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1 Introduction
When solving PDEs, many approximate methods, such as overlapping versions of domain
decomposition, composite grids and different types of combinedmethods, use thematch-
ing operator to connect the subsystems within them. Hence, the approximation of the so-
lutions relies heavily on the order of accuracy of the matching operator, as well as on the
order of accuracy of the subsystems. In [] and [], the second order matching operator is
used to construct and justify the second order composite gridmethod for solving Laplace’s
boundary value problems. In [], the fourth order matching operator is constructed and
used for the fourth order composite grids and in [] and [] it is used for the fourth or-
der Block-Grid method. In [–], the sixth order matching operator is constructed for the
Block-Grid method and it is used for the sixth order composite grids in [].
In all of the above mentioned papers, the fourth and sixth order matching operators

were constructed on the basis of the -point finite difference solution of Laplace’s equa-
tion on square grids. In this paper, the matching operator is constructed for the solution
of the Dirichlet problem on a hexagonal grid. In order to approximate the given differ-
ential equations at each regular node P on a hexagonal grid, the six equidistant nodes
surrounding P are used, and the truncation error obtained is O(h). Thus, we obtain the
same order of accuracy when using the -point scheme on the hexagonal grid, as we do
when using the -point scheme on the rectangular grid (see []). This has many compu-
tational advantages such as (i) the matrix of the systemwill contain seven diagonals rather
than nine and will lead to less use of memory space, (ii) the calculations will require less
computational effort and (iii) the algorithm will be easier to implement. Hexagonal grids
are favored in many applied problems in dynamical meteorology and dynamical oceanog-
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raphy as well (see [–]), due to the benefits a hexagonal grid provides, compared to a
rectangular grid.
Even though using a hexagonal grid has the abovementioned advantages, it has not been

used before in methods such as composite grids, domain decomposition, and combined
methods, as the fourth order matching operator for connecting the subsystems together
was not constructed. In this paper, in Section , the approximate solution in a hexagonal
grid on a rectangular domain is analyzed. In Section  a fourth order matching operator is
constructed and its application to find the fourth order accurate approximate solution on
the closed domain is considered. Section  contains the justification of using a hexagonal
grid for the solution of Laplace’s equation on a staircase polygon, with the use of the Block-
Grid method. This method requires the application of the matching operator constructed
in Section  and gives an overall fourth order accuracy. Numerical examples are illustrated
in Section  to support the analysis made.

2 Approximation in the hexagonal grid of the Dirichlet problem on a rectangle
Let � = {(x, y) :  < x < a,  < y < b} be a rectangle, γj, j = , , , , be its sides, including
the ends, enumerated counterclockwise starting from left (γ ≡ γ, γ ≡ γ), γ =

⋃
j= γj

be the boundary of �, and let Aj = γj– ∩ γj be the jth vertex. We consider the boundary
value problem

�u =  on �, (.)

u = ϕj on γj, j = , , , , (.)

where � = ∂/∂x + ∂/∂y, ϕj is a given function of arclength s taken along γ , and

ϕj ∈ C,λ(γj),  < λ < , j = , , , . (.)

At the vertices s = sj (sj is the beginning of γj), the conjugation conditions

ϕ
(q)
j (sj) = (–)qϕ(q)

j– (sj), q = , , , , (.)

are satisfied.
Let h > , with a/h ≥ , b/

√
h ≥  integers. We assign �h a hexagonal grid on �, with

step size h, defined as the set of nodes

�h =
{
(x, y) ∈ � : x =

k – j


h, y =
√
(k + j)


h,k = , , . . . ; j = ± ± , . . .
}
. (.)

Let γ h
j be the set of nodes on the interior of γj, and let γ̇ h

j = γj ∩ γj+, γ h =
⋃
(γ h

j ∪ γ̇ h
j ),

�
h = �h ∪ γ h. Also let �∗h denote the set of nodes whose distance from the boundary γ

of � is h
 and �h =�h\�∗h.

We consider the system of finite difference equations

uh = Suh on �h, (.)

uh = S∗
j uh + E∗

jh(ϕj) on �∗h, (.)

http://www.boundaryvalueproblems.com/content/2014/1/73
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uh = ϕj on γ h
j , j = , , , , (.)

where

Su(x, y) =



(
u(x + h, y) + u

(
x +

h

, y +

√



h
)
+ u

(
x –

h

, y +

√



h
)

+ u(x – h, y) + u
(
x –

h

, y –

√



h
)
+ u

(
x +

h

, y –

√



h
))

, (.)

S∗
j u(x, y) =




(
u
(
x +

h

, y –

√
h


)
+ u(x + h, y)

+ u
(
x +

h

, y +

√
h


))
, (.)

E∗
jh(ϕj) =




(
ϕj

(
y +

√
h


)
+ ϕj(y) + ϕj

(
y –

√
h


))
. (.)

From formulae (.) and (.) it follows that the coefficients of the expressions Su(x, y)
and S∗

j u(x, y) are non-negative, and their sums do not exceed one. Hence, on the basis of
the maximum principle, it follows that the solution of system (.)-(.) exists and it is
unique (see []).
Everywhere belowwewill denote constants which are independent of h and of the cofac-

tors on their right by c, c, c, . . . , generally using the same notation for different constants
for simplicity.

Lemma . Let

v = Sv + fh on �h,

v = S∗
j v on �∗h,

v =  on γh,

and

v = Sv + f h on �h,

v = S∗
j v + f ∗

h on �∗h,

v = ηh on γh,

where fh, f h, f
∗
h and ηh are arbitrary grid functions. If the conditions

f ∗
h ≥ , |fh| ≤ fh, and ηh ≥ 

are satisfied, then

|v| ≤ v.

Proof The proof of this lemma is similar to the proof of the comparison theorem (seeCh. 
in []). �

http://www.boundaryvalueproblems.com/content/2014/1/73
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Theorem . Let u be the solution of problem (.), (.) and uh be the solution of system
(.)-(.), then

max
�
h

|uh – u| ≤ ch. (.)

Proof Let

εh = uh – u,

where u is the trace of the solution of problem (.), (.) on �
h, and uh is the solution of

system (.)-(.). Then, the error function εh satisfies the following system:

εh = Sεh +
h on �h, (.)

εh = S∗
j εh +
∗

h on �∗h, (.)

εh =  on γ h, (.)

where


h = Su – u, (.)


∗
h = S∗

j u – u + E∗
jh(ϕj) (.)

are the truncation errors of equations (.) and (.), respectively.
On the basis of conditions (.) and (.), from Theorem . in [] it follows that u ∈

C,λ(�),  < λ < . Then, by Taylor’s formula, we obtain (see [])

max
(x,y)∈�

∣∣
h(x, y)
∣∣ ≤ chM, (.)

where

Mj = sup
(x,y)∈�

{∣∣∣∣∂ ju(x, y)
∂xi ∂yj–i

∣∣∣∣, i = , , . . . , j
}
.

We represent the solution of (.)-(.) as

εh = εh + εh , (.)

where

εh = Sεh +
h on �h,

εh = S∗
j ε


h on �∗h,

εh =  on γ h,

and

εh = Sεh on �h,

http://www.boundaryvalueproblems.com/content/2014/1/73
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εh = S∗
j ε


h +
∗

h on �∗h,

εh =  on γ h.

By taking the function as v = hcM(a + b – x – y) in Lemma ., we obtain

max
(x,y)∈�h

∣∣εh∣∣ ≤ max
(x,y)∈�

|v| ≤ chM. (.)

Using Taylor’s formula about each of the points ( h , y) ∈ �∗h and from (.), we have

max
(x,y)∈�∗h

∣∣
∗∣∣ ≤ cMh.

On the basis of the maximum principle, we obtain

max
(x,y)∈�h

∣∣εh∣∣ ≤ 


max
(x,y)∈�∗h

∣∣
∗
h
∣∣ ≤ cMh. (.)

From (.), (.), and (.) it follows that

max
(x,y)∈�

h
|εh| ≤ ch. (.)

�

Remark . Estimation (.) remains true when E∗
jh(ϕj) in system (.)-(.) is replaced

by

E∗
j,h =



ϕj

(
y –

√
h


)
+


ϕj

(
y +

√
h


)
+


ϕj(y) –

h

!
ϕ
()
j (y) +

h

!
ϕ
()
j (y).

3 Construction of the fourth order matching operator
Let z = x + iy be a complex variable, and let � = {z : |z| < } be a unit circle. For a har-
monic function u on � with u ∈ C,(�), by Taylor’s formula, any point (x, y) ∈ � can be
represented as

u(x, y) =
∑

k=

ak Re zk +
∑

k=

bk Im zk +O
(
r

)
, (.)

where r =
√
x + y,

a = u(, ), a =
∂u(, )

∂x
, a =




∂u(, )
∂x

, a =

!

∂u(, )
∂x

,

b =
∂u(, )

∂y
, b =




∂u(, )
∂x ∂y

, b =

!

∂u(, )
∂x ∂y

.

By analogy with the idea used in [], we construct the operator S from the condition
that the expression

Su =
∑

ξkuk ,

http://www.boundaryvalueproblems.com/content/2014/1/73
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where uk = u(Pk), Pk is a node of the hexagonal grid �h, gives the exact value of any har-
monic polynomial

F(x, y) =
∑

k=

ak Re zk +
∑

k=

bk Im zk ,

at each point P ∈ �, and

ξk ≥ ,
∑

ξk ≤ .

Let� denote the set of points P ∈ � such that all the nodes Pk to determine the expres-
sion Su belong to �

h, and � contain the points P, where some of the nodes Pk emerge
through the side γj, j = , , , . We construct the fourth order matching operator S by
considering the cases when the point P belongs to one of the sets � or �.
Case . The point P ∈ � lies on the line connecting two neighboring grid nodes (a grid

line).
We place the origin of the rectangular system of coordinates on the node P and direct

the positive axis of x along the grid line, so that P = P(δh, ),  < δ ≤ /, and take the
nodes.

P(, ), P(h, ), P

(
h

,
√
h


)
, P

(
–
h

,
√
h


)
,

P

(
h

,–

√
h


)
, P

(
–
h

,–

√
h


)
.

First, we find the coefficients λ′
j, j = , , , , such that the representation

u = λ′
u + λ′

u + λ′
u + λ′

u (.)

is true for the harmonic polynomials Re zn, n = , , , , where u = u(P), uk = u(Pk), k =
, , , , z = x + iy. This gives the system

λ′
 + λ′

 + λ′
 + λ′

 = ,

δλ′
 + λ′

 +


λ′
 –



λ′
 = ,

δλ′
 + λ′

 –


λ′
 –



λ′
 = ,

δλ′
 + λ′

 – λ′
 + λ′

 = .

(.)

By solving system (.) and rearranging (.) for u, we obtain the equation

u =
u
λ′

–

λ′


λ′

u –

λ′


λ′

u –

λ′


λ′

u. (.)

We now take into consideration the nodes P( h , –
√
h
 ) and P(– h

 , –
√
h
 ) which are sym-

metric to the points P and P, respectively, with respect to the x-axis. Since Im zk = ,

http://www.boundaryvalueproblems.com/content/2014/1/73
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k = , ,  for y = , and odd with respect to y, and Re zk , k = , , , , is even with respect
to y, from (.) we have

u =
u
λ′

–

λ′


λ′

u –

λ′


λ′

u –

λ′


λ′

u –

λ′


λ′

u –

λ′


λ′

u.

Hence, we obtain the matching operator S, for which the expression

Su =
∑

k=

λkuk (.)

gives the exact value of the harmonic polynomial F(x, y) at the point P, where

λ = –(– + δ)
(
 – δ + δ

)
, λ =

δ + δ


,

λ = λ =
–(– + δ)δ


, λ = λ =

(– + δ)(–δ + δ)


.

It is easy to check that

λ > , λj ≥ , j = , , , for  < δ ≤ /, (.)

and

∑
k=

λk = . (.)

Remark . When / < δ < , the node P, which is closest to P, is taken as the origin.

Case . The point P ∈ � lies inside a grid cell of the hexagonal grid.
Again, we place the origin of the rectangular system of coordinates at the node P and

direct the positive axis of x along the grid line, so that P has the coordinates P(δh,
√
hκ
 ),

where  < δ,κ ≤ /. We form an artificial grid by taking the following points:

P′


(
κh

,
√
hκ


)
, P′



(
h +

κh

,
√
hκ


)
, P′



(
h

+

κh

,
√
h


+
√
hκ


)
,

P′


(
–
h

+

κh

,
√
h


+
√
hκ


)
, P′



(
h

+

κh

,–

√
h


+
√
hκ


)
,

P′


(
–
h

+

κh

,–

√
h


+
√
hκ


)
.

Each of the nodes P′
k , k = , , . . . , , of the artificial grid falls on a grid line, and for the

approximation of P the expression

Su =
∑

k=

λku
(
P′
k
)

http://www.boundaryvalueproblems.com/content/2014/1/73
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Figure 1 Shapes of triangles in a hexagon.

Figure 2 Type A triangle with 0 < δ,κ ≤ 1/2.

is used. As P′
k , k = , , . . . , , all lie on grid lines, each of these points needs to be approxi-

mated using the matching operator as follows:

Su =
∑

k=

λkSu
(
P′
k
)
.

From the distribution of the nodes it becomes obvious that only  nodes are needed for
this approximation (see Figure ).
Hence, we form the matching operator as

Su =
∑
k=

ξku(Pk), (.)

where ξk , k = , . . . , , are defined by the coefficients obtained earlier and

ξk ≥ ,
∑
k=

ξk = . (.)

For the approximation, it is also important to examine the structure of the hexagonal
grid. There are two types of triangles in each hexagon, Type A and Type B, as shown in
Figure .
We consider triangles of Type Awith  < δ,κ ≤ /. The nodes used in Su are shown in

Figure .

http://www.boundaryvalueproblems.com/content/2014/1/73
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In the case / < δ < ,  < κ ≤ /, the  nodes used have the same distribution as the
reflection of the nodes in Figure  about the line x = . In the cases  < δ ≤ /, / < κ < 
and / < δ,κ < , the nodes for S are defined analogously.
In the case when P falls into a triangle of Type B, we rotate the artificial grids formed for

Type A with an angle of ◦, for all four cases of δ and κ specified earlier.
Case . P ∈ �, where u = ϕj on the side γj, j = , , , , and ϕj ∈ C,λ(γj),  < λ < .
We position the origin of the rectangular system of coordinates on γj so that the point

P lies on the positive y axis, and the x axis is in the direction of the vertex Aj+ along γj.
It is obvious that

∑
k= bk Im zk =  if y = , where z = x + iy. Hence, when the function

ϕj ∈ C,λ(γj),  < λ < , is represented using Taylor’s formula about the point x =  in the
neighborhood |z| ≤ h of the origin, we define ak , k = , , , , of (.) as

ak =

k!
dkϕj()
dxk

.

We let

ũ(x, y) = u(x, y) –
∑

k=

ak Re zk =
∑

k=

bk Im zk +O
(
h

)
for y > , and keeping in mind that Im zk is odd extendable, we complete the definition
with ũ(x, y) = –ũ(x, –y) for y < . Clearly, in the given neighborhood, ũ(x, y) is equal to the
harmonic polynomial

∑
k= bk Im zk , with an accuracy of O(h). To form an expression for

the matching operator Sũ, we use

Sũ =
∑

≤j≤

μj

(
u –

∑
k=

ak Re zk
)
(Pj) (.)

or

Sũ =
∑
≤j≤

νj

(
u –

∑
k=

ak Re zk
)
(Pj), (.)

where

μj ≥ ,
∑

≤j≤

μj ≤ ; νj ≥ ,
∑
≤j≤

νj ≤ . (.)

Hence using (.) or (.), with the addition of the term( ∑
k=

ak Re zk
)
(P),

we have the following representation for the solution u of problem (.), (.) at any P ∈
�

u = Sũ +

( ∑
k=

ak Re zk
)
(P) +O

(
h

)
. (.)

http://www.boundaryvalueproblems.com/content/2014/1/73
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Remark . We obtain the representation (.), with a less number of grid nodes Pj in
(.) or (.) for the points on the boundary γ of �.

Let ϕ = {ϕj}j=. We express the matching operator S as follows:

S(u,ϕ) =

{
Su on �,
S(u –

∑
k= ak Re zk) + (

∑
k= ak Re zk)(P) on � ∪ γ .

(.)

Theorem . Let the boundary functions ϕj, j = , , , , in problem (.), (.) satisfy the
conditions

ϕj ∈ C,λ(γj),  < λ < , (.)

ϕ
(q)
j (sj) = (–)qϕ(q)

j– (sj), q = , , . (.)

Then

max
�

∣∣S(u,ϕ) – u
∣∣ ≤ ch, (.)

where u is the exact solution of problem (.), (.).

Proof According to Theorem . in [], from conditions (.) and (.) it follows that
u ∈ C,λ(�). Then on the basis of (.), (.), (.), (.), and Remark ., we obtain in-
equality (.). �

We define the function ûh as follows:

ûh = S(uh,ϕ) on �, (.)

where uh is the solution of the finite difference problem (.)-(.).

Theorem. Let conditions (.) and (.) be satisfied.Then the function ũh is continuous
on �, and

max
(x,y)∈�

|̂uh – u| ≤ ch, (.)

where u is the solution of problem (.), (.).

Proof From the construction of the expression S(uh,ϕ) it follows that ûh = uh on �h,
and ûh = ϕj on γ h

j , j = , , , . The continuity of ûh on � follows from the continuity
S(uh,ϕ) on each closed triangle Type A and Type B, and from the equality ûh = uh on
�h. By Remark . and from the condition ûh = ϕj on γ h

j , j = , , , , the continuity of the
function ûh on the closed rectangle � follows. By virtue of (.) and (.) it follows that
u ∈ C,λ(�),  < λ <  (see Theorem . in []). Then, on the basis of (.), (.), (.),

http://www.boundaryvalueproblems.com/content/2014/1/73
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(.) Theorem ., Theorem . and (.), we obtain

max
(x,y)∈�

|̂uh – u| ≤ max
(x,y)∈�

∣∣S(u,ϕ) – u
∣∣ + max

(x,y)∈�

∣∣S(uh – u, )
∣∣

≤ ch +
∑
k=

ξk max
(x,y)∈�

h
|uh – u| ≤ ch. �

4 An application of thematching operator in the Block-Gridmethod
Let G be an open simply connected staircase polygon, let γj, j = , , . . . ,N , be its sides,
including the ends, and let αjπ , αj ∈ { 

 , ,

 , }, be the interior angle formed by the sides

γj– and γj (γ = γN ). Furthermore, let s be the arc length measured along the boundary of
G in the positive direction and sj be the value of s at the vertex Aj = γj– ∩ γj, (rj, θj) be a
polar system of coordinates with pole in Aj and the angle θj taken counterclockwise from
the side γj.
We consider the boundary value problem

�u =  on G, u = ϕj on γj, j = , , . . . ,N , (.)

where ϕj are given functions, and

ϕj ∈ C,λ(γj),  < λ < , ≤ j ≤N . (.)

Moreover, at the vertices Aj for αj = 
 the conjugation conditions

ϕ
(q)
j (sj) = (–)qϕ(q)

j– (sj), q = , , , , (.)

are satisfied. At the vertices Aj for αj �= 
 no compatibility conditions for boundary func-

tions are required; in particular the values of ϕj– and ϕj at these verticesmight be different.
Additionally, it is required that when αj �= /, the boundary functions on γj– and γj are
given as algebraic polynomials of arclength smeasured along γ .
Let E = {j : αj �= /, j = , , . . . ,N}. We call the vertices Aj, j ∈ E, the singular vertices

of the polygon G. We construct two fixed block sectors in the neighborhood of Aj, j ∈
E, denoted by Ti

j = Tj(rji) ⊂ G, i = , , where  < rj < rj < min{sj+ – sj, sj – sj–}, Tj(r) =
{(rj, θj) :  < rj < r,  < θj < αjπ}. On the closed sector T 

j , j ∈ E, we consider the function
Qj(rj, θj), which has the following properties:

(i) Qj(rj, θj) is harmonic and bounded on the open sector T 
j ;

(ii) continuous everywhere on T 
j apart from the point Aj, j ∈ E when ϕj– �= ϕj;

(iii) continuously differentiable on T 
j \Aj;

(iv) satisfies the given boundary conditions on γj– ∩ T 
j and γj ∩ T 

j , j ∈ E.
The function Qj(rj, θj) with properties (i)-(iv) is given in [].
Let

Rj(rj, θj,η) =

αj

∑
k=

(–)kR
((

r
rj

)/αj
,
θ

αj
, (–)k

η

αj

)
, j ∈ E, (.)

http://www.boundaryvalueproblems.com/content/2014/1/73
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where

R(r, θ ,η) =
 – r

π ( – r cos(θ – η) + r)
(.)

is the kernel of the Poisson integral for a unit circle.
The approximation of the integral representation given in the following lemma is used to

construct an approximate solution of problem (.) around the singular vertices Aj, j ∈ E.

Lemma . The solution u of problem (.), (.) can be represented on T
j \Vj, j ∈ E, in

the form

u(rj, θj) =Qj(rj, θj) +
∫ αjπ



(
u(rj,η) –Qj(rj,η)

)
Rj(rj, θj,η)dη, (.)

where Vj is the curvilinear part of the boundary of the sector T
j .

Proof The proof follows from Theorems . and . in []. �

We define the approximate solution in the whole polygon G by applying a version of the
Block-Grid method introduced in [] (see also []).
Let us consider, in addition to the sectors T 

j , T
j , the sectors T

j and T
j , which are also

in the neighborhood of each vertex Aj, j ∈ E, of the polygon G, with  < rj < rj < rj,
rj = (rj + rj)/ and T

k ∩T
l = ∅, k �= l, where k, l ∈ E. Furthermore, let GT =G\(⋃j∈E T

j ).
We give the description of the Block-Grid method on a hexagonal grid:

(i) All singular corners Aj, j ∈ E, are separated by the double sectors Ti
j = Tj(rji), i = , ,

with rj < rj, T
k ∩ T

l = ∅, k �= l and k, l ∈ E. The polygon is covered by overlapping
rectangles �k , k = , , . . . ,M, and sectors T

j , j ∈ E, such that the distance from �k

to a singular point Aj is greater than rj for all k = , , . . . ,M and j ∈ E.
(ii) On each rectangle �k , the seven point difference scheme for the approximation of

Laplace’s equation on a hexagonal grid is used, with step size hk ≤ h, h is a
parameter, and as an approximate solution on T

j , j ∈ E, the harmonic function
(.) is used.

(iii) We use the matching operator S constructed in Section  to connect the
subsystems.

For obtaining the numerical solution of the algebraic system of equations (.), (.), we
outline the procedure: Let �k ⊂ GT , k = , , . . . ,M, be certain fixed open rectangles with
sides ak and ak parallel to the sides of G, and G ⊂ (

⋃M
k= �k)∪ (

⋃
j∈E T

j ) ⊂G. We use ηk

to denote the boundary of the rectangle �k , Vj is the curvilinear part of the boundary of
the sector T

j and tj = (
⋃M

k= ηk)∩ T
j .

The overlapping condition is imposed on the arrangement of the rectangles �k , k =
, , . . . ,M: any point P lying on ηk ∩GT , ≤ k ≤M, or located on Vj ∩G, j ∈ E, falls inside
at least one of the rectangles �k(P), ≤ k(P) ≤ M, where the distance from P to GT ∩ ηk(P)

is not less than some constant κ independent of P. The quantity κ is called the gluing
depth of the rectangles �k , k = , , . . . ,M.
We introduce the parameter h ∈ (,κ/] and consider a hexagonal grid on �k , k =

, , . . . ,M, with maximal possible step hk ≤ min{h,min{ak ,ak}/}. Let �h
k be the set of

nodes on �k , let ηh
k be the set of nodes on ηk , and let �

h
k = �h

k ∩ ηh
k . We denote the set

http://www.boundaryvalueproblems.com/content/2014/1/73
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of nodes on the closure of ηk ∩ GT by ηh
k, and the set of nodes on �h

k whose distance
from the boundary ηk ∩GT of �k is h

 by η∗h
k. We also have �∗h

k denoting the set of nodes
whose distance from the boundary ηk of �k is h

 and �h
k = �h

k\(�∗h
k ∪ η∗h

k). Let t
h
j be

the set of nodes on tj, and let ηh
k be the set of remaining nodes on ηk . We also specify

a natural number n ≥ [ln+κ h–] + , where κ >  is a fixed number and the quantities
n(j) = max{, [αjn]}, βj = αjπ/n(j), and θm

j = (m – /)βj, j ∈ E,  ≤ m ≤ n(j). On the arc
Vj we choose the points (rj, θm

j ),  ≤ m ≤ n(j), and denote the set of these points by Vn
j .

Finally, let

ωh,n =

( M⋃
k=

ηh
k

)
∪

( M⋃
k=

η∗h
k

)
∪

(⋃
j∈E

Vn
j

)
, Gh,n

∗ = ωh,n ∪
( M⋃

k=

�
h
k

)
.

Consider the system of equations

uh = Suh on �h
k , (.)

uh = S∗
muh + E∗

mh(ϕm) on �∗h
k ,ηh

k ∩ γm �=∅, (.)

uh = ϕm on ηh
k ∩ γm, (.)

uh(rj, θj) =Qj(rj, θj)

+ βj

n(j)∑
k=

Rj
(
rj, θj, θ k

j
)(
uh

(
rj, θ k

j
)
–Qj

(
rj, θ k

j
))

on thj , (.)

uh = S(uh,ϕ) on ωh,n, (.)

where  ≤ k,m ≤ M, j ∈ E, ϕ = {ϕj}Nj=; Suh, S∗
muh and E∗

mh(ϕm) are defined as equations
(.), (.), and (.) in Section , respectively.
The solution of the system of equations (.)-(.) is a numerical solution of problem

(.), (.) on GT (‘nonsingular’ part of the polygon G).

Theorem . There is a natural number n such that for all n≥ n and h ∈ (, κ
 ],where

κ is the gluing depth, the system of equations (.)-(.) has a unique solution.

Proof Let vh be a solution of the system of equations

uh = Suh on �h
k ,

uh = S∗
muh on �∗h

k ,ηh
k ∩ γm �=∅,

uh =  on ηh
k ∩ γm, (.)

uh(rj, θj) = βj

n(j)∑
k=

Rj
(
rj, θj, θ k

j
)
uh

(
rj, θ k

j
)

on thj , (.)

uh = Suh on ωh,n,

where  ≤ k,m ≤ M, j ∈ E. To prove the given theorem, we show that maxGh,n
∗

|vh| = . On
the basis of the structure of operators S and S∗

j , and the forms (.), (.), (.), (.), (.),
and (.)-(.) of the matching operator S and by the maximum principle (see Ch. ,

http://www.boundaryvalueproblems.com/content/2014/1/73
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[]) it follows that the nonzero maximum value of the function vh can be at the points on⋃
j∈E thj . From estimation (.) in [] the existence of the positive constants n and σ > 

such that for n≥ n

max
(rj ,θj)∈Tj

βj

n(j)∑
q=

Rj
(
rj, θj, θ

q
j
) ≤ σ <  (.)

follows. However, taking (.) into account in (.) we have that the nonzero maximum
value can not be at the points on

⋃
j∈E thj either. Since the set Gh,n

∗ is connected, from
equation (.) it follows that maxGh,n

∗
|vh| = . �

Let uh be the solution of the system of equations (.)-(.). The function

Uh(rj, θj) =Qj(rj, θj) + βj

n(j)∑
q=

Rj
(
rj, θj, θ

q
j
)(
uh

(
rj, θ

q
j
)
–Qj

(
rj, θ

q
j
))

(.)

is the approximation of the integral representation (.) with the use of the composite
mid-point rule.We use the functionUh(rj, θj) as an approximate solution of problem (.),
(.) on the closed block T

j , j ∈ E (‘singular’ parts of the polygon G).
Let

εh = uh – u, (.)

where uh is the solution of system (.)-(.) and u is the trace of the solution of (.),
(.) on Gh,n

∗ . On the basis of (.), (.), (.)-(.), and (.), εh satisfies the following
difference equations:

εh = Sεh + rh on �h
k , (.)

εh = S∗
mεh + rh on �∗h

k ,ηh
k ∩ γm �=∅, εh =  on ηh

k ∩ γm, (.)

εh(rj, θj) = βj

n(j)∑
k=

Rj
(
rj, θj, θ k

j
)
εh

(
rj, θ k

j
)
+ rjh, (rj, θj) ∈ thkj, (.)

εh = Sεh + rh on ωh,n, (.)

where  ≤ k,m≤M, j ∈ E and

rh = Su – u on
M⋃
k=

�h
k , rh = S∗

mu + E∗
mh(ϕm) – u on

⋃
≤k≤M

�∗h
k , (.)

rjh = βj

n(j)∑
k=

Rj
(
rj, θj, θ k

j
)(
u
(
rj, θ k

j
)
–Qj

(
rj, θ k

j
))

–
(
u(rj, θj) –Qj(rj, θj)

)
on

⋃
j∈E

thj ,

rh = S(u,ϕ) – u on ωh,n. (.)
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Since all the rectangles �k , k = , , . . . ,M are located away from the singular vertices Aj,
j ∈ E of the polygon G, at a distance greater than rj >  independent of h, by virtue of the
conditions (.) and (.), up to sixth order derivatives of the solution of problem (.),
(.) are bounded on

⋃M
k= �k . Then, by Taylor’s formula, from (.) we obtain

max⋃M
k= �h

k

∣∣rh∣∣ ≤ ch, max⋃M
k= �∗h

k

∣∣rh∣∣ ≤ ch. (.)

Furthermore, as ωh,n ⊂ ⋃M
k= �k from (.) and Theorem ., we have

max
ωh,n

∣∣rh∣∣ ≤ ch. (.)

By analogy to the proof of Lemma. in [], it is shown that there exists a natural number
n, such that for all n≥max{n, [ln+κ h–] + }, κ >  being a fixed number,

max
j∈E

∣∣rjh∣∣ ≤ ch. (.)

Theorem . There exists a natural number n such that for all n ≥max{n, [ln+κ h–]},
κ >  being a fixed number,

max
Gh,n

∗
|uh – u| ≤ ch. (.)

Proof The proof follows from estimations (.)-(.) and the principle of maximum by
analogy to the proof of Theorem . in []. �

Theorem . Let uh be the solution of the system of equations (.)-(.), and let an ap-
proximate solution of problem (.), (.) be found on blocks T

j , j ∈ E, by (.). There is a
natural number n such that for all n ≥ max{n, [ln+κ h–]}, κ >  being a fixed number,
the following estimations hold:

∣∣Uh(rj, θj) – u(rj, θj)
∣∣ ≤ ch on T

j , j ∈ E, (.)∣∣∣∣ ∂p

∂xp–q ∂yq
(
Uh(rj, θj) – u(rj, θj)

)∣∣∣∣ ≤ cph/r
p–/αj
j on T

j \Aj, j ∈ E, (.)

where  ≤ q ≤ p, p = , , . . . .

Proof Estimation (.) is obtained from the integral representation (.) and formula
(.) by using estimations (.) and (.). Estimation (.) for p = , , . . . is obtained
by using inequality (.) and Lemma . in []. �

5 Numerical results and discussion
To support the theoretical results, numerical examples have been solved in two different
domains.

Example . Approximation in a rectangular domain. Consider the rectangular domain

� =
{
(x, y) ∈D :  < x < ,  < y <

√



}
,

http://www.boundaryvalueproblems.com/content/2014/1/73
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Table 1 Approximation in a rectangle with smooth exact solution

h ‖εh‖
�
h Rm

�
h

2–3 1.15727× 10–7

2–4 7.33698× 10–9 15.7731
2–5 4.58658× 10–10 15.9966
2–6 2.89896× 10–11 15.4765
2–7 2.02482× 10–12 14.3171

Table 2 Approximation in a rectangle with less smooth exact solution

h ‖εh‖�h Rm
�h

2–3 1.9285677× 10–4

2–4 1.1998304× 10–5 16.0737
2–5 7.4809403× 10–7 16.0385
2–6 4.67808169× 10–8 15.9915
2–7 2.922653× 10–9 16.0063

with the boundary γ . The hexagonal grid (.), denoted �h, is assigned to the grid �,
where γ h denotes the set of nodes on the boundary γ .
We consider the problem

�u =  on �h,

u = v(x, y) on γ h,

where

v(x, y) = ey sinx (.)

is the exact solution in the rectangular domain.
This example is solved using the incomplete LU-decompositionmethod (see [], Ch. ),

and all the calculations are carried out in double precision. As a convergence test, we
request the maximum residual error to be –, and as a starting point vh =  is used.
Table  gives the values obtained in the maximum norm of the difference between the

exact and the approximate solutions, for the values of h = –k , k = ,, , , , i.e., ‖εh‖�
h =

max
�
h |v – vh|. The ratios Rm

�
h =

‖v–v–m‖
�
h

‖v–v–(m+)‖
�
h
have also been included, where O(h) order

of accuracy corresponds to  of the value Rm
�
h .

Example . Less smooth function. We consider the same problem as in Example .
with the exact solution

v(x, y) =


ln

(
x + y

)
Re z – tan–

(
y
x

)
Im z, (.)

which is less smooth than (.). The results obtained are consistent with the theoretical
results and are summarized in Table .

Example . The matching operator. Examples of the matching operator have also been
considered in the domain �. The coordinate P(., .) is chosen, where P ∈ �.

http://www.boundaryvalueproblems.com/content/2014/1/73
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Table 3 Results for approximation of inner points with the matching operator

S4u 1.56912199976621
Exact 1.56912199014188
|εh(P1)| 9.624329× 10–9

Table 4 Results for approximation of near boundary points with the matching operator

h |εh(P2)| |εh(P3)|
2–4 1.716286× 10–8 3.85255412× 10–8

2–5 5.385032× 10–10 4.3619541× 10–9

2–6 2.2436186× 10–10 3.41679468× 10–10

2–7 2.4942270× 10–11 2.8927971× 10–12

The harmonic function

u(x, y) = ex cos y (.)

is assumed to be the exact solution. The result in Table  is obtained using h = – and
demonstrates high accuracy of the above constructed matching operator.
The second coordinate considered demonstrates the accuracy of the approximation of

near-boundary points. The point chosen is P(., .), where P ∈ �, and equa-
tion (.) is used for approximation. Again, the harmonic function (.) is used as the
exact solution. Lastly, a point near one of the corners of the domain P(., .) has
been considered, where the nodes of evaluation emerge outside of the domain from both
adjacent sides of the corner. The function

u(x, y) = ey cosx

is used as the exact solution. The results obtained are summarized in Table .

Example . Approximation in an L-shaped domain. The final example is solved in an
L-shaped domain with an angle singularity at the origin, where απ = π/. The domain
is defined by

� =
{
(x, y) : – ≤ x ≤ ,–

√



≤ y≤
√



}∖
�,

where � = {(x, y) :  ≤ x ≤ ,–
√

 ≤ y≤ }, and is covered by four overlapping rectangles

and a sector. The singular part is defined to be the region

�S =
{
(x, y) : –




≤ x≤ 

,–

√



≤ y≤
√



}∖
�s

,

where �s
 = {(x, y) : ≤ x ≤ 

 , –
√

 ≤ y ≤ }, and the nonsingular part is �NS =�/�S . The

systemof Block-Grid equations is solved by Schwarz’s alternatingmethod. The quadrature
nodes on the circular arc, whose radius is taken as ., and the overlapping boundaries of
the rectangles are renewed after each Schwarz’s iteration. The nodes on the circular arc,
the inner boundaries of the overlapping rectangles and the nodes in the set

⋃
k= η

∗h
k are

http://www.boundaryvalueproblems.com/content/2014/1/73
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Table 5 The order of convergence in ‘nonsingular’ part

(h,N) ‖εh‖�NS Rm
�NS

(2–4, 40) 9.9742× 10–4 27.9237
(2–5, 60) 3.57195× 10–5

(2–5, 100) 8.2649× 10–7 15.3796
(2–6, 100) 5.373923× 10–8

(2–6, 100) 5.373923× 10–8 15.7215
(2–7, 125) 3.418192× 10–9

Table 6 The order of convergence in ‘singular’ part

(h,N) ‖εh‖�S Rm
�S

(2–4, 40) 9.9742× 10–4 11.7569
(2–5, 60) 3.57195× 10–5

(2–5, 100) 8.2649× 10–7 14.9731
(2–6, 100) 5.373923× 10–8

(2–6, 100) 5.373923× 10–8 16.5665
(2–7, 125) 3.418192× 10–9

renewed using the matching operator constructed above. Since the boundary functions
are harmonic polynomials on the sides γ and γ ≡ γ, the nodes whose neighbors emerge
outside of the domain from these sides are approximated using the function u–Q. Finally,
the solution on the singular part is approximated using the integral representation [, ].
The problem considered is

�u =  on �h,

u = v(x, y) on γ h,

where

v(x, y) = θ + r/ sin
(


θ

)
+Re z + Im z,

is the exact solution. Accordingly, the functionQ(x, y) used in the integral representation
is constructed as

Q(x, y) = θ + r
(
cos(θ ) + sin(θ )

)
.

The results in Tables  and  show the solution for different pairs (h,N), where N is the
number of quadrature nodes, h is the mesh size of the hexagonal grid.

6 Conclusions
The fourth order classical -point scheme on a hexagonal grid is applied on a rectangu-
lar domain. This leads to some of the nodes emerging from the two parallel sides while
approximating points whose distance from the boundary is h

 . This problem was over-
come by devising an approximating equation for near-boundary nodes, which included
the use of three inner nodes around the point of evaluation and three points lying on the
boundary. The fourth order matching operator has been constructed on the hexagonal

http://www.boundaryvalueproblems.com/content/2014/1/73
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grid functions. It is applied to construct a fourth order accurate interpolating function,
on the closed rectangle, for the numerical solution of Laplace’s equation on the hexagonal
grids. Further, thematching operator and the hexagonal grid approximation in a rectangle
are used to obtain and justify the Block-Grid method in solving the Dirichlet problem for
Laplace’s equation on staircase polygons.
Numerical examples have been provided as an illustration of the theoretical resultsmen-

tioned above.
The matching operator constructed can be applied to many other forms of domain de-

composition or combined methods. It will also be an interesting study to extend the ap-
proximation of the methods to using mixed or Neumann boundary conditions.
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