


|x – xi| a.e. in �,

where

V (x) = ( – p)div
(
A(u, y)∇ ln |∇y|

)
–
(p – )


(∇ ln |∇y|,A(u, y)∇ ln |∇y|

)
RN ,

A(u, y) = u
[
I + (p – )

∇y
|∇y| ⊗ ∇y

|∇y|
]
,

for some positive constants Ĉ(�) > , λ < λ∗ := (N – )/, and some collection of points
{x,x, . . . ,xL} ⊂ �.
Note that the fulfilment of this assumption is feasible if the matrix |∇y|p–A(u, y) has

a non-degenerate spectrum for each U ∈ Uad (for the details, we refer to []). The main
argument given in Sections - is to look for the solutions ψθ ∈ W ,p

 (�) of the quasi-
adjoint problem (.) in the form ψθ = |∇yθ |(–p)/zθ , where zθ ∈ H

(�). As a result, we
show that each of the variational problems for the corresponding quasi-adjoint states has
a unique solution, and these solutions form a weakly convergent sequence {ψθ }θ→ in
W ,p

 (�). This property suffices in order to establish that the optimality system for problem
(.)-(.) remains valid even if the matrix |∇y|p–A(u, y) has a degenerate spectrum.

2 Notation and preliminaries
Throughout the paper � is a bounded open subset of RN , N ≥ . The space D′(�) of
distributions in � is the dual of the space C∞

 (�). For real numbers  ≤ p < +∞, and
 < q < +∞ such that /p+/q = , the spaceW ,p

 (�) is the closure ofC∞
 (�) in the Sobolev

spaceW ,p(�), whileW–,q(�) is the space of distributions of the form f = f +
∑

j Djfj, with
f, f, . . . , fn ∈ Lq(�) (i.e. W–,q(�) is the dual space of W ,p

 (�)). As a norm in the space
W ,p

 (�) we can take the following one:

‖y‖W ,p
 (�) =

(∫
�

|∇y|p
RN

)/p

.

Let χE be the characteristic function of a set E ⊂ R
N and let |E| be its N-dimensional

Lebesgue measure.
For any vector field v ∈ Lq(�;RN ), the divergence is an element of the space W–,q(�)

defined by the formula

〈div v,ϕ〉W–,q(�);W ,p
 (�) = –

∫
�

(v,∇ϕ)RN dx, ∀ϕ ∈W ,p
 (�), (.)
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where 〈· , ·〉W–,q(�);W ,p
 (�) denotes the duality pairing between W–,q(�) and W ,p

 (�), and
(· , ·)RN denotes the scalar product of two vectors in R

N .
Functions with bounded variations. Let f :� →R be a function of L(�). Define

TV (f ) :=
∫

�

|Df | = sup

{∫
�

f (∇ ,ϕ)RN dx : ϕ ∈ C

(
�;RN)

,
∣∣ϕ(x)∣∣ ≤  for x ∈ �

}
,

where (∇ ,ϕ)RN =
∑N

i=
∂ϕi
∂xi

.
According to the Radon-Nikodym Theorem, if TV (f ) < +∞ then the distribution Df

is a measure and there exist a vector-valued function ∇f ∈ L(�;RN ) and a measure Dsf ,
singular with respect to theN-dimensional LebesguemeasureLN�� restricted to�, such
that Df =∇fLN�� +Dsf .

Definition . A function f ∈ L(�) is said to have a bounded variation in � if TV (f ) <
+∞. By BV (�) we denote the space of all functions in L(�) with bounded variation, i.e.
BV (�) = {f ∈ L(�) : TV (f ) < +∞}.

Under the norm ‖f ‖BV (�) = ‖f ‖L(�) + TV (f ), BV (�) is a Banach space. For our further
analysis, we need the following properties of BV -functions (see []).

Proposition .
(i) Let {fk}∞k= be a sequence in BV (�) strongly converging to some f in L(�) and

satisfying condition supk∈NTV (fk) < +∞. Then

f ∈ BV (�) and TV (f ) ≤ lim inf
k→∞

TV (fk);

(ii) for every f ∈ BV (�)∩ Lr(�), r ∈ [, +∞), there exists a sequence {fk}∞k= ⊂ C∞(�)
such that

lim
k→∞

∫
�

|f – fk|r dx =  and lim
k→∞

TV (fk) = TV (f );

(iii) for every bounded sequence {fk}∞k= ⊂ BV (�) there exist a subsequence, still denoted
by fk , and a function f ∈ BV (�) such that fk → f in L(�).

Admissible Controls and Generalized p-Laplacian. Let α, β , γ , and m be given positive
constants such that  < α ≤ β < +∞ and α|�| ≤ m ≤ β|�|. We define the class of admis-
sible controls Aad as follows:

Aad =
{
u ∈ BV (�)∩ L∞(�)|TV (u) ≤ γ ,‖u‖L(�) =m,α ≤ u(x)≤ β a.e. in �

}
. (.)

It is clear that Aad is a nonempty convex subset of L(�) with empty topological interior.
We say that a nonlinear operator �p : Aad × W ,p

 (�) → W–,q(�) is the generalized
p-Laplacian if it has a representation

�p(u, y) = –div
(
u(x)|∇y|p–∇y

)
, where |∇y|p– := |∇y|p–

RN =

( N∑
i=

∣∣∣∣ ∂y
∂xj

∣∣∣∣
) p–



,
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or via the pairing

〈
�p(u, y), v

〉
W–,q(�);W ,p

 (�) =
∫

�

u(x)|∇y|p–(∇y,∇v)RN dx, ∀v ∈W ,p
 (�).

It is easy to see that for every admissible control u ∈ Aad, the operator �p(u, ·) turns out
to be coercive, i.e.

〈
�p(u, y), y

〉
W–,q(�);W ,p

 (�) ≥ α‖y‖p
W ,p

 (�)
,

and demi-continuous, where by the demi-continuity property we mean the fulfilment of
the implication: yk → y strongly in W ,p

 (�) implies that �p(u, yk) ⇀ �p(u, y) weakly in
W–,q(�) (see [, ]). Moreover, p-Laplacian�p(u, y) is a strictly monotone operator for
each u ∈Aad. Indeed, having applied the trick

∫
�

|∇y|p–|∇v|u(x)dx ≤
(∫

�

(|∇y|p–up–
p

) p
p– dx

)(p–)/p(∫
�

(|∇v|u 
p
)p dx)/p

=
(∫

�

|∇y|pudx
)(p–)/p(∫

�

|∇v|pudx
)/p

=: ‖y‖p–
W ,p

 (�;udx)
‖v‖W ,p

 (�;udx),

it is easy to check the validity of the following estimate:

〈
�p(u, y) –�p(u, v), y – v

〉
W–,q(�);W ,p

 (�)

=
∫

�

u(x)
(|∇y|p–∇y – |∇v|p–∇v,∇y –∇v

)
RN dx (by the Cauchy Inequality)

≥
∫

�

|∇y|p–(|∇y| – |∇v||∇y|)u(x)dx
–

∫
�

|∇v|p–(|∇v||∇y| – |∇v|)u(x)dx (by the Hölder Inequality)

≥ ‖y‖p
W ,p

 (�;udx)
+ ‖v‖p

W ,p
 (�;udx)

– ‖y‖p–
W ,p

 (�;udx)
‖v‖W ,p

 (�;udx) – ‖v‖p–
W ,p

 (�;udx)
‖y‖W ,p

 (�;udx)

=
(‖y‖p–

W ,p
 (�;udx)

– ‖v‖p–
W ,p

 (�;udx)

)(‖y‖W ,p
 (�;udx) – ‖v‖W ,p

 (�;udx)

)
≥ –p

∣∣‖y‖W ,p
 (�;udx) – ‖v‖W ,p

 (�;udx)

∣∣p, ∀y, v ∈W ,p
 (�).

As a result, since β–‖y‖p
W ,p

 (�;udx)
≤ ‖y‖p

W ,p
 (�)

≤ α–‖y‖p
W ,p

 (�;udx)
, it follows that

〈
�p(u, y) –�p(u, v), y – v

〉
W–,q(�);W ,p

 (�) >  for all y, v ∈ W ,p
 (�), y �= v.

Then by well-known existence results for nonlinear elliptic equations with strictly
monotone demi-continuous coercive operators (see [, ]), one can conclude: for ev-
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ery u ∈Aad and f ∈W–,q(�), the nonlinear Dirichlet boundary value problem

�p(u, y) = f in �, y ∈W ,p
 (�), (.)

admits a unique weak solution inW ,p
 (�). Let us recall that a function y is the weak solu-

tion of (.) if

y ∈ W ,p
 (�), (.)∫

�

u(x)|∇y|p–(∇y,∇v)RN dx = 〈f , v〉W–,q(�);W ,p
 (�), ∀v ∈W ,p

 (�). (.)

3 Setting of the optimal control problem
We consider the following optimal control problem:

Minimize
{
I(u, y) =

∫
�

∣∣∇y(x) –∇yd(x)
∣∣p dx}, (.)

subject to the constraints

∫
�

u(x)|∇y|p–(∇y,∇v)RN dx = 〈f , v〉W–,q(�);W ,p
 (�), ∀v ∈W ,p

 (�), (.)

u ∈Aad ⊂ L∞(�), y ∈W ,p
 (�), (.)

where f ∈W–,q(�) and yd ∈W ,p
 (�) are given distributions.

Hereinafter,� ⊂ L∞(�)×W ,p
 (�) denotes the set of all admissible pairs (u, y) to optimal

control problem (.)-(.).

Remark . As was mentioned in the previous section, the characteristic feature of op-
timal control problem (.)-(.) is the fact that the set of admissible controls Aad is a
convex set with an empty topological interior. As we will see later on, this circumstance
entails some technical difficulties in the substantiation of optimality conditions for the
given problem.

Let τ be the topology on the set L(�) × W ,p
 (�) which we define as a product of the

strong topology of L(�) and the weak topology of W ,p
 (�). Further we make use of the

following results, which play a key role for the solvability of optimal control problem (.)-
(.) (see [, ] and [, ] for comparison).

Proposition . For any u ∈ Aad and f ∈ W–,q(�), a weak solution y ∈ W ,p
 (�) to the

variational problem (.)-(.) satisfies the estimate

‖y‖W ,p
 (�) ≤ α–/(p–)‖f ‖/(p–)W–,q(�). (.)

Proof To prove the proposition it is enough to put in equality (.) as a test function the
element y and then use the properties of the class Aad on the left-hand side of the relation

http://www.boundaryvalueproblems.com/content/2014/1/72


Kupenko and Manzo Boundary Value Problems 2014, 2014:72 Page 8 of 29
http://www.boundaryvalueproblems.com/content/2014/1/72

and the Cauchy-Bunjakowsky Inequality on the right-hand side. Indeed, we get

α‖y‖p
W ,p

 (�)
≤

∫
�

u(x)|∇y|p–(∇y,∇y)RN dx

= 〈f , y〉W–,q(�);W ,p
 (�) ≤ ‖f ‖W–,q(�)‖y‖W ,p

 (�).

Now to get the desired estimate we divide each part of the obtain relation into ‖y‖W ,p
 (�)

and raise each side to the power /(p – ). �

Proposition . If {uk}k∈N ⊂ Aad and uk → u in L(�), then uk → u in Lr(�) for any
r ∈ [, +∞) and uk

∗→ u in L∞(�).

Proof Since uk → u in L(�) and∫
�

uk dx =m, TV (uk) ≤ γ , and α ≤ uk ≤ β a.e. in �,∀k ∈N,

by Proposition .(i) it follows that

TV (u) ≤ γ ,
∫

�

udx =m, and α ≤ u≤ β a.e. in �.

Hence, u ∈Aad. Moreover, for any r ∈ [, +∞), the estimate

‖uk – u‖rLr (�) ≤ vrai sup
x∈�

∣∣uk(x) – u(x)
∣∣r–‖uk – u‖L(�) ≤ (β – α)r–‖uk – u‖L(�)

implies that uk → u in Lr(�).
To end the proof, it is enough to note that strong convergence uk → u in L(�) implies,

up to a subsequence, convergence uk(x) → u(x) almost everywhere in �. Hence, by the
Lebesgue Theorem, we have∫

�

(uk – u)ϕ dx → , ∀ϕ ∈ L(�),

that is uk
∗→ u in L∞(�). Since this conclusion is true for any weakly-∗ convergent sub-

sequence of {uk}k∈N, it follows that u is the weak-∗ limit for the whole sequence {uk}k∈N.
�

Proposition . Aad is a sequentially compact subset of Lr(�) for any r ∈ [, +∞), and it
is a sequentially weakly-∗ compact subset of L∞(�).

Proof Let {uk}k∈N be any sequence of Aad. Then {uk}k∈N is bounded in BV (�) ∩ L∞(�).
As a result, the statement immediately follows from Propositions . and .(iii). �

Proposition . For every f ∈ W–,q(�) the set � is sequentially compact, i.e. for each
sequence {(uk , yk) ∈ �}k∈N it can be found a subsequence {(ukn , ykn ) ∈ �}n∈N such that
ukn → u in L(�), ykn → y in W ,p

 (�), where (u, y) ∈ �, that is, y is a weak solution to
the Dirichlet boundary value problem (.) with u = u.

http://www.boundaryvalueproblems.com/content/2014/1/72
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Proof Let {(uk , yk)}k∈N ⊂ � be an arbitrary sequence of admissible pairs. Then Proposi-
tion . and a priori estimate (.) lead to the existence of a subsequence, still denoted by
{(uk , yk)}k∈N and a pair (u, y) ∈Aad ×W ,p

 (�) such that

yk → y weakly inW ,p
 (�), (.)

uk → u strongly in Lr(�),∀r ∈ [, +∞) and weakly-∗ in L∞(�). (.)

Taking into account the inequality (see [])

(|ξ |p–ξ – |η|p–η, ξ – η
)
RN ≥ –p|ξ – η|p ∀ξ ,η ∈R

N ,

and definition of the class of admissible controls Aad, we conclude: there exists a constant
C >  independent of k ∈N such that

C
∫

�

|∇yk –∇y|p dx ≤
∫

�

uk
(|∇yk|p–∇yk – |∇y|p–∇y,∇yk –∇y

)
RN dx

= 〈f , yk – y〉W–,q(�);W ,p
 (�)

+
∫

�

(u – uk)
(|∇y|p–∇y,∇yk –∇y

)
RN dx

–
∫

�

u
(|∇y|p–∇y,∇yk –∇y

)
RN dx = I + I – I. (.)

Since u≤ β , u|∇y|p–∇y ∈ Lq(�;RN ), and ∇yk ⇀ ∇y in Lp(�;RN ), it follows that

I := 〈f , yk – y〉W–,q(�);W ,p
 (�)

by (.)−→  as k → ∞,

I :=
∫

�

u
(|∇y|p–∇y,∇yk –∇y

)
RN dx

by (.)−→  as k → ∞,

(u – uk)|∇y|p–∇y
by (.)−→  strongly in Lq

(
�;RN)

, and, therefore,

I :=
∫

�

(u – uk)
(|∇y|p–∇y,∇yk –∇y

)
RN dx

by (.)−→  as k → ∞.

Hence, passing to the limit in (.) as k → ∞, we arrive at a conclusion (see []):

yk → y strongly inW ,p
 (�), and |∇yk|p–∇yk ⇀ |∇y|p–∇y in Lq

(
�;RN)

.

As a result, we finally have

〈f , v〉W–,q(�);W ,p
 (�) = lim

k→∞

∫
�

uk(x)|∇yk|p–(∇yk ,∇v)RN dx

=
∫

�

u(x)|∇y|p–(∇y,∇v)RN dx, ∀v ∈W ,p
 (�),

that is, the limit pair (u, y) is an admissible to optimal control problem (.)-(.). The
proof is complete. �
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Taking into account Propositions .-., in a similar manner to [, ], it is easy to
conclude the following existence result.

Theorem . The optimal control problem (.)-(.) admits at least one solution

(
uopt, yopt

) ∈ � ⊂ [
BV (�)∩ L∞(�)

] ×W ,p
 (�),

I
(
uopt, yopt

)
= inf

(u,y)∈�
I(u, y).

4 Auxiliary results
Themain goal of this paper is to derive the optimality conditions for optimal control prob-
lem (.)-(.). However, we deal with the case when we cannot apply the well-known
classical approach (see, for instance, [, ]), since for a given distribution f ∈ W–,q(�)
the mapping u 	→ y(u) is not Fréchet differentiable on the class of admissible controls, in
general, and the class Aad has an empty topological interior. With that in mind, we apply
the so-called differentiation concept on convex sets and introduce the notion of a quasi-
adjoint stateψε to an optimal solution y ∈W ,p

 (�) that was proposed for linear problems
by Serovajskiy [].
To begin with, we discuss the differentiable properties of the Lagrange functional as-

sociated with problem (.)-(.). Since (.) can be seen as a constraint, we define the
Lagrangian as follows:

�(u, y,μ) = I(u, y) + au(y,μ) – 〈f ,μ〉W–,q(�);W ,p
 (�), (.)

where μ ∈W ,p
 (�) is a Lagrange multiplier and

au(y,μ) =
〈
–�p(u, y),μ

〉
W–,q(�);W ,p

 (�) =
∫

�

u(x)
(|∇y|p–∇y,∇μ

)
RN dx.

For given h ∈W ,p
 (�) and θ ∈ [, ], let us consider the following sets:

� =
{
x ∈ � : |∇y| > 

}
, �,θ =

{
x ∈ � : |∇y + θ∇h| > 

}
.

Clearly, we cannot claim that χ�,θ → χ� in Lr(�) for some  ≤ r < ∞, because conver-
gence of the sequence {∇y+θ∇h}θ→+ to∇y does not imply, in general, the χ -convergence
of subsets {�,θ }θ→+ to � as θ → + [, p.]. Indeed, let h ∈ W ,p

 (�) be such that
|∇h(x)| >  almost everywhere in � and ∇y = . Then � = ∅ whereas �,θ = � for all
positive θ small enough. Hence, in this case the convergence χ�,θ → χ� fails. In view of
this, we make use of the following notion (see []).

Definition . We say that an element y ∈ W ,p
 (�) is a regular point for the Lagrangian

(.) if for each v ∈W ,p
 (�) the direction h = v–y is non-degenerate in the following sense:

χ�,θ → χ� in L(�). (.)

We have the following result.
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Proposition . Assume that y is an element of W ,p
 (�) such that the set

S =
{
x ∈ � :

∣∣∇y(x)
∣∣ = 

}
(.)

has zero Lebesgue measure. Then y ∈ W ,p
 (�) is a regular point of the Lagrangian (.) in

the sense of Definition ..

Proof Let h be a given element ofW ,p
 (�). If x ∈ �, then, by definition, |∇y(x)| > . Thus,

there is a value θ ∈ (, ] such that |∇y(x)+θ∇h(x)| >  for all θ ∈ [, θ]. It is worth to note
that this pointwise inequality makes a sense if only x ∈ � is a Lebesgue point of both ∇y
and ∇h. However, the Lebesgue Differentiation Theorem states that, given any g ∈ L(�),
almost every x ∈ � is a Lebesgue point. Hence, almost all Lebesgue points of ∇y are the
Lebesgue points of∇y+θ∇h for θ small enough, andχ�,θ (x) = χ� (x) =  for all θ ∈ [, θ].
Since the set S has zero Lebesgue measure, it follows that |� \ �| =  and |� \ �,θ | = 
for θ ∈ [, ] small enough. Therefore, χ�,θ → χ� almost everywhere in � and hence,
χ�,θ → χ� strongly in L(�). �

Remark . It is worth noting that due to the results of Manfredi (see []), the assump-
tions of Proposition . appears natural and it is not a restrictive supposition in practice.
Indeed, following [], we can ensure that the set S := {x ∈ � : ∇y = } for non-constant
solutions of the p-Laplace equation (a p-harmonic function) has zero Lebesgue measure.
Moreover, it is also easy to observe that if y and v inW ,p

 (�) are two regular points of the
functional�(u, y,λ), then there exists a positive number α ∈R (α �= ) such that each point
of the segment [y,αv] = {y + t(αv – y) : ∀t ∈ [, ]} ⊂W ,p

 (�) is also regular for �(u, y,λ).

We are now ready to study the differentiability properties of the Lagrangian �(u, y,λ).
We begin with the following result.

Lemma . Let u ∈ Aad be a given element, and let y ∈ W ,p
 (�) be a regular point of the

Lagrangian (.). Then the mapping

W ,p
 (�) � y 	→ �p(u, y) = –div

(
u(x)|∇y|p–∇y

) ∈ W–,q(�), p≥ 

is Gâteaux differentiable at y and its Gâteaux derivative

(
–�p(u, y)

)′
G ∈L

(
W ,p

 (�),W–,q(�)
)

exists and takes the form

(
–�p(u, y)

)′
G[h] = –div

(
u(x)|∇y|p–∇h

)
– (p – )div

(
u(x)|∇y|p–(∇y,∇h)RN∇y

)
. (.)

Proof Let y ∈ W ,p
 (�) be a regular point for the Lagrangian (.) and let h ∈ W ,p

 (�) be
an arbitrary distribution. Following the definition of the Gâteaux derivative, we have to

http://www.boundaryvalueproblems.com/content/2014/1/72
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deduce the following equality:

lim
λ→+

∥∥∥∥�p(u, y + λh) –�p(u, y)
λ

– (p – )div
(
u(x)|∇y|p–(∇y,∇h)RN∇y

)
– div

(
u|∇y|p–∇h

)∥∥∥∥
Lq(�;RN )

= .

With that in mind, let us consider the vector-valued function

g(λ) := |∇y + λ∇h|p–(∇y + λ∇h)

for which the Taylor expansion with the remainder term in the Lagrange form leads to the
relation

∣∣g(λ) – g()
∣∣ ≤ λ

∣∣g ′(θ )
∣∣, θ ∈ (,λ),

where g() = |∇y|p–∇y and

g ′(θ ) = |∇y + θ∇h|p–∇h

+ (p – )|∇y + θ∇h|p–(θ |∇h| + (∇y,∇h)RN
)
(∇y + θ∇h)


|∇y + θ∇h|

= |∇y + θ∇h|p–∇h + (p – )|∇y + θ∇h|p– (∇y + θ∇h,∇h)RN

|∇y + θ∇h|
∇y + θ∇h
|∇y + θ∇h| .

Let δ >  be an arbitrary value. Let us consider the following decomposition:

� = S ∪ �′
δ ∪ �′′

δ ,

where the set S is defined by (.), and �′
δ and �′′

δ are measurable subsets of � such that

�′
δ =

{
x ∈ � :

∣∣∇y(x)
∣∣ ≥ δ

}
, �′′

δ =
{
x ∈ � :  <

∣∣∇y(x)
∣∣ < δ

}
.

Following [, p.] (see also []), we have: for any ε >  there exists a positive value
δ >  such that∥∥∥∥g ′(θ )

λ
– (p – )|∇y|p–(∇y,∇h)RN∇y – |∇y|p–∇h

∥∥∥∥
Lq(�′

δ ;R
N )

<
ε


, (.)

∥∥∥∥g ′(θ )
λ

– (p – )|∇y|p–(∇y,∇h)RN∇y – |∇y|p–∇h
∥∥∥∥
Lq(�′′

δ ;R
N )

<
ε


(.)

for all δ ∈ (, δ), θ ∈ (,λ), and λ >  small enough. Since |S| =  by the initial assump-
tions, it follows from (.)-(.) that the vector-valued function |∇y|p–∇y is Gâteaux dif-
ferentiable. Hence, the operator �p(u, y) = –div(u(x)|∇y|p–∇y) is Gâteaux differentiable
for any regular point y ∈ W ,p

 (�) and for any admissible control u ∈ Aad, and its Gâteaux
derivative takes the form (.). �

http://www.boundaryvalueproblems.com/content/2014/1/72
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Since Gâteaux differentiability of the operator y 	→ �p(u, y) implies the existence of
Gâteaux derivative for the functional

ϕ(y) =
〈
–�p(u, y),μ

〉
W–,q(�);W ,p

 (�) =
∫

�

u(x)
(|∇y|p–∇y,∇μ

)
RN dx,

ϕ :W ,p
 (�) →R

such that

〈
ϕ′
G(y),h

〉
W–,q(�);W ,p

 (�) =
〈(
–�p(u, y)

)′
G[h],μ

〉
W–,q(�);W ,p

 (�), ∀μ ∈W ,p
 (�),

we arrive at the following obvious consequence of Lemma ..

Corollary . Let u ∈ Aad and λ ∈ W ,p
 (�) be given elements, and let y ∈ W ,p

 (�) be a
regular point of the Lagrangian (.). Then the mapping

W ,p
 (�) � y 	→ �(u, y,μ) = I(u, y) + au(y,μ) – 〈f ,μ〉W–,q(�);W ,p

 (�) ∈R

is Gâteaux differentiable at y and its Gâteaux derivative,

�′
G(u, y,μ) ∈W–,q(�),

exists and takes the form

〈
�′

G(u, y,μ),h
〉
W–,q(�);W ,p

 (�)

= p
∫

�

|∇y –∇yd|p–(∇y –∇yd,∇h)RN dx +
∫

�

(
u(x)|∇y|p–∇μ,∇h

)
RN dx

+ (p – )
∫

�

u(x)|∇y|p–(∇y,∇μ)RN (∇y,∇h)RN dx. (.)

Remark . In view of the equality

(∇y,∇μ)RN∇y = [∇y⊗ ∇y]∇μ,

the last term in (.) can be rewritten as follows:

(p – )
∫

�

u(x)|∇y|p–([∇y⊗ ∇y]∇μ,∇h
)
RN dx.

Before deriving the optimality conditions, we need the following auxiliary result.

Lemma . Let u ∈ Aad, y ∈ W ,p
 (�), and v ∈ W ,p

 (�) be given distributions. Assume
that each point of the segment [y, v] = {y+α(v– y) : ∀α ∈ [, ]} ⊂W ,p

 (�) is regular for the
mapping v → �(u, v,μ). Then there exists a positive value ε ∈ (, ) such that

�(u, v,μ) –�(u, y,μ)

=
〈
�′

G(u, y + εh,μ),h
〉
W–,q(�);W ,p

 (�)
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= p
∫

�

|∇y + ε∇h –∇yd|p–(∇y + ε∇h –∇yd,∇h)RN dx

+
∫

�

u(x)|∇y + ε∇h|p–(∇μ,∇h)RN dx

+ (p – )
∫

�

u(x)|∇y + ε∇h|p–

× ([
(∇y + ε∇h)⊗ (∇y + ε∇h)

]∇μ,∇h
)
RN dx (.)

with h = v – y.

Proof For given u, μ, yd , y, and v, let us consider the scalar function ϕ(t) = �(u, y + t(v –
y),μ). Since by Corollary ., the functional �(u, · ,μ) is Gâteaux differentiable at each
point of the segment [y, v], it follows that the function ϕ = ϕ(t) is differentiable on (, )
and

ϕ′(t) =
〈
�′

G
(
u, y + t(v – y),λ

)
, v – y

〉
W–,q(�);W ,p

 (�), ∀t ∈ (, ).

To conclude the proof, it remains to take into account (.) and apply the Mean Value
Theorem:

ϕ() – ϕ() = ϕ′(ε) for some ε ∈ (, ). �

5 Formalism of the quasi-adjoint technique
We begin with the following assumption:
(H) The distribution f ∈W–,q(�) is such that, for each admissible control u ∈ Aad, the

corresponding weak solution y = y(u) of the nonlinear Dirichlet boundary value
problem (.) is a regular point of the mapping y 	→ �(u, y,λ).

Let (u, y) ∈ � be an optimal pair for problem (.)-(.). Then

�� =�(u, y,λ) –�(u, y,λ)≥ , ∀(u, y) ∈ �,∀λ ∈W ,p
 (�). (.)

Hence, splitting it in two terms, we obtain

�(u, y,λ) –�(u, y,λ) = �(u, y,λ) –�(u, y,λ) +�(u, y,λ) –�(u, y,λ)

=�y�(u, y,λ) +�(u – u, y,λ) ≥ , (.)

for all λ ∈W ,p
 (�) and u ∈Aad such that (u – u) ∈Aad.

Since the set of admissible controls Aad ⊂ L(�) has an empty topological interior, we
justify the choice of perturbation for an optimal control as follows:

uθ := u + θ (̂u – u),

where (̂u, ŷ) ∈ � is an arbitrary admissible pair, and θ ∈ [, ]. Then due toHypothesis (H)
and Remark ., we can suppose that each point of the segment [y, yθ ] ⊂W ,p

 (�) is regu-
lar for the mapping v → �(u, v,λ), where yθ := y(uθ ) = y(u + θ (̂u– u)) is the correspond-
ing solution of boundary value problem (.)-(.). Hence, by Lemma ., there exists a
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value εθ ∈ (, ) such that condition (.) can be represented as follows:

�� =�(uθ , yθ ,λ) –�(u, y,λ)

=
〈
�′

G
(
uθ , y + εθ (yθ – y),λ

)
, yθ – y

〉
W–,q(�);W ,p

 (�) +�(uθ – u, y,λ)

=
〈
�′

G
(
uθ , y + εθ (yθ – y),λ

)
, yθ – y

〉
W–,q(�);W ,p

 (�)

+�
(
θ (̂u – u), y,λ

) ≥ . (.)

Using (.), we obtain

�� = p
∫

�

|∇yεθ ,θ –∇yd|p–(∇yεθ ,θ –∇yd,∇yθ –∇y)RN dx

+
∫

�

uθ |∇yεθ ,θ |p–(∇λ,∇yθ –∇y)RN dx

+ (p – )
∫

�

uθ |∇yεθ ,θ |p–
(
[∇yεθ ,θ ⊗ ∇yεθ ,θ ]∇λ,∇yθ –∇y

)
RN dx

+ θ

∫
�

(̂u – u)
(|∇y|p–∇y,∇λ

)
RN dx ≥ , ∀̂u ∈Aad, (.)

where yεθ ,θ = y + εθ (yθ – y).
Nowwe introduce the concept of quasi-adjoint states that was first considered for linear

problems by Serovajskiy [].

Definition . We say that, for given θ ∈ [, ] and û ∈ Aad, a distribution ψεθ ,θ is the
quasi-adjoint state to y ∈W ,p

 (�) if ψεθ ,θ satisfies the following integral identity:∫
�

uθ |∇yεθ ,θ |p–
([

I + (p – )
∇yεθ ,θ

|∇yεθ ,θ |
⊗ ∇yεθ ,θ

|∇yεθ ,θ |
]
∇ψεθ ,θ ,∇ϕ

)
RN

dx

+ p
∫

�

|∇yεθ ,θ –∇yd|p–(∇yεθ ,θ –∇yd,∇ϕ)RN dx = , ∀ϕ ∈W ,p
 (�) (.)

or in the operator form

–div
(
uθ |∇yεθ ,θ |p–

[
I + (p – )

∇yεθ ,θ

|∇yεθ ,θ |
⊗ ∇yεθ ,θ

|∇yεθ ,θ |
]
∇ψεθ ,θ

)
= pdiv

(|∇yεθ ,θ –∇yd|p–(∇yεθ ,θ –∇yd)
)

in D′(�). (.)

Here, I ∈ L(RN ;RN ) is the identity matrix, yθ := y(uθ ) = y(u + θ (̂u – u)) is the solution
of problem (.)-(.), yεθ ,θ = y + εθ (yθ – y), and εθ = ε(uθ ) ∈ (, ) is a constant coming
from equality (.).

Let us assume, for a moment, that quasi-adjoint state ψεθ ,θ to y ∈W ,p
 (�) is a distribu-

tion ofW ,p
 (�). Then we can define the element λ in (.) as the quasi-adjoint state, that

is, we can set λ =ψεθ ,θ . As a result, the increment of Lagrangian (.) can be simplified to
the form∫

�

(̂u – u)
(|∇y|p–∇y,∇ψεθ ,θ

)
RN dx≥ , ∀̂u ∈Aad. (.)
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Thus, in order to derive the necessary optimality conditions and provide their substan-
tial analysis, it remains to pass to the limit in (.)-(.) as θ → +, and to show that the
sequence of quasi-adjoint states {ψε,θ }θ→ is defined in a uniqueway through relation (.)
and it is compact with respect to the weak topology ofW ,p

 (�).

6 The Hardy Inequality and asymptotic behavior of quasi-adjoint states
The main goal of this section is to study the well-posedness of variational problem (.)
and describe the asymptotic behavior of its solutions as parameter θ tends to zero.
We begin with the following evident consequence of Proposition ..

Lemma . Assume that uk ,u ∈ Aad and uk → u strongly in L∞(�). Then, for the cor-
responding solutions of boundary value problem (.)-(.), we have strong convergence
yk = y(uk) → y = y(u) in W ,p

 (�).

Since, by the initial suppositions, uθ → u in L∞(�) as θ → , we immediately arrive at
the following consequence of Lemma ..

Corollary .
(i) yθ → y inW ,p

 (�) as θ → ;
(ii) yεθ ,θ → y inW ,p

 (�) as θ → .

Further, we note that

(A) if r ∈ (,p], where p≥ , and f , g ∈ Lp(�), then

∣∣∣∣f (x)∣∣r – ∣∣g(x)∣∣r∣∣ ≤ r
(∣∣f (x)∣∣ + ∣∣g(x)∣∣)r–∣∣f (x) – g(x)

∣∣, a.e. in �, (.)

and, hence, by the Hölder Inequality,

∣∣‖f ‖rLr (�) – ‖g‖rLr (�)
∣∣ = ∣∣∣∣∫

�

|f |r dx –
∫

�

|g|r dx
∣∣∣∣ ≤

∫
�

∣∣|f |r – |g|r∣∣dx
≤ ‖f – g‖Lp(�)

(∫
�

(|f | + |g|)(r–)p/(p–) dx)(p–)/p

≤ ‖f – g‖Lp(�)
∥∥|f | + |g|∥∥r–

Lp(�)|�|(p–r)/p. (.)

(A) If r ∈ [, ] and f , g ∈ Lp(�) then

∣∣∣∣f (x)∣∣r – ∣∣g(x)∣∣r∣∣ ≤ ∣∣f (x) – g(x)
∣∣r , a.e. in �, (.)

and, therefore,

∣∣‖f ‖rLr (�) – ‖g‖rLr (�)
∣∣ ≤

∫
�

|f – g|r dx≤ ‖f – g‖rLp(�)|�|(p–r)/p. (.)

Then, in view of Corollary . and estimates (.) and (.), we can give the following
obvious conclusion.

Corollary . For any r ∈ [,p] with p≥ ,we have |∇yεθ ,θ |r → |∇y|r in L(�) as θ → .
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Our next intention is to study the variational problem (.). With that in mind, we
rewrite it in the form

–div(ρθAθ∇ψεθ ,θ ) = fθ in �, (.)

where

ρθ := |∇yεθ ,θ |p–, (.)

Aθ := uθ [I +Cθ ] = uθ

[
I + (p – )

∇yεθ ,θ

|∇yεθ ,θ |
⊗ ∇yεθ ,θ

|∇yεθ ,θ |
]
, (.)

fθ := pdiv
(|∇yεθ ,θ –∇yd|p–(∇yεθ ,θ –∇yd)

)
. (.)

To begin with, we make use of the following observation.

Proposition . Let (u, y) ∈ � be an optimal pair for problem (.)-(.). Then, for any
θ ∈ [, ] and û ∈Aad, we have:
() Aθ ∈ L∞(�;SNsym), where SNsym denotes the set of all N ×N symmetric matrices, which

are obviously determined by N(N + )/ scalars.
() α|ξ | ≤ (ξ ,Aθ ξ )RN ≤ β[ + (p – )N–]|ξ | for all ξ ∈R

N .

Proof The first property is obvious. To prove the second one, it enough to take into ac-
count the definition of the class of admissible controls Aad and the following chain of es-
timates:

α|ξ | ≤ (ξ ,uθ Iξ )RN ≤ (ξ ,uθ Iξ )RN + (ξ ,uθCθ ξ )RN

= (ξ ,uθ Iξ )RN + (p – )uθ

( ∇yεθ ,θ

|∇yεθ ,θ |
, ξ

)

RN

≤ β|ξ | + (p – )β(ξ + · · · + ξN ) ≤ β
[
 + (p – )N–]|ξ |. �

Proposition .
(a) ρθ := |∇yεθ ,θ |p– → |∇y|p– =: ρ in L(�) as θ → ;
(b) Aθ → A in Lr(�;SNsym) for any r ∈ [, +∞) and Aθ

∗→ A in L∞(�;SNsym) as θ → ;
(c) ρθAθ → ρA = u[I + (p – ) ∇y

|∇y| ⊗ ∇y
|∇y| ] in L(�;RN ) as θ → .

Proof Validity of assertions (a)-(b) immediately follows from Corollary . and Proposi-
tions . and .. The strong convergence property in (c) is a direct consequence of the
Lebesgue Convergence Theorem. �

The following results are crucial for our further analysis.

Lemma . Assume that, for given θ ∈ [, ] and û ∈ Aad, ∇ ln |∇yεθ ,θ | ∈ L(�;RN ). Then
each element ψ of W ,p

 (�) can be represented in a unique way as follows:

ψ = |∇yεθ ,θ |(–p)/zθ , where zθ ∈W ,
 (�)∩ L(�). (.)

http://www.boundaryvalueproblems.com/content/2014/1/72


Kupenko and Manzo Boundary Value Problems 2014, 2014:72 Page 18 of 29
http://www.boundaryvalueproblems.com/content/2014/1/72

Proof Let us fix an element ψ ∈ W ,p
 (�). Then for zθ := |∇yεθ ,θ |(p–)/ψ , by the Hölder

Inequality with p′ = p/ and q′ = p/(p – ), we have

‖zθ‖L(�) =
∫

�

|∇yεθ ,θ |p–ψ dx ≤ ‖∇yεθ ,θ‖p–Lp(�;RN )‖ψ‖Lp(�)

≤ C‖yεθ ,θ‖p–W ,p
 (�)

‖ψ‖
W ,p

 (�)
< ∞,

where the constant C comes from the Poincaré Inequality. Using the evident equality

∇zθ =
(


√

ρψ∇ lnρ +
√

ρ∇ψ

)∣∣∣
ρ=|∇yεθ ,θ |p–

,

and applying the Hölder Inequality with exponents p′ = (p– )/(p– ) and q′ = (p– )/p
for the first term and with p′ = p/ and q′ = p/(p – ) for the second one, we get

‖∇zθ‖L(�;RN ) ≤
p – 


∫
�

|∇yεθ ,θ |(p–)/|ψ |∣∣∇ ln |∇yεθ ,θ |
∣∣dx

+ |�|/
(∫

�

|∇yεθ ,θ |p–|∇ψ | dx
)/

≤ p – 


‖ψ‖Lp(�)

(∫
�

|∇yεθ ,θ |
(p–)p
(p–)

∣∣∇ ln |∇yεθ ,θ |
∣∣ p
p– dx

)(p–)/p

+ |�|/‖∇yεθ ,θ‖(p–)/Lp(�;RN )‖∇ψ‖Lp(�;RN )

≤ p – 


‖ψ‖Lp(�)‖∇yεθ ,θ‖(p–)/Lp(�;RN )

∥∥∇ ln |∇yεθ ,θ |
∥∥
L(�;RN )

+ |�|/‖yεθ ,θ‖(p–)/W ,p
 (�)

‖ψ‖W ,p
 (�)

≤
(
p – 


C
∥∥∇ ln |∇yεθ ,θ |

∥∥
L(�;RN ) + |�|/

)
‖yεθ ,θ‖(p–)/W ,p

 (�)
‖ψ‖W ,p

 (�)

< ∞.

Thus, zθ ∈W ,(�)∩L(�). Since the element zθ := |∇yεθ ,θ |(p–)/ψ inherits the trace prop-
erties along ∂� from its parent element ψ , we finally obtain zθ ∈ W ,

 (�) ∩ L(�). The
proof is complete. �

As an obvious consequence of this result and continuity of the embedding of Sobolev
spaces H

(�) ↪→W ,
 (�), we can give the following conclusion.

Corollary. If, for given θ ∈ [, ] and û ∈Aad,∇ ln |∇yεθ ,θ | ∈ L(�;RN ), then there exists
a dense subset D(yεθ ,θ ) of H

(�) such that

|∇yεθ ,θ |(–p)/z ∈ W ,p
 (�), ∀z ∈D(yεθ ,θ ). (.)

Taking this fact into account, it is plausible to introduce the following linear mapping:

F :D(yεθ ,θ ) ⊂H
(�) →W ,p

 (�), where Fz = |∇yεθ ,θ |(–p)/z. (.)
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Since domain D(yεθ ,θ ) of F is dense in Banach space H
(�), it follows that for F, as for a

densely defined operator, there exists an adjoint operator

F
∗ :D

(
F

∗) ⊂W–,q(�) →H–(�)

such that

〈
F

∗v, z
〉
H–(�),H

(�) = 〈v,Fz〉W–,q(�),W ,p
 (�), ∀z ∈D(yεθ ,θ ) and ∀v ∈D

(
F

∗),
where

D
(
F

∗) = {
v ∈W–,q(�)| there exists C >  such that for all z ∈D(yεθ ,θ )∣∣〈v,Fz〉W–,q(�),W ,p

 (�)

∣∣ ≤ C‖z‖H
(�)

}
.

Notice that, in general, the adjoint operator F∗ is not densely defined.
Let us consider the following linear operator:

Aθψ := –div(ρθAθ∇ψ), ∀ψ ∈W ,p
 (�),

where ρθ and Aθ are defined by (.)-(.). By Proposition ., we have

‖ρθAθ∇ψ‖qLq(�;RN ) ≤ ‖Aθ‖qL∞(�;SNsym)

∫
�

|∇yεθ ,θ |(p–)p/(p–)|∇ψ |p/(p–) dx
( p′ = p–

p–
q′ = p – 

)
≤ ‖Aθ‖qL∞(�;SNsym)

‖yεθ ,θ‖p(p–)/(p–)W ,p
 (�)

‖ψ‖p/(p–)
W ,p

 (�)
.

Hence, Aθψ :W ,p
 (�) →W–,q(�) and this operator is obviously monotone,

〈
Aθ (ψ – φ),ψ – φ

〉
W–,q(�);W ,p

 (�)

=
∫

�

|∇yεθ ,θ |p–
(
Aθ (∇ψ –∇φ),∇ψ –∇φ

)
RN ≥ ,

and demi-continuous. However, because of the multiplier ρθ = |∇yεθ ,θ |p–, this operator
can lose the coercivity property.
Let λ be a positive constant such that λ < λ∗ := (N – )/. Let {x,x, . . . ,xL} ⊂ � be a

given collection of points. Let u ∈ Aad be a given control. We define a nonempty subset
M(�)u ⊂W ,p

 (�) as follows: y ∈ Mu(�) if and only if

–Ĉ(�) ≤ Vu,y(x)≤ λ
L

L∑
i=


|x – xi| a.e. in �, (.)

for some positive constant Ĉ(�) > , where

Vu,y(x) = ( – p)div
(
A(u, y)∇ ln |∇y|) – (p – )


(∇ ln |∇y|,A(u, y)∇ ln |∇y|)

RN , (.)

A(u, y) = u
[
I + (p – )

∇y
|∇y| ⊗ ∇y

|∇y|
]
. (.)
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Weare now in a position to give an important property of the operatorAθψ :W ,p
 (�) →

W–,q(�).

Lemma . Assume that, for given û ∈ Aad, θ ∈ [, ], and εθ ∈ (, ), the distribution
yεθ ,θ ∈W ,p

 (�) is such that

∇ ln |∇yεθ ,θ | ∈ L
(
�;RN)

and yεθ ,θ ∈ Muθ
(�) ⊂W ,p

 (�).

Then

〈
Aθ (Fz),Fv

〉
W–,q(�);W ,p

 (�) =
〈
Bθ (z), v

〉
H–(�),H

(�), (.)

where

Bθ (z) = –div(Aθ∇z) –


Vθ (x)z, (.)

Vθ (x) = ( – p)div
(
Aθ∇ ln |∇yεθ ,θ |

)
–
(p – )


(∇ ln |∇yεθ ,θ |,Aθ∇ ln |∇yεθ ,θ |

)
RN , (.)

and the linear operator Bθ defines an isomorphism from H
(�) into its dual H–(�).

Proof Let v and z be arbitrary elements of D(yεθ ,θ ) ⊂ H
(�). Then by Corollary ., we

have Fz,Fv ∈ W ,p
 (�). Further, following the definition of the operator F, we can provide

the following chain of transformations:

Aθ (Fz) = –div
(
ρθAθ∇(Fz)

)
= –div

(
ρθAθ∇

(
z√
ρθ

))
= –div

(
–


ρ–/

θ zAθ∇ρθ + ρ/
θ Aθ∇z

)
= –




ρ–/
θ z(∇ρθ ,Aθ∇ρθ )RN +



ρ–/(∇z,Aθ∇ρθ )RN

+


ρ–/

θ zdiv(Aθ∇ρθ ) –


ρ–/

θ (∇ρθ ,Aθ∇z)RN – ρ/
θ div(Aθ∇z)

= –ρ/
θ div(Aθ∇z) –



ρ/

θ

[



(∇ρθ

ρθ

,Aθ

∇ρθ

ρθ

)
RN

–

ρθ

div(Aθ∇ρθ )
]
z

= ρ/
θ

(
–div(Aθ∇z) –




[


(∇ lnρθ ,Aθ∇ lnρθ )RN –


ρθ

div(ρθAθ∇ lnρθ )
]
z
)

= ρ/
θ

(
–div(Aθ∇z) –



Vθ (x)z

)
.

Hence,

〈
Aθ (Fz),Fv

〉
W–,q(�);W ,p

 (�)

=
〈
–div

(
ρθAθ∇

(
z√
ρθ

))
,

v√
ρθ

〉
W–,q(�);W ,p

 (�)
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=
〈
ρ/

θ

(
–div(Aθ∇z) –



Vθ (x)z

)
,

v√
ρθ

〉
W–,q(�);W ,p

 (�)

=
〈
–div(Aθ∇z) –



Vθ (x)z, v

〉
H–(�);H

(�)
=

〈
Bθ (z), v

〉
H–(�),H

(�).

To conclude the proof it remains to show that operator Bθ := –div(Aθ∇)– 
Vθ (x) defines

an isomorphism from H
(�) into its dual H–(�). With that in mind, we make use of the

following version of the Hardy-Poincaré Inequality: for a given internal point x∗ ∈ � there
exists a constant Ĉ(�) >  such that for every v ∈H

(�)

∫
�

[
|∇v|

RN – λ∗
v

|x – x∗|
RN

]
dx≥ Ĉ(�)

∫
�

v dx,

where λ∗ := (N – )/ and N ≥ .
According to this result and the fact that yεθ ,θ ∈Muθ

(�), we have

–Ĉ(�) ≤ Vθ (x)≤ λ
L

L∑
i=


|x – xi| <

(N – )

L

L∑
i=


|x – xi| a.e. in � (.)

and, therefore,(
 +

Ĉ(�)
C

)
‖v‖H

(�)

≥
∫

�

[
|∇v| + Ĉ(�)


v

]
dx

≥
∫

�

[
|∇v| – λ

L

( L∑
i=


|x – x∗

i |

)
v

]
dx

=
(
 –

λ

λ∗

)∫
�

|∇v| dx + λ

λ∗

∫
�

[
|∇v| – λ∗

L

( L∑
i=


|x – x∗

i |

)
v

]
dx

≥
(
 –

λ

λ∗

)∫
�

|∇v| dx + λĈ(�)
λ∗

∫
�

v dx ≥
(
 –

λ

λ∗

)
‖v‖H

(�). (.)

Thus, in view of (.)-(.),

∥∥[v]∥∥
θ
:=

∫
�

[
|∇v| – 


Vθ (x)v

]
dx =

∫
�

[
(∇v,∇v)RN –



Vθ (x)v

]
dx

is equivalent to the standard norm ofH
(�), and therefore, the operator Bθ given by (.)

defines an isomorphism from H
(�) into its dual H–(�). �

The next step of our analysis is to show that, for every û ∈ Aad, θ ∈ [, ], and εθ ∈ (, ),
the quasi-adjoint state ψεθ ,θ to y ∈ W ,p

 (�) can be defined as a unique solution to the
Dirichlet boundary value problem (.). With that in mind, we make use of the following
hypothesis.
(H) For a given distribution f ∈W–,q(�) with q = p

p– and p≥ , the weak solutions
y(u) of the nonlinear Dirichlet boundary value problem (.) satisfy the property:
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y(u) ∈Mw(�) and ∇ ln |∇y(u)| ∈ L(�;RN ) for every pair of admissible controls
u,w ∈Aad.

Lemma . Assume that the Hypothesis (H) is valid. Then the Dirichlet boundary value
problem (.) has a unique solution ψεθ ,θ ∈ W ,p

 (�) for every û ∈ Aad, θ ∈ [, ], and εθ ∈
(, ).

Proof Let (u, y) ∈ � be an optimal pair to problem (.)-(.). Let yθ := y(uθ ) = y(u +
θ (̂u– u)) be the solution of problem (.)-(.) for given û ∈Aad, θ ∈ [, ], and let yεθ ,θ =
y +εθ (yθ – y), where εθ takes an arbitrary value in (, ). Since, by the initial assumptions,
fθ := pdiv(|∇yεθ ,θ –∇yd|p–(∇yεθ ,θ –∇yd)) ∈W–,q(�), it follows that

〈
–div

(|∇yεθ ,θ |p–Aθ∇ψ
)
– fθ ,φ

〉
W–,q(�);W ,p

 (�) = ,

for all φ ∈ F(D(yεθ ,θ )) =W ,p
 (�). Then Lemma . implies that

〈
–div

(|∇yεθ ,θ |p–Aθ∇ψ
)
,φ

〉
W–,q(�);W ,p

 (�)

=
〈
Aθ (Fz),Fv

〉
W–,q(�);W ,p

 (�)

=
〈
–div(Aθ∇z) –



Vθ (x)z, v

〉
H–(�);H

(�)

=
〈
Bθ (z), v

〉
H–(�),H

(�),

〈fθ ,φ〉W–,q(�);W ,p
 (�) = –p

∫
�

|∇yεθ ,θ –∇yd|p–(∇yεθ ,θ –∇yd,∇φ)RN dx

= p
〈
div

(|∇yεθ ,θ –∇yd|p–(∇yεθ ,θ –∇yd)
)
,φ

〉
W–,q(�);W ,p

 (�)

= 〈fθ ,Fv〉W–,q(�);W ,p
 (�) =

〈
F

∗fθ , v
〉
H–(�),H

(�)

provided φ ∈ F(D(yεθ ,θ )). By the Hardy-Poincaré Inequality (see (.)), the expression

∫
�

[
(∇v,∇z)RN –



Vθ (x)vz

]
dx

can be considered as a scalar product inH
(�). Then, in view of the Riesz Representation

Theorem, we conclude to the existence of a unique element zθ ∈ H
(�) such that

〈
Bθ (zθ ), v

〉
H–(�),H

(�) =
〈
F

∗fθ , v
〉
H–(�),H

(�), ∀v ∈H
(�).

As a result, we have: ψεθ ,θ := Fzθ = |∇yεθ ,θ |(p–)/zθ is a unique solution to the Dirich-
let boundary value problem (.). Moreover, by Corollary ., we finally get ψεθ ,θ ∈
W ,p

 (�). �

In view of Lemma ., it makes a sense to accept the following hypothesis.
(H) For given distributions f ∈W–,q(�) and yd ∈ W ,p

 (�) with q = p
p– and p ≥ , the

weak solution y(u) to the nonlinear Dirichlet boundary value problem (.)
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satisfies the properties

∇(∣∣∇y(u)
∣∣) ∈ Lp

(
�;RN)

and
|∇yd|

|∇y(u)| ∈ L∞(�), ∀u ∈Aad.

Lemma . Assume that Hypotheses (H)-(H) are valid. Then there exists a constant
C∗ >  independent of θ such that supθ→ ‖ψεθ ,θ‖W ,p

 (�) ≤ C∗, i.e. the sequence of quasi-

adjoint states {ψεθ ,θ }θ→ to y ∈ W ,p
 (�) is relatively compact with respect to the weak

convergence of W ,p
 (�).

Proof Due to Hypothesis (H) and Lemma ., the sequence of quasi-adjoint states
{ψεθ ,θ }θ→ to y ∈ W ,p

 (�) can be defined in a unique way ψεθ ,θ = |∇yεθ ,θ |(–p)/zθ for all
θ ∈ [, ], where zθ is the solution of the following Dirichlet problem:

Bθzθ = pF∗[div(|∇yεθ ,θ –∇yd|p–(∇yεθ ,θ –∇yd)
)]
, zθ ∈ H

(�). (.)

Therefore, in order to prove this lemma, it is enough to show that the sequence {zθ }θ→

is uniformly bounded in H
(�). To this end, we note that the integral identity (.) leads

to the corresponding energy equality

∫
�

[
|∇zθ | – 


Vθ (x)zθ

]
dx =

〈
F

∗fθ , zθ

〉
H–(�),H

(�). (.)

Since

∣∣〈F∗fθ , zθ

〉
H–(�),H

(�)

∣∣
≤ p

∫
�

|∇yεθ ,θ –∇yd|p–
∣∣∇(

zθ |∇yεθ ,θ |(–p)/
)∣∣dx

≤ p
∫

�

|∇yεθ ,θ –∇yd|p–
|∇yεθ ,θ |(p–)

(
p – 


|zθ |
∣∣∇ ln |∇yεθ ,θ |

∣∣ + |∇zθ |
) |∇yεθ ,θ |p–

|∇yεθ ,θ |(p–)/
dx

by (H)≤ p
(
vrai sup

x∈�

∣∣∣∣ ∇yεθ ,θ

|∇yεθ ,θ |
–

∇yd
|∇yεθ ,θ |

∣∣∣∣)p–

×
∫

�

(
p – 


|zθ ||∇yεθ ,θ |p/
∣∣∇ ln |∇yεθ ,θ |

∣∣ + |∇yεθ ,θ |p/|∇zθ |
)
dx

≤ p(p – )


(
 +

∥∥∥∥ |∇yd|
|∇yεθ ,θ |

∥∥∥∥
L∞(�)

)p

‖zθ‖L(�)

(∫
�

|∇yεθ ,θ |p
∣∣∇ ln |∇yεθ ,θ |

∣∣ dx)/

+ p
(
 +

∥∥∥∥ |∇yd|
|∇yεθ ,θ |

∥∥∥∥
L∞(�)

)p

‖∇yεθ ,θ‖Lp(�;RN )‖∇zθ‖L(�;RN ),

and

‖zθ‖L(�) ≤ C‖∇zθ‖L(�;RN ) by the Poincaré Inequality,∥∥∥∥ |∇yd|
|∇yεθ ,θ |

∥∥∥∥
L∞(�)

< +∞ by Hypothesis (H),
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∫
�

|∇yεθ ,θ |p
∣∣∇ ln |∇yεθ ,θ |

∣∣ dx
=

∫
�

|∇yεθ ,θ |p–
∣∣∇(|∇yεθ ,θ |

)∣∣ dx (
by Hypothesis (H)

)
≤ ‖yεθ ,θ‖p–W ,p

 (�)

∥∥∇(|∇yεθ ,θ |
)∥∥

Lp(�;RN ) < +∞,

it follows that there exists a constant C independent of θ such that

∣∣〈F∗fθ , zθ

〉
H–(�),H

(�)

∣∣ ≤ C‖zθ‖H
(�).

As a result, in view of (.), the energy equality (.) immediately leads to the estimate.

(
 –

λ

λ∗

)
‖zθ‖H

(�) ≤ C +C, ∀θ ∈ [, ].

This concludes the proof. �

7 Optimality conditions
We are now in a position to derive the first-order optimality conditions for optimal control
problem (.)-(.).

Theorem . Let us suppose that f ∈ W–,q(�), yd ∈ W ,p
 (�), and Aad �= ∅ are given with

p≥ . Let (u, y) ∈ L∞(�)×W ,p
 (�) be an optimal pair to problem (.)-(.). Letψεθ ,θ be

a quasi-adjoint state to y ∈W ,p
 (�) defined for each εθ ∈ (, ) and θ ∈ [, ] by (.).Then

Hypotheses (H)-(H) imply the existence of an element ψ ∈ W ,p
 (�) such that (within a

subsequence) ψεθ ,θ ⇀ ψ in W ,p
 (�) as θ → , and

∫
�

(u – u)
(|∇y|p–∇y,∇ψ

)
RN dx≥ , ∀u ∈ Aad, (.)

–div
(
u(x)|∇y|p–∇y

)
= f in D′(�), (.)

–div
(
u|∇y|p–

[
I + (p – )

∇y
|∇y| ⊗ ∇y

|∇y|
]
∇ψ

)
= pdiv

(|∇y –∇yd|p–(∇y –∇yd)
)

inD′(�). (.)

Proof Let (Û , ŷ) ∈ � be an admissible pair. Let yθ := y(uθ ) = y(u +θ (̂u–u)) be the solution
of problem (.)-(.) for given û ∈ Aad and θ ∈ [, ]. Then, as was shown at the end of
Section , there exists a value εθ ∈ [, ] such that the increment of Lagrangian �� =
�(uθ , yθ ,λ) – �(u, y,λ) can be simplified to the form (.), provided the element λ has
been defined as the quasi-adjoint state, that is, λ =ψεθ ,θ . By Lemmas .-., the sequence
of quasi-adjoint states {ψεθ ,θ }θ→ to y ∈ W ,p

 (�) can be defined in a unique way and
is bounded in W ,p

 (�). Hence, there exists an element ψ ∈ W ,p
 (�) such that, up to a

subsequence of {ψεθ ,θ }θ→, we have ψεθ ,θ ⇀ ψ in W ,p
 (�) as θ → . It remains to pass to

the limit in (.), (.) as θ → + and to show that in the limit we will arrive at the relations
(.) and (.), respectively. To this end, we note that
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(A) by the initial suppositions, uθ → u in L∞(�) as θ → ;
(A) by Corollary ., yθ → y inW ,p

 (�) as θ → , and, hence, yεθ ,θ := y + εθ (yθ – y) →
y inW ,p

 (�) as θ → ;
(A) up to a subsequence

Aθ := uθ

(
I + (p – )

∇yεθ ,θ

|∇yεθ ,θ |
⊗ ∇yεθ ,θ

|∇yεθ ,θ |
)

→ u
(
I + (p – )

∇y
|∇y| ⊗ ∇y

|∇y|
)
=: A in L∞(

�;SNsym
)

by the strong convergence of uθ → u in L∞(�) and convergence yεθ ,θ → y almost
everywhere in �;

(A) if p > , then

∣∣|a|p– – |b|p–∣∣ ≤ (p – )
(|a| + |b|)p–|a – b|, ∀a,b ∈R; (.)

(A) if ≤ p ≤ , then

∣∣|a|p– – |b|p–∣∣ ≤ |a – b|p–, ∀a,b ∈R. (.)

Then the limit passage in (.) immediately leads to (.). Therefore, in order to end the
proof, it remains to establish the validity of relation (.). With that in mind, we rewrite
(.) as follows:

Iθ + pIθ = ,

where

Iθ =
∫

�

|∇yεθ ,θ |p–
(
uθ

[
I + (p – )

∇yεθ ,θ

|∇yεθ ,θ |
⊗ ∇yεθ ,θ

|∇yεθ ,θ |
]
∇ψεθ ,θ ,∇ϕ

)
RN

dx

=
∫

�

|∇yεθ ,θ |p–(Aθ∇ψεθ ,θ ,∇ϕ)RN dx,

Iθ =
∫

�

|∇yεθ ,θ –∇yd|p–(∇yεθ ,θ –∇yd,∇ϕ)RN dx,

and ϕ is an arbitrary element ofW ,p
 (�).

Since

Iθ =
∫

�

(|∇yεθ ,θ |p– – |∇y|p–
)
(Aθ∇ψεθ ,θ ,∇ϕ)RN dx

+
∫

�

|∇y|p–
(
(Aθ –A)∇ψεθ ,θ ,∇ϕ

)
RN dx

+
∫

�

|∇y|p–
(
A(∇ψεθ ,θ –∇ψ),∇ϕ

)
RN dx

+
∫

�

|∇y|p–(A∇ψ ,∇ϕ)RN dx = Jθ, + Jθ, + Jθ, + J,,

let us show that limθ→ Jθ,j =  (j = , , ), and, hence, Iθ → J, as θ → +.
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Using the Hölder Inequality and estimate () in Proposition ., we have

|Jθ,| ≤
∫

�

∣∣|∇yεθ ,θ |p– – |∇y|p–
∣∣‖Aθ‖SNsym |∇ψεθ ,θ ||∇ϕ|dx

≤ β
[
 + (p – )N–] ∫

�

∣∣|∇yεθ ,θ |p– – |∇y|p–
∣∣|∇ψεθ ,θ ||∇ϕ|dx. (.)

Therefore, if p > , then, by (A) and Hölder’s Inequality with Hölder conjugates p′ = p
p– >

 and q′ = p
 , we can estimate (.) as follows:

|Jθ,| ≤ β
[
 + (p – )N–](p – )

×
∫

�

(|∇yεθ ,θ | + |∇y|
)p–|∇yεθ ,θ –∇y||∇ψεθ ,θ ||∇ϕ|dx

≤ c
(∫

�

(|∇yεθ ,θ | + |∇y|
) p(p–)

p– |∇yεθ ,θ –∇y|
p

p– dx
) p–

p

×
(∫

�

|∇ψεθ ,θ |
p
 |∇ϕ| p dx

) 
p

(by Hölder’s Inequality with
p′ = p–

p– ,q′ = (p – )

)

≤ c
(∫

�

(|∇yεθ ,θ | + |∇y|
)p dx) p–

p
(∫

�

|∇yεθ ,θ –∇y|p dx
) 

p

× ‖∇ψεθ ,θ‖Lp(�;RN )‖∇ϕ‖Lp(�;RN ). (.)

Since supθ∈[,] ‖∇ψεθ ,θ‖Lp(�;RN ) < +∞ by Lemma ., and yεθ ,θ → y in W ,p
 (�) (see the

condition (A)), it follows that

sup
θ∈[,]

∫
�

(|∇yεθ ,θ | + |∇y|
)p dx < +∞, ‖∇yεθ ,θ –∇y‖Lp(�;RN )

θ→→ .

Thus, in view of estimate (.), we conclude: limθ→ Jθ, = .
As for the case ≤ p ≤ , the inequality (.) and condition (A) lead to the estimate

∣∣Jθ,∣∣ ≤ c
∫

�

|∇yεθ ,θ –∇y|p–|∇ψεθ ,θ ||∇ϕ|dx.

Further it remains to repeat the trick like in (.). As a result, we obtain

∣∣Jθ,∣∣ ≤ c
(∫

�

|∇yεθ ,θ –∇y|p dx
) p–

p
‖∇ψεθ ,θ‖Lp(�;RN )‖∇ϕ‖Lp(�;RN ).

Therefore, having applied the arguments given before, we can conclude: if ≤ p ≤ , then
limθ→ Jθ, = .
As for the term Jθ,, we have

∣∣Jθ,∣∣ ≤
∫

�

|∇y|p–‖Aθ –A‖SNsym |∇ψεθ ,θ ||∇ϕ|dx

≤ c‖Aθ –A‖L∞(�;SNsym)‖∇y‖p–Lp(�;RN )‖∇ψεθ ,θ‖Lp(�;RN )‖∇ϕ‖Lp(�;RN )
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≤ c sup
θ∈[,]

‖ψεθ ,θ‖W ,p
 (�)‖∇y‖p–W ,p

 (�)
‖ϕ‖W ,p

 (�)‖Aθ –A‖L∞(�;SNsym)

≤ c‖Aθ –A‖L∞(�;SNsym)
by (A)→  as θ → . (.)

To clarify the asymptotic behavior of the term Jθ, as θ tends to zero, we note that

Jθ, =
∫

�

|∇y|p–(∇ψεθ ,θ –∇ψ ,A∇ϕ)RN dx.

Since∇ϕ ∈ Lp(�;RN ),A ∈ L∞(�;SNsym), and∇y ∈ Lp(�;RN ), it follows that the inclusion
A|∇y|p–∇ϕ ∈ Lq(�;RN ) holds true with q = p/(p–). Hence, the condition limθ→ Jθ, =
 is ensured by the weak convergence ∇ψεθ ,θ ⇀ ∇ψ in Lp(�;RN ).
Thus, summing up the results given above, we finally obtain

lim
θ→

Iθ = lim
θ→

( ∑
j=

Jθ,j + J,

)
=

∫
�

|∇y|p–(A∇ψ ,∇ϕ)RN dx. (.)

As for the term

Iθ :=
∫

�

|∇yεθ ,θ –∇yd|p–(∇yεθ ,θ –∇yd,∇ϕ)RN dx,

we see that

|∇yεθ ,θ –∇yd|p–(∇yεθ ,θ –∇yd) ∈ Lq
(
�;RN)

with q =
p

p – 
,∀θ ∈ [, ].

Hence, strong convergence yθ → y inW ,p
 (�) implies strong convergence

|∇yεθ ,θ –∇yd|p–(∇yεθ ,θ –∇yd)

→ |∇y –∇yd|p–(∇y –∇yd) in Lq
(
�;RN)

. (.)

As a result, we finally get

lim
θ→

Iθ =
∫

�

|∇y –∇yd|p–(∇y –∇yd,∇ϕ)RN dx, ∀ϕ ∈W ,p
 (�). (.)

Thus, combining relations (.)-(.), it is easy to see that the limit passage in (.) leads
to the variational statement of the Dirichlet boundary value problem (.). The proof is
complete. �

8 Conclusions
In this paper the optimal control problem (.)-(.) for a nonlinear monotone elliptic
equationwith homogeneousDirichlet conditions and L∞(�)-control in coefficients of�p-
Laplacian has been studied.Having defined the class of admissible control in form (.), we
have proved solvability of the considered problem. After that, using Lagrange principle,
the concept of quasi-adjoint system and the well-known Hardy-Poincaré Inequality, we
have derived the corresponding optimality system and formulated sufficient conditions
under which the degenerate adjoint boundary value problem admits a unique solution.
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